Query Co-Processing on Commodity Processors

Anastassia Ailamaki

Naga K. Govindaraju

Stavros Harizopoulos Dinesh Manocha

natassa@cmu.edu, {naga,dm}@cs.unc.edu, stavros@csail.mit.edu

The rapid increase in the data volumes for the past
few decades has intensified the need for high process-
ing power for database and data mining applications.
Researchers have actively sought to design and develop
new architectures for improving the performance. Re-
cent research shows that the performance can be sig-
nificantly improved using either (a) effective utilization
of architectural features and memory hierarchies used
by the conventional processors, or (b) the high compu-
tational power and memory bandwidth in commodity
hardware such as network processing units (NPUs),
Cell processors and graphics processing units (GPUs).
This tutorial will survey the micro-architectural and
architectural differences across these processors with
data management in mind, and will present previous
work and future opportunities for expanding query
processing algorithms to other hardware than general-
purpose processors. In addition to the database com-
munity, we intend to increase awareness in the com-
puter architecture scene about opportunities to con-
struct heterogeneous chips.

Conventional Processors: Traditionally, database
and data mining systems have been optimized for con-
ventional processors such as CPUs. In the recent years,
due to the faster I/O storage systems, the performance
bottleneck of many of these data- and computation-
intensive applications is shifting to the memory hier-
archy used by the conventional processors. Further-
more, due to the increasing gap between the proces-
sor and memory speeds, analysis of memory and pro-
cessor behaviors has become important. In this tuto-
rial, we will briefly survey the computer architecture
and database literature on evaluating database appli-
cation performance on conventional processors. We
will describe strategies to reduce memory and resource
stalls using data parallel algorithms, cache-coherent
data structures, instruction buffering algorithms, and

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 32nd VLDB Conference,
Seoul, Korea, 2006

better storage models.

Network co-Processors: Unlike most scientific ap-
plications, database operations exhibit sequences of
dependent memory accesses, which limit the oppor-
tunity for speculation and out- of-order execution to
issue parallel memory accesses in a single-threaded
micro-architecture. Instead of focusing on instruction-
level parallelism in a single thread, recent proposals
show that thread-level parallelism can significantly im-
prove database performance by increasing the aggre-
gate number of pending cache misses. Indeed, several
database operations boast reuse and therefore use ef-
ficiently the caches, whereas others (such as file scan
or hash join) would rather benefit from more threads
and fewer cache levels. However, the overhead of
supporting multiple contexts on an aggressive micro-
architecture limits the expansion of conventional mul-
tithreaded architectures beyond four or eight threads.
Network processors, which are used to handle network
traffic and routing, are actually well-suited for execut-
ing many relational operators. In this tutorial we will
present the tradeoffs and will survey results from stud-
ies that show that mapping certain common database
operators to the network processor architectures can
prove extremely rewarding.

Graphics and Cell Processors: High performance
graphics processors (GPUs) are as ubiquitous as
CPUs. They are now a part of every personal com-
puter, console and even cell phones. GPUs can per-
form 10x higher operations per second and have 10x
more memory bandwidth than CPUs — therefore, they
can be used to accelerate many traditional algorithms
by an order of magnitude as compared to CPU-based
implementations. Moreover, GPUs are becoming in-
creasingly programmable, and their computational
power is increasing at a rate faster than the Moore’s
law for CPUs. We describe how many of the essential
computational components for database and data min-
ing algorithms such as relational database operations,
stream data mining, linear algebra and sorting opera-
tions can be efficiently implemented on the GPUs and
cell processors. In many cases, they outperform the
fastest CPU-based implementations.



