
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

Query co-Processing on
Commodity Processors

Anastassia Ailamaki
Carnegie Mellon University

Naga K. Govindaraju
Dinesh Manocha

University of North Carolina at Chapel Hill

Stavros Harizopoulos
MIT

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Technology

shift

towards

multi-cores

[Multiple processors
on the same chip]

Specint2000

1.00

10.00

100.00

1000.00

10000.00

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05

Intel

Alpha

Sparc

Mips

HP PA

Pow er PC

AMD

Processor Performance over Time*

Year of introduction

Scalar Superscalar Out-of-order SMT

P
er

fo
rm

an
ce

*graph courtesy of Rakesh Kumar

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Focus of this Tutorial
DB workload execution on a modern computer

Processor

0%

20%

40%

60%

80%

100%

Ideal seq. scan index
scan

DSS OLTP

ex
ec

u
ti

on
 t

im
e

BUSY IDLE (STALLED)

How can we explore new hardware to
run database workloads efficiently?

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Detailed Tutorial Outline
INTRODUCTION AND OVERVIEW

How computer architecture trends affect database workload behavior
CPUs, NPUs, and GPUs: opportunities for architectural study!

DBs on CONVENTIONAL PROCESSORS
Query Processing: Time breakdowns, bottlenecks, and current directions
Architecture-conscious data management: limitations and opportunities

QUERY co-PROCESSING: NETWORK PROCESSORS
TLP and network processors
Programming model
Methodology & Results

QUERY co-PROCESSING: GRAPHICS PROCESSORS
Graphics Processor Overview
Mapping Computation to GPUs
Database and data mining applications

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline

INTRODUCTION AND OVERVIEW
Computer architecture trends and DB workloads
• Processor/memory speed gap
• Instruction-level parallelism (ILP)
• Chip multiprocessors and multithreading

DBs on CONVENTIONAL PROCESSORS

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Processor/memory speed gap
Moore’s Law (despite technological hurdles!)

Innovative processor microarchitecture
Memory capacity increases exponentially
Speed increases linearly

16MB
4MB

1MB
64KB 256KB

64MB

4GB

512MB

0.1

1

10

100

1000

10000

1980 1983 1986 1989 1992 1995 2000 2005

DRAM size

Larger but not as much faster memories
2x processor speed every 18 months

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

The Memory Wall

Trip to memory = 1000s of instructions!

0.33

10

0.0625

80

6

0.01

0.1

1

10

100

1000
pr

oc
es

so
r

cy
cl

es
 /

in
st

ru
ct

io
n

0.01

0.1

1

10

100

1000

cy
cl

es
 /

ac
ce

ss
 to

 D
R

A
M

CPU(s)
Memory

VAX/1980 PPro/1996 2010+

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Memory hierarchies

Caches trade off capacity for speed
Exploit instruction/data locality
Demand fetch/wait for data

[ADH99]:
Running top 4 database systems
At most 50% CPU utilization

MemoryMemory

CC
PP
UU

10
00

cl
k

10
0

cl
k

1
cl

k
10

 c
lk

L2 2MB

L1 64KB

4GB
to

1TB

L3 32MB

Efficient cache utilization is crucial!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline

INTRODUCTION AND OVERVIEW
Computer architecture trends and DB workloads
• Processor/memory speed gap
• Instruction-level parallelism (ILP)
• Chip multiprocessors and multithreading

DBs on CONVENTIONAL PROCESSORS

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

ILP: Processor pipelines
Problem: dependences between instructions
E.g., Inst1: r1 ← r2 + r3

Inst2: r4 ← r1 + r2

F D E M W
F D E M W

t0 t1 t2 t3 t4 t5
Inst1
Inst2

F D E M W

Read-after-write (RAW)

DB apps: frequent data dependences

t0 t1 t2 t3 t4 t5
F D E M W

F D E M W
Inst1
Inst2 E Stall

F E MD Stall D
Real CPI > 1; Real ILP < 5

Inst3

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Out-of-order (vs. “inorder”) execution:
Shuffle execution of independent instructions
Retire instruction results using a reorder buffer

> ILP: Superscalar Out-of-Order

F D E M W
t0 t1 t2 t3 t4 t5

Inst1…n

Peak instruction-per-cycle (IPC)=n (CPI=1/n)

F D E M W
F D E M W

Inst(n+1)…2n

Inst(2n+1)…3n

at most n

peak ILP = d*n

DB: only 1.5x faster than inorder [KPH98,RGA98]
Limited ILP opportunity

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

tru
e:

 fe
tc

h
B

>> ILP: Branch Prediction
Which instruction block to fetch?

Evaluating a branch condition causes pipeline stall

C?
IDEA: Speculate branch while
evaluating C!

Record history, predict A/B
If correct, saved a (long) delay!
If incorrect, misprediction penalty

Excellent predictors (97% accuracy!)
Mispredictions costlier in OOO

1 lost cycle = >>1 missed instructions!

fa
lse

: f
et

ch
 A

xxxx
if C goto B

A: aaaa
aaaa
aaaa
aaaa

B: bbbb
bbbb
bbbb
bbbb
bbbb
DB programs: long code paths => mispredictions

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Database workloads on UPs

0.33
0.8

1.4

DB

4

DB

Theoretical
minimum

Desktop/
Engineering

(SPECInt)

Decision
Support
(TPC-H)

Online
Transaction
Processing

(TPC-C)

C
yc

le
s

pe
r i

ns
tr

uc
tio

n

DB apps heavily under-utilize hardware

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline

INTRODUCTION AND OVERVIEW
Computer architecture trends and DB workloads
• Processor/memory speed gap
• Instruction-level parallelism (ILP)
• Chip multiprocessors and multithreading

DBs on CONVENTIONAL PROCESSORS

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Coarse-grain parallelism

Multithreading
Pursue multiple threads in parallel within a processor pipeline
Store multiple contexts in different register sets
Multiplex functional units between threads
Fast (hardware) context switching amongst threads

Chip multiprocessors (CMPs)
>1 complete processors on a single chip
Every functional unit of a processor is duplicated

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

POWER5

(IBM)

Speedup: OLTP 3x, DSS 1.5x [LBE98]

RS64-IV

(IBM)

Ultrasparc T1

(Sun)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

The case for CMPs

Getting diminishing returns
from a single core, although powerful
(OoO, superscalar, multithreaded)
from a very large cache

n-core CMP outperforms n-thread SMT
CMPs offer productivity advantages

Moore’s law: 2x transistors every 18 months
More, not faster

Expect exponentially more cores

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

A chip multiprocessor

CPU1

L1I L1D

L3 CACHE

MAIN MEMORY

CPU0

L1I L1D

CPU1

L1I L1D

L2 CACHE

CHIP 2

CPU0

CHIP 1

L1I L1D

L2 CACHE

Highly variable memory latency
Speedup: OLTP 3x, DSS 2.3x on Piranha [BGM00]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Current CMP technology

8x4=32 threads - how to best use them?

IBM Power 5

AMD Opteron

Intel Yonah

Sun Niagara

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Summary: Trends & DB workloads
Hardware: continuously evolving

Superscalar → OoO → SMT → CMP
Processor/memory speed gap: growing

Software: one processor does not fit all
At most 50% CPU utilization
heavy reuse vs. sequential scan vs. random access loops

Opportunities for architectural study
On real conventional processors
On simulators (hard to find/build, slow)
On co-processors: NPUs and GPUs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline
INTRODUCTION AND OVERVIEW

DBs on CONVENTIONAL PROCESSORS
Query Processing: Time breakdowns and bottlenecks
Eliminating unnecessary misses: Data Placement
Hiding Latencies
Query processing algorithms and instruction cache misses
Chip multiprocessor DB architectures

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

DB Execution Time Breakdown

0%

20%

40%

60%

80%

100%

seq. scan DSS index scan OLTP

ex
ec

ut
io

n
ti

m
e

Computation Memory Branch mispred. Resource

[ADH99,BGB98,BGN00,KPH98,SAF04]

PII Xeon
NT 4.0
Four DBMS:
A, B, C, D

At least 50% cycles on stalls
Memory is major bottleneck

Branch mispredictions increase cache misses!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Join (no index)

0%

20%

40%

60%

80%

100%

A B C D
DBMS

table scan

0%

20%

40%

60%

80%

100%

A B C D
DBMS

M
em

or
y

st
al

l t
im

e
(%

)

clustered index scan

0%

20%

40%

60%

80%

100%

A B C D
DBMS

L1 Data L2 Data L1 Instruction L2 Instruction

PII Xeon running NT 4.0, used performance counters
Four commercial Database Systems: A, B, C, D

DSS/OLTP basics: Memory

non-clustered index

0%

20%

40%

60%

80%

100%

B C D
DBMS

[ADH99,ADH01]

Bottlenecks: data in L2, instructions in L1
Random access (OLTP): L1I-bound

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Why Not Increase L1I Size?

L1I: in critical execution path
slower L1I: slower clock

Trends: L1-I cache

Max on-chip
L2/L3 cache

‘96 ‘00 ‘04‘98 ‘02
Year Introduced

10 KB

100 KB

1 MB

10 MB

C
ac

he
 s

iz
e

Problem: a larger cache is typically a slower cache
Not a big problem for L2

L1I size is stable
L2 size increase: Effect on performance?

[HA04]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Increasing L2 Cache Size
DSS: Performance improves as L2 cache grows
Not as clear a win for OLTP on multiprocessors

Reduce cache size ⇒ more capacity/conflict misses
Increase cache size ⇒ more coherence misses

0%

5%

10%

15%

20%

25%

1P 2P 4P
of processors

%
 o

f
L2

 c
ac

he
 m

is
se

s
to

 d
ir

ty

da
ta

 in
 a

no
th

er
 p

ro
ce

ss
or

's

ca
ch

e

256KB 512KB 1MB

Larger L2: trade-off for OLTP
Hardware needs help from software

[BGB98,KPH98]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Summary: Time breakdowns

Database workloads: more than 50% stalls
Mostly due to memory delays
Cannot always reduce stalls by increasing cache size

Crucial bottlenecks
Data accesses to L2 cache (esp. for DSS)
Instruction accesses to L1 cache (esp. for OLTP)

Goal 1: Eliminate unnecessary misses
Goal 2: Hide latency of “cold” misses

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline
INTRODUCTION AND OVERVIEW

DBs on CONVENTIONAL PROCESSORS
Query Processing: Time breakdowns and bottlenecks
Eliminating unnecessary misses: Data Placement
Hiding Latencies
Query processing algorithms and instruction cache misses
Chip multiprocessor DB architectures

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

PAGE HEADER 1237HDR

30Jane HDR 4322 John

45

•••

HDR

7658 Susan 52

•

HDR Jim 201563

37Dan87916

43Leon25345

52Susan76584

20Jim15633

45John43222

30Jane12371

AgeNameEID#

R

(NSM: n-ary Storage Model, or Slotted Pages)

Records stored sequentially
Attributes of a record stored together

“Classic” Data Layout on Disk Pages

Full-record access
Partial-record access

1237HDR

30Jane HDR 4322 John

45 HDR

7658 Susan 52

HDR Jim 201563

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

NSM in Memory Hierarchy

DISK

PAGE HEADER

7658 Susan 52

1237 Jane

Jim 20

4322 John 4530 1563

CPU CACHEMAIN MEMORY

PAGE HEADER

7658 Susan 52

1237 Jane

Jim 20

4322 John 4530 1563

4322 Jo30 Block 1

hn 45 1563 Block 2
7658Jim 20 Block 3

NSM optimized for full-record access
Hurts partial-record access at all levels

select name
from R
where age > 50

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

•••

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

• •••

NSM PAGE PAX PAGE

PAX partitions within page: cache locality

Partition Attributes Across (PAX)

mini
page

[ADH01]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

PAX in Memory Hierarchy

1563
PAGE HEADER 1237 4322

7658

Jane John Jim Susan

30 45 2052

DISK

1563
PAGE HEADER 1237 4322

7658

Jane John Jim Susan

30 45 2052

MAIN MEMORY CPU CACHE

block 152 45 2030

PAX optimizes cache-to-memory communication
Retains NSM’s I/O (page contents do not change)

cheap

select name
from R
where age > 50

[ADH01]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

PAX Performance Results (Shore)
Cache data stalls

0

20

40

60

80

100

120

140

160

NSM PAX
page layout

st
al

l c
yc

le
s

/ r
ec

or
d

L1 Data stalls
L2 Data stalls PII Xeon

Windows NT4
16KB L1-I&D,
512 KB L2,
512 MB RAM

70% less data stall time (only cold misses left)
Better use of processor’s superscalar capability
TPC-H queries: 15%-2x speedup
Dynamic PAX: Data Morphing [HP03]
CSM custom layout using scatter-gather I/O [SSS04]

[ADH01]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

B-trees: < Pointers, > Fanout
Cache Sensitive B+ Trees (CSB+ Trees)
Layout child nodes contiguously
Eliminate all but one child pointers

Integer keys double fanout of nonleaf nodes
B+ Trees CSB+ Trees

K1 K2

K3 K4 K5 K6 K7 K8

K1 K3K2 K4

K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4

35% faster tree lookups
Update performance is 30% worse (splits)

[RR00]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Data Placement: Summary

Smart data placement increases spatial locality
Techniques focus grouping attributes into cache lines
for quick access

PAX, Data morphing
Fates Automatically-tuned DB Storage Manager
CSB+-trees
Also, Fractured Mirrors: Cache-and-disk
optimization [RDS02] with replication

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline

INTRODUCTION AND OVERVIEW

DBs on CONVENTIONAL PROCESSORS
Query Processing: Time breakdowns and bottlenecks
Eliminating unnecessary misses: Data Placement
Hiding Latencies
Query processing algorithms and instruction cache misses
Chip multiprocessor DB architectures

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

What about the rest of misses?

Idea: hide latencies using prefetching
Prefetching enabled by

Non-blocking cache technology

Prefetch assembly instructions
• SGI R10000, Alpha 21264, Intel Pentium4

Main MemoryCPU L2/L3
CacheL1

Cache

pref 0(r2)
pref 4(r7)
pref 0(r3)
pref 8(r9)

Prefetching hides cache miss latency
Efficiently used in pointer-chasing lookups!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

> Prefetching B+-trees
(pB+-trees) Idea: Larger nodes
Node size = multiple cache lines (e.g. 8 lines)

Later corroborated by [HP03a]

Prefetch all lines of a node before searching it

Cost to access a node only increases slightly
Much shallower trees, no changes required

Time

Cache miss

[CGM01]

>2x better search AND update performance
Approach complementary to CSB+-trees!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

>> Prefetching B+-trees

Goal: faster range scan
Leaf parent nodes contain addresses of all leaves
Link leaf parent nodes together
Use this structure for prefetching leaf nodes

Fractal: Embed cache-aware trees in disk nodes
Key compression to increase fanout [BMR01]

Leaf parent nodes

pB+-trees: 8X speedup over B+-trees
Fractal pB+-trees: 80% faster in-mem search

[CGM01,CGM02]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Bulk lookups
Optimize data cache performance

Like computation regrouping [PMH02]

Idea: increase temporal locality by delaying
(buffering) node probes until a group is formed
Example: NLJ probe stream: (r1, 10) (r2, 80) (r3, 15)

[ZR03a]

3x speedup with enough concurrency

r110
keyRID

(r1, 10)

buffer

root

B C

D E

(r1,10) is buffered
before accessing B

r110r110
keyRID

(r1, 10)

buffer

root

B C

D E

(r1,10) is buffered
before accessing B

r110
keyRID

(r2, 80)

r2 80

B C

(r2,80) is buffered
before accessing C

r110r110
keyRID

(r2, 80)

r2 80

B C

(r2,80) is buffered
before accessing C

r110
keyRID

(r3, 15)

r2 80

B C
r315

B is accessed,
buffer entries are

divided among children

r110
keyRID

(r3, 15)

r2 80

B C
r315

B is accessed,
buffer entries are

divided among children

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Hiding latencies: Summary
Optimize B+ Tree pointer-chasing cache behavior

Reduce node size to few cache lines
Reduce pointers for larger fanout (CSB+)
“Next” pointers to lowest non-leaf level for easy prefetching (pB+)
Simultaneously optimize cache and disk (fpB+)
Bulk searches: Buffer index accesses

Additional work:
CR-tree: Cache-conscious R-tree [KCK01]

Compresses MBR keys

Cache-oblivious B-Trees [BDF00]
Optimal bound in number of memory transfers
Regardless of # of memory levels, block size, or level speed

Survey of B-Tree cache performance [GL01]
Key normalization/compression, alignment, separating keys/pointersLots more to be done in the area -- consider

interference and scarce resources

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline

INTRODUCTION AND OVERVIEW

DBs on CONVENTIONAL PROCESSORS
Query Processing: Time breakdowns and bottlenecks
Eliminating unnecessary misses: Data Placement
Hiding Latencies
Query processing algorithms and instruction cache misses
Chip multiprocessor DB architectures

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Query Processing Algorithms

Adapt query processing algorithms to caches

Related work includes:
Improving data cache performance

Sorting and hash-join

Improving instruction cache performance
DSS and OLTP applications

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Query processing: directions

Alphasort: quicksort and key prefix-pointer [NBC94]
Monet: MM-DBMS uses aggressive DSM [MBN04]++

Optimize partitioning with hierarchical radix-clustering
Optimize post-projection with radix-declustering
Many other optimizations

Hash joins: aggressive prefetching [CAG04]++
Efficiently hides data cache misses
Robust performance with future long latencies

Inspector Joins [CAG05]
DSS I-misses: new “group” operator [ZR04]
B-tree concurrency control: reduce readers’ latching
[CHK01]

[see references]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

SIMD: Single – Instruction – Multiple – Data
In modern CPUs, target multimedia apps

Example: Pentium 4,
128-bit SIMD register
holds four 32-bit values

Assume data stored columnwise as contiguous
array of fixed-length numeric values (e.g., PAX)
Scan example:

X3 X2 X1 X0

Y3 Y2 Y1 Y0

OP OP OP OP

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

if x[n] > 10
result[pos++] = x[n]

x[n+3] x[n+2] x[n+1] x[n]

10 10 10 10

> > > >

0 1 0 0

8 12 6 5

original scan code

SIMD 1st phase:
produce bitmap
vector with 4
comparison results
in parallel

[ZR02]DB operators using SIMD

Superlinear speedup to # of parallelism
Need to rewrite code to use SIMD

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Instruction-Related Stalls

25-40% of OLTP execution time [KPH98, HA04]
Importance of instruction cache: In critical path!

EXECUTION PIPELINE

L1 I-CACHE L1 D-CACHE

L2 CACHE

Impossible to overlap I-cache delays

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Goal: improve DSS I-cache performance
Idea: Predict next function call using small cache

Example: create_rec
always calls find_ , lock_
, update_ , and unlock_
page in same order

Experiments: Shore on SimpleScalar Simulator
Running Wisconsin Benchmark

Call graph prefetching for DB apps
[APD03]

Beneficial for predictable DSS streams

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

code
fits in
I-cache

context-switch
point

probe()
s1
s2
s3
s4
s5
s6
s7

thread 1 thread 2

instruction
cache

thread 1 thread 2

probe()
s1
s2
s3
s4
s5
s6
s7

probe()
s1
s2
s3

s4
s5
s6
s7

probe()
s1
s2
s3

s4
s5
s6
s7

Miss
M
M
M
M
M
M
M

M
M
M
M

M
M
M
M
H
H
H
H

Hit
H
H
H

M
M
M
M
M
M
M
M

no STEPS STEPS

Index probe: 96% fewer L1-I misses
TPC-C: we eliminate 2/3 of misses, 1.4 speedup

Synchronized Transactions
through Explicit Processor Scheduling

STEPS: Cache-Resident OLTP
[HA04]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Summary: Memory affinity

Cache-aware data placement
Eliminates unnecessary trips to memory
Minimizes conflict/capacity misses

What about compulsory (cold) misses?
Can’t avoid, but can hide latency with prefetching or grouping
Techniques for B-trees, hash joins

Query processing algorithms
For sorting and hash-joins, addressing data and instruction stalls

Low-level instruction cache optimizations
DSS: Call Graph Prefetching, SIMD
OLTP: STEPS (explicit transaction scheduling)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline

INTRODUCTION AND OVERVIEW

DBs on CONVENTIONAL PROCESSORS
Query Processing: Time breakdowns and bottlenecks
Eliminating unnecessary misses: Data Placement
Hiding Latencies
Query processing algorithms and instruction cache misses
Chip multiprocessor DB architectures

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Evolution of hardware design

Past: HW = CPU+Memory+Disk

CPU

m
em

or
y

the ‘80s
1 cycle
10+
300++

today

CPUs run faster than they access data

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06DBMS core design contradicts above goals

CPU

m
em

or
y

affinity

embarrassing
parallelism

CMP, SMT, and memory

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

How SMTs can help DB Performance

Naïve parallel: treat SMT as multiprocessor
Bi-threaded: partition input, cooperative threads
Work-ahead-set: main thread + helper thread:

Main thread posts “work-ahead set” to a queue
Helper thread issues load instructions for the requests

Experiments
index operations and hash joins
Pentium 4 with HT
Memory-resident data

Conclusions
Bi-threaded: high throughput
Work-ahead-set: high for row layout

[ZCR05]

Work-ahead-set best with no data movement

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Parallelizing transactions

SELECT cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {

GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

}

DBMS

Intra-query parallelism
Used for long-running queries (decision support)
Does not work for short queries

Short queries dominate in OLTP workloads

[CAS05,CAS06]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Parallelizing transactions

SELECT cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {

GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

}

DBMS

Intra-transaction parallelism
Each thread spans multiple queries

Hard to add to existing systems!
Need to change interface, add latches and locks, worry about
correctness of parallel execution…Thread Level Speculation (TLS)

makes parallelization easier
Thread Level Speculation (TLS)

makes parallelization easier

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Thread Level Speculation (TLS)

*p=

*q=

=*p

=*q

Sequential

Ti
m

e

Parallel

*p=

*q=

=*p

=*q

=*p

=*q

Epoch 1 Epoch 2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Thread Level Speculation (TLS)

*p=

*q=

=*p

=*q

Sequential

Ti
m

e

*p=

*q=

=*p

R2

Violation!

=*p

=*q

Parallel

Use epochs

Detect violations
Restart to recover
Buffer state

Worst case:
Sequential

Best case:
Fully parallel

Data dependences limit performanceData dependences limit performance

Epoch 1 Epoch 2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Example: Buffer Pool Management

CPU

Buffer Pool

get_page(5)

ref: 0

put_page(5)

Ti
m

e

get_page(5)

put_page(5)

get_page(5)
put_page(5)

Not undoable!Not undoable!

get_page(5)
put_page(5)

= Escape Speculation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

CPU

Buffer Pool

get_page(5)

ref: 0

put_page(5)

Ti
m

e

get_page(5)

put_page(5)

get_page(5)

put_page(5)

Delay put_page until end of epoch
Avoid dependence

= Escape Speculation

Example: Buffer Pool Management

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Removing Bottleneck Dependences

Introducing three techniques:
Delay operations until non-speculative

Mutex and lock acquire and release
Buffer pool, memory, and cursor release
Log sequence number assignment

Escape speculation
Buffer pool, memory, and cursor allocation

Traditional parallelization
Memory allocation, cursor pool, error checks, false sharing

2x lower latency with 4 CPUs
Useful for non-TLS parallelism as well

2x lower latency with 4 CPUs
Useful for non-TLS parallelism as well

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06StagedDB design addresses shortcomings

CPU

m
em

or
y

data, work, instruction
sharing

operation-level
parallelism

DBMS parallelism and memory affinity

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Cohort query scheduling: amortize loading time
Suspend at module boundaries: maintain context

Break DBMS into stages
Stages act as independent servers
Queries pick services they need

Proposed query scheduling algorithms to address
locality/wait time tradeoffs [HA02]

StagedDB software design
[HA03]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

[HA03,HSA05]

Optimize instruction/data cache locality
Naturally enable multi-query processing

Highly scalable, fault-tolerant, trustworthy

IN
OUT

connect parser optimizer send
results

FSCAN

JOIN

SORT

AGGRISCAN

L1

L2

MEMORY

L1

L2

MEMORY

…

Prototype design

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

packet
dispatcher

S S

A

thread
pool

storage engine

query
plans

conventional design

J
µEngine-S

Q Q

µEngine-J

µEngine-A
Q

Q

read
write

read

QPipe: operation-level parallelism
[HSA05]

Stable throughput as #users increases

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Future: NUCA hierarchy abstraction

P

P

P P

P

P

P P

Large shared
on-chip cache

Private
caches

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Data movement on CMP hierarchy*

Traditional DBMS: shared information in middle
StagedDB: exposed data movement

Scientific applications OLTP

*data from Beckmann&Wood, Micro04

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

StagedCMP: StagedDB on Multicore

µEngines run independently on cores
Dispatcher routes incoming tasks to cores

Potential: better work sharing, load balance on CMP

Tradeoff:
• Work sharing at each uEngine
• Load of each uEngine

CPU 1 CPU 2

Dispatcher

CPU 1 CPU 2

Dispatcher

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Summary: data mgmt on SMT/CMP

Work-ahead sets using helper threads
Use threads for prefetching

Intra-transaction parallelism using TLS
Thread-level speculation necessary for transactional memories
Techniques proposed applicable on today’s hardware too

Staged Database System Architectures
Addressing both memory affinity and unlimited parallelism
Opportunity for data movement prediction amongst processors

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline

INTRODUCTION AND OVERVIEW

DBs on CONVENTIONAL PROCESSORS

QUERY co-PROCESSING: NETWORK PROCESSORS
TLP and network processors
Programming model
Methodology & Results

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Modern Architectures & DBMS

Instruction-Level Parallelism (ILP)
Out-of-order (OoO) execution window
Cache hierarchies - spatial / temporal locality

DBMS’ memory system characteristics
Limited locality (e.g., sequential scan)
Random access patterns (e.g., hash join)
Pointer-chasing (e.g., index scan, hash join)

DBMS needs Memory-Level Parallelism (MLP)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Opportunities on NPUs

DB operators on thread-parallel architectures
Expose parallel misses to memory
Leverage intra-operator parallelism

Evaluation using network processors
Designed for packet processing
Abundant thread-level parallelism (64+)
Speedups of 2.0X-2.5X on common operators

Early insight on heterogeneous architectures and
DBMS execution

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Query Processing Architectures

CPU
(3 GHz)

System Memory
(2 GB)

Conventional

PCI-X Bus
(528 MB/s)

Using NPs

Network Processor
(600 MHz)

NP Memory
(1 GB)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Process stream
of tuples CPUGPU

Result tuple
stream

NP Memory

Microengine

NP

Incoming
tuples

Microengine

Microengine

Microengine

Outgoing
tuples

NP Card

NP Chip

3x Rambus
< 30 W
~110M
1500 MHz
128
16

Intel IXP2805

1x DDRMemory (DRAM)
< 16 WPower
~60 MTransistor count
600 MHzClock rate
64Thread contexts
8Microengines

Intel IXP2400

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

TLP opportunity in DB operators

Sequential or index scan
Fetch tuples in parallel

Hash join
Probe tuples in parallel

Name ID Grade
Smith 0 B

Chen 1 A

Thread A

Thread B

Name ID Grade
Smith 0 B

Chen 1 A
Thread A

Thread B

Hardware thread support helps expose parallelism
without significant overhead

[GAH05]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Multi-threaded Core

Simple processing core
5-stage, single-issue pipeline @ 600MHz, 2.5KB local cache
Switch contexts at programmer’s discretion
No OS or virtual memory

IXP2400

DRAM
Controller

DRAM

PCI
Controller

Host CPU

Scratch
Memory

Context
0

1 2 3

4 5 6 7

Local Cache

Active Context Waiting Contexts

Register Files

Core

8 Cores

Sensible for simple, long-running code
Throughput, rather than single-thread performance

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Multithreading in Action

Active Waiting Ready

DRAM
Request

DRAM
Data

Thread States:

Thread
Contexts
(1 core)

time

DRAM Latency

T0

T1

T2

T7

T0 T1 T2 T7 T0 T1 T2
Aggregate

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Slot array

0 1

4
2

3

n
01234n

P
ag

e

Record header Attributes

Sequential Scan Setup

Use slotted page layout (8KB)

Network processor implementation
Each page scanned by threads on one core
Overlap individual record access within core

[GAH05]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Hash Join Setup

Model ‘probe’ phase

hash

key attributes

1

2 3 4

Assign pages of outer relation to one core
Each thread context issues one probe
Overlap dependent accesses within core

[GAH05]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9

Threads/Core

T
h

ro
u

g
h

p
u

t
R

e
la

ti
v
e
 t

o
 P

4

1 core

2 cores

4 cores

8 cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9

Threads/Core

T
h

ro
u

g
h

p
u

t
R

e
la

ti
v
e

 t
o
 P

4

1 core

2 cores

4 cores

8 cores

IXP2400 prototype card
256MB PC2100 SDRAM
Separated from host CPU

Pentium 4 Xeon 2.8GHz
8KB L1D, 512KB L2
3GB PC2100 SDRAM

Performance limited by DRAM controller

Sequential scan 250MB
(Lineitem)

Hash join (Lineitem, Orders)

[GAH05]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Query Coprocessing with NPs

Network
Processors

CPU

Disk
Arrays

Front-end
• Query compilation
• Results reporting

Back-end
• Query execution
• Raw data access

Use right 'tool' for job!

Substantial intra-operator parallelism opportunity

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Conclusions
Uniprocessor architectures

Main problem: memory access latency - still not resolved

Multiprocessors: SMP, SMT, CMP
Memory bandwidth a scarce resource
Programmer/software to tolerate uneven memory accesses
Lots of parallelism available in hardware
“will you still need me, will you still feed me, when I’m 64?”
Immense data management research opportunities

Query co-processing
NPUs: Simple hardware, lots of threads, highly programmable
Beat Pentium 4 by 2X-2.5X on DB operators
Indication of need for heterogeneous processors?

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

Outline

INTRODUCTION AND OVERVIEW

DBs on CONVENTIONAL PROCESSORS

QUERY co-PROCESSING: NETWORK PROCESSORS

QUERY co-PROCESSING: GRAPHICS PROCESSORS

CONCLUSIONS AND FUTURE DIRECTIONS

NEXT:

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

References…

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

References
Where Does Time Go? (simulation only)

[ADS02] Branch Behavior of a Commercial OLTP Workload on Intel IA32 Processors. M.
Annavaram, T. Diep, J. Shen. International Conference on Computer Design: VLSI in
Computers and Processors (ICCD), Freiburg, Germany, September 2002.

[SBG02] A Detailed Comparison of Two Transaction Processing Workloads. R. Stets, L.A. Barroso,
and K. Gharachorloo. IEEE Annual Workshop on Workload Characterization (WWC), Austin,
Texas, November 2002.

[BGN00] Impact of Chip-Level Integration on Performance of OLTP Workloads. L.A. Barroso, K.
Gharachorloo, A. Nowatzyk, and B. Verghese. IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Toulouse, France, January 2000.

[RGA98] Performance of Database Workloads on Shared Memory Systems with Out-of-Order
Processors. P. Ranganathan, K. Gharachorloo, S. Adve, and L.A. Barroso. International
Conference on Architecture Support for Programming Languages and Operating Systems
(ASPLOS), San Jose, California, October 1998.

[LBE98] An Analysis of Database Workload Performance on Simultaneous Multithreaded
Processors. J. Lo, L.A. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and S. Parekh. ACM
International Symposium on Computer Architecture (ISCA), Barcelona, Spain, June 1998.

[EJL96] Evaluation of Multithreaded Uniprocessors for Commercial Application Environments.
R.J. Eickemeyer, R.E. Johnson, S.R. Kunkel, M.S. Squillante, and S. Liu. ACM International
Symposium on Computer Architecture (ISCA), Philadelphia, Pennsylvania, May 1996.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

References
Where Does Time Go? (real-machine)

[SAF04] DBmbench: Fast and Accurate Database Workload Representation on Modern
Microarchitecture. M. Shao, A. Ailamaki, and B. Falsafi. Carnegie Mellon University
Technical Report CMU-CS-03-161, 2004 .

[RAD02] Comparing and Contrasting a Commercial OLTP Workload with CPU2000. J. Rupley II,
M. Annavaram, J. DeVale, T. Diep and B. Black (Intel). IEEE Annual Workshop on Workload
Characterization (WWC), Austin, Texas, November 2002.

[CTT99] Detailed Characterization of a Quad Pentium Pro Server Running TPC-D. Q. Cao, J.
Torrellas, P. Trancoso, J. Larriba-Pey, B. Knighten, Y. Won. International Conference on
Computer Design (ICCD), Austin, Texas, October 1999.

[ADH99] DBMSs on a Modern Processor: Where Does Time Go? A. Ailamaki, D. J. DeWitt, M. D.
Hill, D.A. Wood. International Conference on Very Large Data Bases (VLDB), Edinburgh, UK,
September 1999.

[KPH98] Performance Characterization of a Quad Pentium Pro SMP using OLTP Workloads. K.
Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, W.E. Baker. ACM International Symposium
on Computer Architecture (ISCA), Barcelona, Spain, June 1998.

[BGB98] Memory System Characterization of Commercial Workloads. L.A. Barroso, K.
Gharachorloo, and E. Bugnion. ACM International Symposium on Computer Architecture
(ISCA), Barcelona, Spain, June 1998.

[TLZ97] The Memory Performance of DSS Commercial Workloads in Shared-Memory
Multiprocessors. P. Trancoso, J. Larriba-Pey, Z. Zhang, J. Torrellas. IEEE International
Symposium on High-Performance Computer Architecture (HPCA), San Antonio, Texas,
February 1997.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

References
Architecture-Conscious Data Placement

[SSS04] Clotho: Decoupling memory page layout from storage organization. M. Shao, J. Schindler, S.W. Schlosser, A.
Ailamaki, G.R. Ganger. International Conference on Very Large Data Bases (VLDB), Toronto, Canada, September 2004.

[SSS04a] Atropos: A Disk Array Volume Manager for Orchestrated Use of Disks. J. Schindler, S.W. Schlosser, M. Shao, A.
Ailamaki, G.R. Ganger. USENIX Conference on File and Storage Technologies (FAST), San Francisco, California, March
2004.

[YAA04] Declustering Two-Dimensional Datasets over MEMS-based Storage. H. Yu, D. Agrawal, and A.E. Abbadi.
International Conference on Extending DataBase Technology (EDBT), Heraklion-Crete, Greece, March 2004.

[YAA03] Tabular Placement of Relational Data on MEMS-based Storage Devices. H. Yu, D. Agrawal, A.E. Abbadi.
International Conference on Very Large Data Bases (VLDB), Berlin, Germany, September 2003.

[ZR03] A Multi-Resolution Block Storage Model for Database Design. J. Zhou and K.A. Ross. International Database
Engineering & Applications Symposium (IDEAS), Hong Kong, China, July 2003.

[SSA03] Exposing and Exploiting Internal Parallelism in MEMS-based Storage. S.W. Schlosser, J. Schindler, A. Ailamaki,
and G.R. Ganger. Carnegie Mellon University, Technical Report CMU-CS-03-125, March 2003

[HP03] Data Morphing: An Adaptive, Cache-Conscious Storage Technique. R.A. Hankins and J.M. Patel. International
Conference on Very Large Data Bases (VLDB), Berlin, Germany, September 2003.

[RDS02] A Case for Fractured Mirrors. R. Ramamurthy, D.J. DeWitt, and Q. Su. International Conference on Very Large Data
Bases (VLDB), Hong Kong, China, August 2002.

[ADH02] Data Page Layouts for Relational Databases on Deep Memory Hierarchies. A. Ailamaki, D. J. DeWitt, and M. D. Hill.
The VLDB Journal, 11(3), 2002.

[ADH01] Weaving Relations for Cache Performance. A. Ailamaki, D.J. DeWitt, M.D. Hill, and M. Skounakis. International
Conference on Very Large Data Bases (VLDB), Rome, Italy, September 2001.

[BMK99] Database Architecture Optimized for the New Bottleneck: Memory Access. P.A. Boncz, S. Manegold, and M.L.
Kersten. International Conference on Very Large Data Bases (VLDB), Edinburgh, the United Kingdom, September 1999.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

References
Architecture-Conscious Access Methods

[ZR03a] Buffering Accesses to Memory-Resident Index Structures. J. Zhou and K.A. Ross.
International Conference on Very Large Data Bases (VLDB), Berlin, Germany, September 2003.

[HP03a] Effect of node size on the performance of cache-conscious B+ Trees. R.A. Hankins and
J.M. Patel. ACM International conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), San Diego, California, June 2003.

[CGM02] Fractal Prefetching B+ Trees: Optimizing Both Cache and Disk Performance. S. Chen,
P.B. Gibbons, T.C. Mowry, and G. Valentin. ACM International Conference on Management of
Data (SIGMOD), Madison, Wisconsin, June 2002.

[GL01] B-Tree Indexes and CPU Caches. G. Graefe and P. Larson. International Conference on Data
Engineering (ICDE), Heidelberg, Germany, April 2001.

[CGM01] Improving Index Performance through Prefetching. S. Chen, P.B. Gibbons, and T.C. Mowry.
ACM International Conference on Management of Data (SIGMOD), Santa Barbara, California,
May 2001.

[BMR01] Main-memory index structures with fixed-size partial keys. P. Bohannon, P. Mcllroy, and R.
Rastogi. ACM International Conference on Management of Data (SIGMOD), Santa Barbara,
California, May 2001.

[BDF00] Cache-Oblivious B-Trees. M.A. Bender, E.D. Demaine, and M. Farach-Colton. Symposium on
Foundations of Computer Science (FOCS), Redondo Beach, California, November 2000.

[KCK01] Optimizing Multidimensional Index Trees for Main Memory Access. K. Kim, S.K. Cha, and
K. Kwon. ACM International Conference on Management of Data (SIGMOD), Santa Barbara,
California, May 2001.

[RR00] Making B+ Trees Cache Conscious in Main Memory. J. Rao and K.A. Ross. ACM
International Conference on Management of Data (SIGMOD), Dallas, Texas, May 2000.

[RR99] Cache Conscious Indexing for Decision-Support in Main Memory. J. Rao and K.A. Ross.
International Conference on Very Large Data Bases (VLDB), Edinburgh, the United Kingdom,
September 1999.

[LC86] Query Processing in main-memory database management systems. T. J. Lehman and M.
J. Carey. ACM International Conference on Management of Data (SIGMOD), 1986.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

References
Architecture-Conscious Query Processing

[CAG05] Inspector Joins. Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.
International Conference on Very Large Data Bases (VLDB), Trondheim, Norway,
September 2005.

[MBN04] Cache-Conscious Radix-Decluster Projections. Stefan Manegold, Peter A. Boncz, Niels
Nes, Martin L. Kersten. International Conference on Very Large Data Bases (VLDB),
Toronto, Canada, September 2004.

[CAG04] Improving Hash Join Performance through Prefetching. S. Chen, A. Ailamaki, P. B.
Gibbons, and T.C. Mowry. International Conference on Data Engineering (ICDE), Boston,
Massachusetts, March 2004.

[ZR04] Buffering Database Operations for Enhanced Instruction Cache Performance. J. Zhou,
K. A. Ross. ACM International Conference on Management of Data (SIGMOD), Paris,
France, June 2004.

[CHK01] Cache-Conscious Concurrency Control of Main-Memory Indexes on Shared-Memory
Multiprocessor Systems. S. K. Cha, S. Hwang, K. Kim, and K. Kwon. International
Conference on Very Large Data Bases (VLDB), Rome, Italy, September 2001.

[PMA01] Block Oriented Processing of Relational Database Operations in Modern Computer
Architectures. S. Padmanabhan, T. Malkemus, R.C. Agarwal, A. Jhingran. International
Conference on Data Engineering (ICDE), Heidelberg, Germany, April 2001.

[MBK00] What Happens During a Join? Dissecting CPU and Memory Optimization Effects. S.
Manegold, P.A. Boncz, and M.L. Kersten. International Conference on Very Large Data
Bases (VLDB), Cairo, Egypt, September 2000.

[SKN94] Cache Conscious Algorithms for Relational Query Processing. A. Shatdal, C. Kant, and
J.F. Naughton. International Conference on Very Large Data Bases (VLDB), Santiago de
Chile, Chile, September 1994.

[NBC94] AlphaSort: A RISC Machine Sort. C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D.B.
Lomet. ACM International Conference on Management of Data (SIGMOD), Minneapolis,
Minnesota, May 1994.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

References
Instrustion Stream Optimizations and

DBMS Architectures
[HSA05] QPipe: A Simultaneously Pipelined Relational Query Engine. S. Harizopoulos, V.

Shkapenyuk and A. Ailamaki. ACM International Conference on Management of Data
(SIGMOD), Baltimore, MD, June 2005.

[HA04] STEPS towards Cache-resident Transaction Processing. S. Harizopoulos and A. Ailamaki.
International Conference on Very Large Data Bases (VLDB), Toronto, Canada, September
2004.

[APD03] Call Graph Prefetching for Database Applications. M. Annavaram, J.M. Patel, and E.S.
Davidson. ACM Transactions on Computer Systems, 21(4):412-444, November 2003.

[SAG03] Lachesis: Robust Database Storage Management Based on Device-specific Performance
Characteristics. J. Schindler, A. Ailamaki, and G. R. Ganger. International Conference on
Very Large Data Bases (VLDB), Berlin, Germany, September 2003.

[HA02] Affinity Scheduling in Staged Server Architectures. S. Harizopoulos and A. Ailamaki.
Carnegie Mellon University, Technical Report CMU-CS-02-113, March, 2002.

[HA03] A Case for Staged Database Systems. S. Harizopoulos and A. Ailamaki. Conference on
Innovative Data Systems Research (CIDR), Asilomar, CA, January 2003.

[B02] Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications. P. A. Boncz.
Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, May 2002.

[PMH02] Computation Regrouping: Restructuring Programs for Temporal Data Cache Locality.
V.K. Pingali, S.A. McKee, W.C. Hseih, and J.B. Carter. International Conference on
Supercomputing (ICS), New York, New York, June 2002.

[ZR02] Implementing Database Operations Using SIMD Instructions. J. Zhou and K.A. Ross.
ACM International Conference on Management of Data (SIGMOD), Madison, Wisconsin, June
2002.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL@Carnegie Mellon
Databases

© A. Ailamaki 2004-06

References
Data management on SMT, CMP, and SMP
[CAS06] Tolerating Dependences Between Large Speculative Threads Via Sub-Threads.

Christopher B. Colohan, Anastassia Ailamaki, J. Gregory Steffan and Todd C.
Mowry. International Symposium on Computer Architecture (ISCA). Boston, MA,
June 2006.

[CAS05] Improving Database Performance on Simultaneous Multithreading Processors.
J. Zhou, J. Cieslewicz, K. A. Ross and M. Shah. International Conference on Very
Large Data Bases (VLDB), Trondheim, Norway, September 2005.

[ZCR05] Optimistic Intra-Transaction Parallelism on Chip Multiprocessors. Christopher
B. Colohan, Anastassia Ailamaki, J. Gregory Steffan and Todd C. Mowry.
International Conference on Very Large Data Bases (VLDB), Trondheim, Norway,
September 2005.

[GAH05]Accelerating Database Operations Using a Network Processor. Brian T. Gold,
Anastassia Ailamaki, Larry Huston, Babak Falsafi. Workshop on Data Management
on New Hardware (DaMoN), Baltimore, Maryland, USA, 2005.

[BWS03] Improving the Performance of OLTP Workloads on SMP Computer Systems
by Limiting Modified Cache Lines. J.E. Black, D.F. Wright, and E.M. Salgueiro.
IEEE Annual Workshop on Workload Characterization (WWC), Austin, Texas,
October 2003.

[DJN02] Shared Cache Architectures for Decision Support Systems. M. Dubois, J. Jeong
, A. Nanda, Performance Evaluation 49(1), September 2002 .

[BGM00] Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing. L.A.
Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S.
Smith, R. Stets, and B. Verghese. International Symposium on Computer
Architecture (ISCA). Vancouver, Canada, June 2000.

