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Abstract

The number of concurrent video or audio streams a disk-based Continuous Media Server can
support, is limited by the time needed for the associated data blocks to be retrieved from
secondary storage. Along with the cost of RAM, these two strongly interrelated parameters
determine the cost/performance metric of the Media Server. Research efforts have focused
either on maximizing disk performance but typically at high expenses of main memory, or on
using efficiently memory to achieve high performance. In this study both factors are
considered and towards this, pre-fetching strategies into cache hierarchies are introduced.
These techniques exploit the large predictability that continuous media requests show, to
increase the number of supported streams while at the same time keep low the memory
requirements and the start-up latency. The analysis and experimentation with drive-accurate
simulation models of modern disk drives show significant gains that become more
encouraging when projected with the trends in storage technology.
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Chapter 1

Introduction

1.1 Applications

The technological evolution of our century has been uniquely expressed in terms of

transmission of information. This is exemplified best by the ever-growing, beyond any
predictions, use of the Internet (over 700 millions of users by the end of the decade [26]) or
even by the continuously increasing market of mobile phones (it is predicted that the GSM
standard will have a combined subscriber base of 300 million by the year 2001 [27]). The
underlying infrastructure of these technological advances involves two entities; (a) a
centralized node, which handles the collection and distribution of information (a Continuous

Media Server in this study) and (b) a high-bandwidth network, over which, the transportation
of the information, to a multitude of end users, takes place.

Modern applications that base their existence on the advances in computer and
communication technologies are characterized as broadband applications [31]. Those that
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involve the use of a Continuous Media server, are classified into three categories: (a)
Retrieval, (b) Messaging and (c) Distribution services [32]. Most ongoing research is focused

on video-on-demand services, a retrieval service, that allow geographically distributed
viewers to request video objects from the central server complex [33, 34, 35, 36]. In addition
to entertainment purposes -- as a replacement for cable television broadcasts and video rental
-- video-on-demand can be used for remote education and training purposes, as well. Other
broadband applications include video mail, a Messaging service, while Distribution services
employ in general video and audio transmission services, such as distribution of TV programs
to local stations, video information and high-quality audio. A concept that underlies over
these services, is the Digital Library, which refers to the collection and storing into tapes and
disks, of large portions of multimedia: video, audio, still images, and text.

1.2 Technologies and Trends

Networks

Research into Network technologies aims to integrate all services in a digital high-
bandwidth network, in a cost-effective manner. The Internet, its channels and its underlying
transport layer protocols -- TCP/IP -- are characterized as insufficient to support broadband

applications. Instead, the network community focuses on Broadband Integrated Services
Digital Networks (B-ISDNs), where the use of high-speed optical fiber channels and ATM --
as the transfer mode -- make possible the modern, bandwidth-consuming services. ATM
networks offer unique scalability in speed and network size supporting link speeds of T-1/E-1
to OC-12 (622 Mbps) today and into the multi-Gbps range before the end of the decade [30].

Video, audio

The efficient exploitation of network bandwidth imposes the use of compression

techniques onto deliverable information. Multimedia services are currently evolving around
the Joint Photographic Experts Group (JPEG) standard for still-image delivery and Motion
Picture Experts Group (MPEG) video technology for motion video. The underlying
compression technique, which is used by both standards, is Discrete Cosine Transform
(DCT), along with Motion Compensation (MC) algorithms that apply to MPEG. The quality
of video compressed with an MPEG scheme at rates of 1.2 Mbps has often been observed to

be similar to that of VHS recording [28]. Two widely known members of the MPEG family
are MPEG-1, with an average data rate of 1.5 Mbps and MPEG-2, which, at 4 Mbps, can
provide HDTV program quality. After November 1998, MPEG-4 will be the newest member.
It will provide digital video at rates lower than 1 Mbps, while it promises wide compatibility;
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part of its technology is based on QuickTime. At the same time, other compression
techniques are being studied, such as Fractal compression, Region Object Based (ROB)

coding and Model coding.

MPEG family algorithms have been used in audio compression too, to provide CD-
like sound quality. MPEG audio layer III, for example, achieves a compression ratio of 1:10 -
1: 12 and a data rate of 128 - 112 kbps. The new MPEG-2 Advanced Audio Coding (AAC)
scheme, based on Modified Discrete Cosine Transform (MDCT), achieves even lower data
rates, at the same sound quality, but it is not yet widely spread, due to its late introduction (it
did not get into the DVD specifications). Another well known compression scheme is Dolby

AC-3 (at 192 kbps for stereo sound), which owes its popularity to its use by systems for
cinema (theaters and DVD).

Computer systems

Moore’s law, which states that semiconductor power doubles every 18 months, has
been an accurate predictor of chip advancement for decades, but recent technological
evolution seems to defy it. As for today, there are CISC CPU’s running at 400 MHz (Intel’s
Pentium II) and RISC CPU’s at 600 MHz (Digital’s Alpha). More manufactures use 0.25-
micron technology and the projection for the next three years is that the increase in CPU’s

performance will continue. (Intel has already announced a 0.18-micron technology CPU by
the end of 1998). A typical workstation nowadays includes 128-512 MB of RAM while the
system buses can be as fast as 80 MB/sec (Ultra-2 SCSI). Disk technologies and trends are
described analytically in section 2.1. What can be safely stated after the examination of all
related technologies, is that the bottleneck in a complete multimedia delivery system will be
the I/O subsystem.

1.3 Architecture of Continuous Media Servers

A media server offers access to a collection of multimedia: video, audio, images, and
text. These media data must be retrieved from the secondary and tertiary memory at a
specific rate ( or else we experience "hiccups" or "glitches"). The usual model of a Media
server involves a tape library from which large portions of media streams are extracted and
written onto hard disks periodically. Then, the server services the requests from the disk. To

ensure continuous playback for a data stream (video or audio), a double buffer in main
memory is typically needed. The data read from disk fill one half of this buffer while at the
same time the data previously stored from disk to the other half of the buffer, are consumed
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(i.e., video plays). When the consumption of these data ends, a switch occurs; the full half of
the buffer is used for playback and the empty one for storing.

This hierarchical model of the media server -- RAM on the top of the hierarchy, in the

middle a disk array, and at the bottom of the hierarchy a large tape library -- has been evolved
around cost / performance tradeoffs. As it is too costly to store all information on disks (and
typically impossible to store it in main memory) and access to tertiary storage is too slow (up
to a few minutes), this hierarchical model emerged.

As multiple streams must be supported concurrently, the media server typically
services these streams in rounds. During a round of a given time length the system reads one
segment from each stream that is adequate to sustain playback for the duration of the round.

Figure 1: Architecture of a CM Server

Figure 1 gives a diagram of the basic parts found in a Continuous Media server. As
soon as the clients’ requests arrive, a call admission policy decides which requests will be
satisfied immediately, based on the available resources. The remaining requests -- if any --
will be rejected or placed in a queue. A high-level scheduler processes the admitted requests:
it looks up where the requested data lie (in which disk or tape), fetches the data from tapes to
disks (if needed), and sends the resulting batch of requests to disk drives. Then, the low-level
scheduler schedules separately for each drive the corresponding batch of requests, reducing as
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possible the disk head positioning overheads. The requested data are transferred from the disk
media to the disk buffer and then through the SCSI bus to server’s (host) RAM. Finally, the

application running on the CM server is responsible to transport the data through the network
to clients.

1.4 The Problem

The techniques presented here aim to increase the disk drive’s performance for video
and audio applications. Although a client may be able to perform operations that result into
not continuous data requests ( i.e. VCR operations on a video), this study considers the
continuous requests that occur from simple playback of video and audio. The primary
performance metric is the maximum throughput achievable by a drive, which is defined to be
the maximum number of continuous streams (e.g., videos or audio) that can be supported by
the drive. To complete the performance goals, it is added that all supported streams should
not suffer from any interruptions in the timely delivery of stream data (termed as hiccups or
glitches).

Two important factors that limit the cost / performance of the media server are the
time needed for the data to be transferred from the disk to main memory and the cost (or
implementation) of the RAM. Recent research has shown that these two parameters are

strongly interrelated and achieving high throughput often comes at a huge cost in memory [1].
This work, instead, tries to increase the maximum throughput while at the same time keep the
duration of a round constant with relatively lower memory requirements and shorter start-up
latency.

What it is proposed here is a set of algorithms that exploit:

(i) the large predictability that continuous media requests show,

(ii) the existence of drive-level and other higher-level caches,

(iii) the existence of powerful controllers which can accept "hints" as to the
sequential nature of future requests by an application, and

(iv) the faster pace of improvement of the transfer time versus that of the disk head
positioning time.

The proposed algorithms introduce caching and prefetching strategies so to improve the
drive’s maximum stream throughput.

Specifically, disk and higher-level caches will be used to prefetch continuous data
segments of one or more of the predicted requests that logically follow the demand of a single
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stream of continuous media. While significant portion of time seems being lost this way
during prefetching, it is showed

(i) how to utilize higher-level caches in order to avoid experiencing stream glitches
because of the prefetching time overhead, and

(ii) that the overall stream throughput is actually increased as the prefetched
requests will be served from the disk’s cache, without the overhead time needed
for positioning onto disk.

Our analyses and experimentation show that achieving high throughput gains while keeping
low the memory requirements and reducing the start-up latencies at the same time, is feasible.

The study will concentrate on the performance of a single disk drive. It also assumes
that each disk drive is logically divided in partitions. Each partition is a group of contiguous
tracks. It stores a number of consecutive blocks of a continuous data object. For example, if
25 videos can be supported by a disk’s bandwidth, given the size of each video (over 2GB for
an MPEG-2 90-minute video) it is clear that not all 25 videos can fit in a single disk. So it is
assumed a segmentation of 25 logical partitions, each storing 1/25th of a video. This is a
realistic scenario. For example, in a hierarchical multimedia storage [24,25] the next (1/25th)
video segment can be brought in time from tertiary storage. In addition, in disk array
environments, using the coarse-grained striping technique like the one suggested in [16,17]

can result in a placement like the one it is assumed.

1.5 Organization of the Thesis

The rest of the thesis is organized into four chapters. Chapter 2 describes several
features of modern disk drives and discusses the trends in storage technologies; it also
summarizes the related research in disk scheduling algorithms and points out the research
directions that developments in drives have deployed. In chapter 3, the proposed algorithms
along with their analyses, are introduced. Graphs that show the expected gains are presented.

Next (chapter 4) the experimentation test bed is described and the simulation results are
presented; a discussion follows. Finally, the conclusions drawn from this study are included
in chapter 5 along with references to future work.
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Chapter 2

Modern Disk Drives

2.1 Technological Characteristics

Disk drives base their function in both mechanical and electronic parts. The
mechanical parts are the recording components (the rotating disks and the heads that access

them) and the positioning components (an arm assembly that moves the heads into the correct
position together with a track-following system that keeps it in place). The electronic part of
the drive consists of the disk controller; it contains a microprocessor, a memory buffer, and
an interface to the host bus. The controller is responsible for the storage and retrieval of data
via the mechanical components and performs mappings between incoming logical addresses
and the physical disk sectors that store the information [37]. More complex controllers

include logic that interferes in the order that data requests are serviced in order to improve
performance.
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Geometry and Components

A disk drive stores its information on a set of rapidly rotating platters (on a common
axis) coated on both sides with magnetic media (see figure 2). Data blocks are written in a

series of concentric circles, or tracks on each surface. A track is divided into sectors, the
minimum unit of data storage; a sector typically holds 512 bytes of data plus some
header/trailer information such as error correction data or positioning information. A set of
tracks, each from a different surface and equidistant from the center of the spindle, form a
cylinder. Each platter surface has an associated disk head responsible for recording (writing)
and later sensing (reading) the magnetic flux variations on the platter’s surface. The disk

drive has a single read-write data channel that can be switched between the heads. Each disk
head is attached to a disk arm - a lever that is pivoted near one end on a rotation bearing. All
the disk arms are attached to the same rotation pivot, so that moving one head causes the
others to move as well. The heads are grouped together such that a given disk arm position
corresponds to a specific cylinder of data. Therefore, a physical location is defined by its
cylinder, head, and sector [37, 38].

Figure 2: Mechanical components of a disk drive; (a) side view, (b) top view

Disk Access Cost

A data request serviced by the disk drive may suffer one or more mechanical delays.
First, a head movement, or seek, towards the target cylinder occurs. Once the disk arm is
located at the correct track, a rotational delay is incurred while waiting for the requested
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sectors to rotate into position under the read/write head. Then, the data transfer begins.
Further mechanical delays result if multiple cylinders or tracks must be accessed. The latter

can happen when more than one sectors are requested. The way the stored data are organized
in a set of platters is in ascending physical address order from the lowermost track of a
cylinder to the uppermost of the same cylinder and from the innermost cylinder to the
outermost. Therefore, it is possible that a large request corresponds to sectors which lie in
different surfaces within the same or different cylinders.

A seek is composed of

(i) a speedup, where the arm is accelerated until it reaches half of the seek distance
or a fixed maximum velocity,

(ii) a coast for long seeks, where the arm moves at its maximum velocity,

(iii) a slowdown, where the arm is brought to rest close to the desired track, and

(iv) a settle, where the disk controller adjusts the head to access the desired location

[37].

Seeking over tiny distances (less than 10 cylinders) is dominated by the settle time (1-3
msec). Short seeks (less than 20% of the total number of cylinders) are affected mostly by
the constant-acceleration phase, and so their time is proportional to the square root of the seek
distance plus the settle time. The time that long seeks take, is determined by the coast time
plus a constant overhead. The function of seek time vs seek distance is usually modeled by an
equation like the following:

Seek DISTANCE Seek time

< C cylinders a b DISTANCE+ *

≥ C cylinders A B DISTANCE+ * (1)

where the parameters a, b, A, B and C are specified by the vendor or can be estimated.

At the end of a seek the head position must be fine-tuned and kept on the desired
track. This is the function of the track-following system that uses positioning information
recorded on the disk at manufacturing time to determine whether the disk head is correctly
aligned. It also performs the head switches and cylinder switches. When the controller
switches its data channel between two adjacent surfaces in the same cylinder, the new active
head may need repositioning as the alignment of the tracks within a cylinder is not perfectly

vertical (head switch). Similarly, repositioning of the disk head is needed when the disk arm
has to be moved from the last track of a cylinder to the first track of the next (cylinder
switch). A head switch takes typically one third to one half of the time taken to perform a
settle at the end of a seek, while a cylinder switch needs about the same time as the settle [37].
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After the accurate settling of the disk head on the target track, the requested sectors
must rotate into position under the head. The elapsed time between the end of settling and the
beginning of the read/write operation, is known as rotational latency. This time depends
directly on the spindle rotation speed which has increased recently to as much as 10,000 rpm
[29]. The transfer time of a sector depends on the rotation speed too, as well as on the linear
density with which bits can be recorded on tracks, and on the encoding method that is used on
the written/read data.

Data Layout

A disk appears to its host as a linear vector of addressable blocks. However, the
mapping of these blocks to physical sectors on the disk is not highly sequential. The latter

occurs as techniques that improve overall characteristics of the disk interfere in the way the
mapping is done. Such schemes are zoned recording or zoning, track and cylinder skewing,
and sparing.

Under zoning schemes the set of cylinders is partitioned into multiple zones. Zones
near the outer edge have more sectors per track than zones in the inside. This way, the
storage capacity is maximized as linear density remains near the maximum that the drive can
support. At the other hand, since the data transfer rate is proportional to the rate at which the
media passes under the head, the outer zones have higher transfer rates.

Track and cylinder skewing succeed faster sequential access across track and cylinder
boundaries. Given that a positioning delay is incurred when switching heads or seeking
between adjacent cylinders, skewing schemes assure that the first logical block of each track
or cylinder is generally offset (skewed) from the first logical block of the previous track or
cylinder. Thus a request that crosses a track or cylinder boundary is satisfied at nearly full

media speed as the next logical block lies under the disk head immediately after the settling of
the head has finished. Otherwise, a delay of an almost full rotation would occur. Each zone
has its own track and cylinder skew factors.

Sparing is a process during which, references to defective sectors are remapped to
other portions of the disk. Defects are identified at the factory and a list of them is
constructed. As more defects occur during the course of the disk’s lifetime, they are added to
this list. Slip sparing or slipping takes place when the logical block that would map to the bad
sector and the ones after it are “slipped” by one sector or by a whole track. Reallocation
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occurs when defective sectors are discovered during normal disk usage and so dynamically
remapping to spare regions (that are reserved in disk for this purpose) is done.

On-Board Cache

A critical development has been the incorporation of drive-level caches into disk

drives (figure 3). These caches have been evolved around the extension of the primitive
speed-matching buffers. A speed-matching buffer built into the drive electronics is essential,
as it provides a temporary storage space that eliminates or reduces any bottleneck in the flow
of data between the disk and host CPU. This results from either the speedy CPU having to
wait for data from the much slower electromechanical disk, or to the disk drive controller
transferring information faster than the computer operating system can respond. The buffer is

also used for temporarily storing requested data when the host bus is not available; otherwise
an extra rotational delay would occur.

Figure 3: On-board cache buffer

Nowadays, more space and logic on the disk is dedicated to drive-level caches. For

example, Quantum drives [10] can be bought with up to 4MB of cache. When accompanied
with caching and prefetching techniques these embedded disk caches can significantly
increase the drive’s performance. Caching is performed in both reads and writes. A read that
hits in the cache can be satisfied much quicker than seeking to the data and reading it off the
disk. Read-ahead becomes more beneficial in environments where highly sequential requests
occur; an aggressive read caching policy is suited best for this kind of workloads. Write

caching is used to reduce latency of write requests through the immediate acknowledge of
them and to increase throughput through reducing overwrites on the disk media and allowing
the controller to reschedule a batch of stored in cache writes in near-optimal fashion. In order
for the cache logic to keep up with these functions, buffer segmentation methods have been
developed, that use the available buffer space more efficiently. Instead of using fixed length
segments dedicated to use with only read or write operations, an algorithm determines the size
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of the data transfer, regardless of whether the operation is a read or write, and calculates the
optimum amount of the buffer to allocate. An example of this Adaptive Segmentation is given

below [10].

Figure 4: Example of adaptive vs. fixed segmentation

A 128K buffer with Adaptive Segmentation can provide as much or
more usable buffer space as a 256K buffer with fixed segmentation.
After the three data requests, R1, R2, and R3, the buffer with fixed
segmentation is full. At the next request, if the data is not already in the
buffer, at least one 64K segment will be overwritten with new data.
With the same three requests, the buffer with Adaptive Segmentation
still has space available. In addition, when this buffer is filled, the drive
will overwrite only the amount of buffer space required.

I/O Channels and Buses

Since new generations of higher-speed microprocessors are emerging and disk
recording densities are increasing, hard disk drive manufacturers are presenting drives with
faster read channels and higher sustained data transfer rates. Improving internal (disk surface-
to-cache buffer) data rate, however, creates a need for faster external (disk buffer-to-host) data
transfer rates. Two widely used drive interfaces are Intelligent Disk Electronics (IDE) and
Small Computer System Interface (SCSI). The first of them is a low-cost interface that is
mainly used by home computers. It is usually connected to a bridge to a faster bus such as

PCI (Peripheral Components Interface, it supports up to 132 MB/sec transfer rate) and its
latest variation, Enhanced IDE with Ultra DMA [10, 39], can deliver data transfer rates up to
33 MB/sec.
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SCSI has been traditionally the choice of high-performance servers and workstations
as well as Apple’s Macintosh. Because SCSI is a bus, more than one device can be attached

to it. Current implementations support up to 16 addresses (wide SCSI) using only one
interrupt request. Its underlying technology is continually evolving, providing more bus
bandwidth, increases in packaging and density, and increases in configuration flexibility. One
of the more recent developments is Ultra2 SCSI (LVD), which has a low-voltage differential
(LVD) interface and transfer rates of up to 80 MB/sec.

Serial channels offer unique characteristics that outperform SCSI, but they are not
widely used yet. Serial interfaces offer higher speeds, fewer wires and require a smaller

connector. The first generation of the Fibre Channel Arbitrated Loop (FC-AL) provides a
path to much higher performance than other serial storage interfaces. Currently, with dual
porting, FC-AL drives are capable of delivering buffer-to-host data transfer rates of 200
MB/second while enabling up to 126 devices per interconnect. Furthermore, the FC-AL
interface allows data to travel over longer distances at higher speeds than parallel (single-
ended) SCSI.

Trends

The general technology trends currently call for even higher-performance disk

controllers (with performance similar to a >200 MHz Pentium) before year 2000. These
"embedded CPUs" will have available an "embedded cache" with much greater capacity than
what is available today. Another trend concerns the dramatic increase in the transfer rates of
disk drives, owing mainly to dramatic improvements in the linear storage density and to
speed-ups in the revolution speeds of drives (which has doubled in the last four years). It is
expected that the 10MB/s transfer rates will near 40MB/s by year 2,000. Further upgrades to

I/O buses are now in development. Ultra3 SCSI will provide up to 160 MB/sec transfer rate;
Fibre Channel future products will push that level of performance to 400 MB/sec, while
increasing the level of chip integration to improve costs. At the same time the expected
speed-ups in the disk head’s positioning times are not expected to keep pace (the observed
compound annual improvement for the last few years has been around 10%). The latter fact
suggests that clever prefetching strategies become even more important for improving the
disk system’s performance.

Because of the above trends, the concept of Network Attached Storage Devices

(NASDs) receives increasingly greater attention by researchers. NASDs are storage devices
with powerful controllers, operating on large on-board caches, able to run streamlined
versions of storage and file related, as well as network-related, software protocol stacks.
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2.2 Related Research

Disk Scheduling Algorithms

Early scheduling algorithms focused on reducing seek times. The Shortest Seek Time

First (SSTF) algorithm [4] achieved this; however, it incurs a high response time variance
and is starvation-bound. SCAN scheduling was also proposed in [4]. It serves requests in an
elevator-like manner, (as it sweeps the disk in either one or both directions) allowing seek-
time optimizations, while reducing the response time variance. In [5] the authors proposed a
parameterized generalization of SSTF and SCAN. The V(R) algorithm operates as SSTF
except that, every time it changes direction it adds a penalty, dependent on the parameter R

and the seek distance. When R=1 (R=0) V(R) reduces to SCAN (SSTF). The performance of
these algorithms, as well as other variations of SCAN, such as the LOOK algorithm (which
changes scanning direction when no more requests are pending in the current direction) has
been studied experimentally in [7] and analytically in [6].

A significant development in modern-disk scheduling was to also target the high costs
owing to rotational delays. These algorithms [9, 8] attempted to minimize the sum of seek

and rotational delays by favoring, for instance, the request with the Smallest Positioning Time
First (SPTF). Recently, disk controllers have been developed which can rearrange the order
of submitted requests exploiting their detailed knowledge of the requested blocks' positions
and minimize seek and rotational delays [10].

Disk Scheduling Algorithms for Continuous Data Requests

The SCAN algorithm is inapplicable for continuous data requests since it is oblivious
of deadlines. The Earliest Deadline First (EDF) algorithm [11] is a natural choice; however,
it has poor performance since it does not attempt to reduce the overhead. SCAN-EDF [12] is

a hybrid that serves requests in EDF order, but when several requests have the same deadline,
they are served using SCAN. Most related recent research has adopted the notion of
scheduling with rounds [13, 14, 15, 16, 17]. Each continuous data object (stream) is divided
into blocks (also called fragments) such that the playback duration of each fragment is some
constant time (typically, from one to a few seconds).

The round length represents an upper bound on the time in which the storage server
must retrieve from disk the next fragments for all active continuous displays, or some displays
will suffer a glitch. Within a round, it is possible to employ either a round-robin or a SCAN
algorithm. The latter performs seek optimizations, resulting in better disk throughput.
However, this is achieved at the expense of higher start-up latencies; the display cannot be
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started immediately after the retrieval of its first block but only after the end of the round.
This is done to avoid glitches, since the service order differs from round to round. This

limitation is not present when using round-robin scheduling, which also has lower RAM
buffer requirements since it does not require the double-buffering scheme required by SCAN
between successive rounds. A compromise was achieved with the Group Sweeping
Scheduling (GSS) algorithm [7]. GSS groups streams and employs round-robin scheduling
for the different groups and SCAN scheduling for the streams' blocks in a group. Thus, when
there is only one group GSS reduces to SCAN and when each stream is in its own group GSS
reduces to round-robin.

Disk Scheduling Algorithms for Mixed Media Workloads

Works with some relevance to mixed-media disk scheduling are [12, 18, 19, 20, 21].
The work in [12] overviewed the performance goals for mixed workload scheduling, which
are similar to [22], and studied only how some known algorithms for continuous-request
scheduling, such as EDF and SCAN/EDF, affect the response time of discrete (or aperiodic,
as they call them) requests. A simple scheduling scheme, called "the immediate server
approach" [18] was employed for discrete requests, according to which discrete requests were

served in between two successive EDF-selected continuous requests.

Since multimedia disk scheduling research has moved away from EDF-based
algorithms, the works in [19, 20] attempted to analytically model and predict the performance
of multimedia servers with mixed workloads, when scheduling is based on the notion of
rounds. The work in [21] is a preliminary attempt to define the issues and present initial
algorithms towards efficient mixed-media disk scheduling. The work in [22] takes further the
work in [20, 21] and presents novel scheduling algorithms, which introduce drastic

performance improvements; it also defines a taxonomy of related algorithms. The work
reported here, proposes further performance improvement by exploiting cache hierarchies,
including the large on-board buffer of modern disk drives, for prefetching purposes.

Caching and Prefetching Techniques

The on-board memory buffers of modern disk drives have been widely used for
increasing performance via prefetching in traditional applications. Read-ahead -- retrieving
and caching data that are expected to be requested by the host in the near future -- has proved

to be very beneficial especially for highly-sequential workloads. The disk controller decides
on the aggressiveness of the prefetching strategy -- i.e. should a read-ahead fill a cache
segment or read a whole track and stop or it should cross track and cylinder boundaries and
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fill a larger cache line -- based on various assumptions as for the nature of the workload and
monitoring the system.

The disk cache has been also used in traditional applications for “zero-latency reads”
(requests for whole tracks that are satisfied as soon as the disk head ends seeking; the track is

read into cache during one rotation and it is delivered logically reordered). However, the
increase in track densities minimized the benefits of this technique. Caching strategies are
used during writes too. Immediate reporting of writes that arrived in cache and are being
scheduled for actual writing on media can result in reduced overhead, while overwrites that
meet their previous copies in cache (as these writes are artificially delayed in cache before
written on disk media) introduce significant savings. Once the controller has several pending

writes in cache, it can schedule them in a near optimal manner.

To the best of our knowledge, there are no caching strategies in the literature to
improve CM server retrieval performance except for those aggressive policies designed for

large sequential accesses.

Hierarchical Caching

Storage technology for large storage servers allows the introduction of caches at
multiple levels of the storage hierarchy, [23] such as at the host’s RAM, at a multi-device
controller’s cache, or at a disk array’s controller cache, and at the drive-level cache [23]. A
significant thread of research deals with allowing the application to pass hints to the
underlying operating system (or even the controller) which would describe its future access
references and help thus in forming an efficient plan for prefetching and caching. To our
knowledge the exploitation of these hierarchical caches at CM servers has not been addressed
by related work. This is a study towards this goal.

Memory Management in Scheduling Algorithms for CM Servers

Research has also been conducted on employing efficient memory management
strategies. The scheduling of continuous media requests is interfered so to reduce memory
requirements via buffer sharing [2, 3]. Towards this, a shared memory pool can be used;
when the consumption of the data of a stream starts, the continuously increasing portion of

data “played” is no longer needed and so its space can be occupied by data from other
requests. A continuous media retrieval scheme studied in [1], Fixed-Stretch, tries to reduce
the RAM requirements to the minimum possible value by equally spacing the requests within
a round. That is, artificial delays are introduced so that the order in which streams are
serviced in each round can be predefined. The latter permits maximum memory utilization in
that the double buffers used to sustain playback are no longer needed as variations in retrieval

times do not occur.
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Chapter 3

Proposed Algorithms

In this chapter, four new techniques for retrieving streams of continuous media from disk-
based secondary storage are presented. Prefetching of data segments in the disk cache as well
as in higher-level caches is used in various ways according to possible system configurations.
These algorithms reduce the disk access overhead more than it is feasible with conventional
policies, while preserving the Quality of Service that the avoidance of glitches and reduced
start-up latencies imply. Prefetching strategies surpass other continuous media retrieval
schemes in that they can be adjusted to respond to increased throughput demands in a low
memory consumption way. They can also be applied on top of other algorithms that involve
the use of data placement policies, introducing additional gains. The existence of a large
drive-level cache is not a prerequisite for prefetching to be applied; in one of the techniques
described below, a prefetching algorithm is proposed showing a new way of improving the
performance of a CM server.
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3.1 The Sweep & Prefetch (S&P) Technique

Scheme Sweep is the well-known continuous media retrieval scheme that reduces disk

seek overhead to improve throughput. During a round, Sweep reads each stream’s next
segment with a SCAN like policy. Double buffers in main memory are needed to ensure
continuous playback. The scheme that is proposed here and described below, is called Sweep
& Prefetch (S&P).

For a given duration of a round there is a specific upper bound in the number of
streams N that can be supported by a disk in a feasible media server. This number is mainly
dependent on two parameters: the total positioning overhead (the time needed for the disk

head to be positioned on the beginning of a segment) and the total transfer time (the time
needed for the disk data to be transferred to main memory). Both of these delays are
experienced when retrieving a data segment which has not been prefetched and thus from
now on this retrieval will be called "random retrieval"; the number of segments retrieved this
way in a round is denoted by the letter v. On the other hand, by prefetching a segment -- that
is the disk head continues reading the adjacent segment of the previously read segment and
stores it into the disk cache -- the prefetched segment will be read at no positioning overhead;
the number of prefetched segments in a round is denoted by the letter p.

By forcing the disk head, after a segment read, to continue reading the next segment of
the same stream into the disk cache and by doing this for p streams, then, at the end of the
round, v streams will have been served (as random retrievals), while p segments will be in
cache (prefetched segments). In the next round, those p segments will serve p streams at no

positioning overhead, so that there will still be enough time to serve v additional streams and
prefetch the next segments from p of the v streams served. Because the p segments are read at

no positioning overhead, the total number of supported streams ( )vp + is now greater. That

is, the maximum throughput has been increased at the expense of cache memory, while the
duration of the round and the size of the segments remained constant. (The latter is a very
desirable effect as it is shown in a subsequent section.)

Figure 5 demonstrates in a pictorial way the technique described. A box under another

box stands for the next segment -- contiguously placed on disk -- of the same stream, while
two adjacent boxes in the same line stand for the segments of two streams -- that will be
scheduled within a round in the same order as they appear. Figure 5(a) introduces the
maximum number of streams (25 in this example) that can be supported with Sweep in a
given configuration. Then, in Figure 5(b), prefetching of 8 segments -- one for each of 8
streams -- is used to increase the supported number of streams from 25 to 28. In each round

there are 20 random retrievals and 8 prefetches. The reads from the disk cache to the host
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cache go on in parallel to the disk accesses ( )vp + . In round 1, the last 5 streams are

supported from an additional higher-level cache buffer. These streams will not suffer a glitch.

This can be ensured as follows. When the requests for these 5 streams arrive, along with the
first two blocks for each stream needed by the "double-buffering" scheme, the third block is
deposited into a higher-level cache (e.g., the host’s RAM). The display of these 5 streams is
delayed until all three blocks have been retrieved from the disk’s surface. In this way, the
higher-level cache(s) permit not to issue disk retrieval requests for some or all of these 5
streams in some round, without these streams experiencing any glitches. The higher-level
cache buffers needing to implement this "triple buffering" are no longer needed after round 2
in Figure 5(b) and can be used by the new streams supported.

Figure 5: Throughput increment via prefetching
For demonstration purposes of this series of schematic figures, we
consider a disk drive with 10 MB/sec transfer time and a combined seek
and rotational fixed overhead of 15 ms for every request. It is also
assumed a constant display rate of 2 Mbps and round lengths of 1 sec.
The latter implies that the size of any segment will be 250 KB. Given
these values, the maximum number of segments that can be read within
a round is 25, while the ratio of random retrieved segments that can be
"exchanged" (in terms of time constraint) with prefetched segments, is 5
/ 8 (40 ms and 25 ms retrieval times correspondingly).

Scheme S&P can be fully parameterized as far as v and p are concerned, always at the
expense of disk cache memory size. Figure 6 shows an alternative combination of values for
v and p that results into higher throughput. By prefetching 15 segments, the maximum
throughput is increased from 25 to 30. This is the upper bound of the maximum throughput,
that S&P can achieve in this example. In section 3.3 another algorithm that is an extension of

S&P is proposed, which can overcome this upper bound and further increase the maximum
throughput.
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Figure 6: Further throughput increment

3.2 Gradual Prefetching

Scheme S&P, as presented in section 3.1, starts servicing the streams without prefetching
until the maximum number of streams are served. Then it switches into the "prefetch" mode,

and exploiting the higher-level caches, increases the maximum number of streams without
any of them suffering from glitches. However, it has the drawbacks of requiring three cache
buffers for each stream, which will be "skipped" in some round and the associated extra start-
up latency. In this section it is shown how these drawbacks can be avoided.

While the extra space that the third buffer occupies is not a major drawback -- since it
can be stored in any level of the cache hierarchy and it will be replaced by the new streams,
that the "prefetch" mode will support -- the extra start-up latency could cause a degradation in
the Quality of Service. In order to avoid the triple buffering of some streams and the
associated start-up latency, the media server can be forced to function under the scheme S&P
all the time, independently of the number of concurrent streams serviced. The number of
streams that are prefetched at any time will be half of the overall streams supported. This
implies that for every two newly admitted streams, during their first round, for one of them
there will be prefetching of its next segment. This mode will be called Gradual Prefetching.
When the number of supported streams reaches the maximum, then the Gradual Prefetching
Scheme behaves as the S&P scheme shown in 3.1.

Thus, Gradual Prefetching is employed until the number of supported streams
becomes the maximum possible. Therefore, under Gradual Prefetching there will always be
enough time within a round to prefetch an additional segment for one of every two newly
admitted streams. Thus, no stream will experience extra start-up latency.
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3.3 Multi-Round Sweep & Prefetch (MS&P)

Further increase of p is possible by prefetching more than one segment for some

streams. Figure 7 exemplifies this by demonstrating 2-level and 3-level prefetches. The
throughput is increased from 25 to 34 but the required cache size is no longer equal to the
number of prefetched segments (analysis follows in section 3.5). Gradual prefetching can be
applied to this scheme as well, once the depth of prefetching is known (this depends directly
on the value of p).

Figure 7: Throughput increment via multilevel prefetching

In MS&P, since multiple segments are prefetched for a given stream, the next stream

iS to be read from disk will be separated -- in terms of data placement onto disk -- by the

previously read stream ijS j <, by as many streams as the number of prefetched segments

for jS . This assures that the scheduled requests for the segments ikjS k <<, of the streams

placed between the two streams ji SS , will be satisfied from cache (the appropriate segments

have been prefetched during earlier rounds) in time that a place in cache will be free for the

segments of the stream iS to be prefetched. It is reminded that the scheduler performs a

SCAN-like policy.
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When different levels (depths) of prefetches occur in MS&P -- at most two different
levels -- a similar scheduling and caching policy like the one just described must be followed,
but with two different values of the number of skipped streams, each one for each of the two
groups of streams that have the same number of prefetched segments. In figure 8 the diagram
of MS&P in figure 7 is redrawn to exemplify the policy described in this paragraph.

Figure 8: 2-way periodical MS&P

3.4 Grouped Periodic Multi-Round Prefetching (GPMP)

The algorithm described here is based on multiple prefetches but uses the host’s RAM
to temporarily store the prefetched segments. Caches in other levels as well as disk caches
can be used to store a portion of these segments, but the technique will be analyzed using only
the RAM, in order to facilitate a direct comparison to other multimedia retrieval schemes with
memory management that do not exploit prefetching. This algorithm will be called Grouped
Periodic Multi-Round Prefetching (GPMP).
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Scheme GPMP introduces the concept of an epoch. The time interval of an epoch (or

virtual round) is defined as the total duration of a fixed number )1( +u of actual rounds.

During a round of GPMP all streams will be served -- that is, all segments that sustain
the playback of the currently supported streams will be delivered to the host application that
manages the flow of data. The key idea is that these segments don’t have to be retrieved
during each round from the disk; some of them will be found directly in the RAM. Thus,
during a round only a fraction of the total streams supported will be randomly retrieved
(denoted again with the letter v) while there will remain enough time within the round for u
prefetches for each stream to take place. The letter u is used here for the number of segments
prefetched within the same stream -- the letter p that has been used in the previous algorithms
was referring to the total number of prefetched segments.

In the next round, the segments that sustain the playback of the next v streams will be
read along with the u prefetched segments for each one of the v streams. (The streams within
a round as well as the different streams in subsequent rounds, are being served as before in a
SCAN-like manner). It is true that all streams will be served during each round because the

vN − segments that have not been retrieved from the disk during the current round will be
found in the RAM as they had been prefetched in the previous rounds. (N is the number of
the total streams supported). The u prefetched segments of a stream read during a given
round will sustain its playback from RAM for the next u rounds. That is, after u rounds the
same streams read from disk during that given round have to be read from disk again.

The epoch consists of )1( +u rounds. During an epoch a complete sweep of the disk

is performed. From the disk behavior point of view, GPMP with the perspective of the epoch
looks like the Sweep scheme with a round duration equal to the epoch, but the aggressive
prefetching strategy proposed results in a round whose duration is )1( +u times shorter. This

strategy also incurs significantly lower memory requirements.

The total streams supported under GPMP is ( )1+×= uvN . Figure 9 demonstrates

GPMP in the same framework of the previous diagrams. The maximum number of streams
supported at 5=u is 36. ( 6=v ). Gradual Prefetching strategies assure that during Round 1
in figure 9, the 30 streams not served from disk have their segments already stored in RAM as
a result of prefetching during the previous rounds. More specifically, as it is assumed that
Round 1 corresponds to the status of an instance of the server working at its maximum

throughput, each of the second group of 6 streams in the figure have 1 remaining segment in
RAM, each of the third group of 6 streams have 2 remaining segments in RAM and so on.
Recall that “played” segments are discarded immediately.
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Figure 9: Grouped Periodic Multi-Round Prefetching (GPMP)

The scheduling algorithm used in GPMP is the same as in Sweep. In GPMP -- as a
contrast to S&P and MS&P -- there is no need for a special schedule as the prefetched

segments will lie already in RAM; only in the case that a cache would be used a
schedule/caching policy like the previous one would be necessary.

3.5 Analysis

To analyze and compare the performance of Sweep versus the algorithms proposed, a
single disk will be assumed as well as no special data placement policy (segments of media
files are stored contiguously on disk). Each stream is assigned a private buffer in main

memory to cope with variations in times between segment reads and no buffer sharing exists
among the requests. Buffer sharing does introduce significant savings, but this is discussed
later. The parameters used for the analysis, are:

♦ R: the duration of a round; it is constant for a given configuration.
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♦ N: the maximum number of streams that can be displayed with each algorithm; it is
computed by taking into account the worst case scenario, i.e., maximum disk head

positioning overhead.

♦ B: the size of a continuous object segment (e.g., 250KB MPEG segments); this is taken as
constant, for simplicity.

♦ p: the total number of segments prefetched, to be read from disk cache in later rounds.

♦ v: the number of segments that are randomly retrieved (number of streams read from disk
in a round).

♦ u: the number of prefetched segments that belong to the same stream (it is used only in
GPMP).

♦ Mem: the total size of system’s main memory that is needed during the operation of the
media server.

♦ dCache: the size of the disk cache memory that is needed for prefetching purposes; it is
assumed a full utilization of disk cache while further cache requirements are assumed to be

satisfied from higher-level caches.

♦ Transfer: the data transfer time of disk (disk media surface to main memory).

♦ Display: the display rate of a stream; the same display rates for all streams will be
assumed (e.g. MPEG-1).

♦ pos(d): the function that computes the positioning overhead of the disk head, given a seek
distance d (rotational delays are included).

3.5.1 Throughput

The round R lasts as long as a single segment is displayed. That is:
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Display
BR = (1)

During a round also, N segments are transferred from disk (or disk cache) to main
memory. The delays that each segment experiences, are the disk head positioning and disk
transfer time overheads for Sweep, while in the S&P family of algorithms only v segments
meet these delays; the rest p segments are played directly from the cache at no time overhead
and the time that remains until the completion of the round is used for prefetching p additional

segments at disk transfer time overhead only.

In order to ensure continuous playback for all N streams, the worst case positioning
overhead must be assumed (disk transfer times do not vary). The most time-consuming
sweep would include all N segments separated by equal number of cylinders, or a seek

distance of 







N
TotalCylpos . For convenience, this time is called POS. The time needed for a

segment to be transferred from disk to memory is equal to
Transfer

B . As we try to

accommodate as many streams as possible during a round, we derive the following equations
for R:

Sweep: R N POS B
Transfer= × +( ) (2)

S&P family: 1
R v POS B

Transfer p B
Transfer= × + + ×( ) (3)

In the above equation, we assume that internal transfer rate is equal to Transfer.

The number of streams that are supported with S&P algorithms are pvN PS +=& . For

GPMP it becomes ( )1&3 +×= uvN PSM , but by setting uvp ×= , the previous one relation

can be used. It should be reminded here that N is the maximum possible number of streams
and is different for different schemes. Equation (3) can be written as:

S&P family: R N B
Transfer v POS= × + × (4)

1 POS is a function of N and so varies for each scheme. However, typical values of N result into slight
differences in POS for the two schemes; therefore, for simplicity, the same POS in calculations is used for both
schemes.
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From the above equations we can solve for the size of a segment B as a function of N
for both schemes.

Sweep: B
N POS Display Transfer

Transfer N Display
=

× × ×
− ×

(5)

S&P family: B
v POS Display Transfer

Transfer N Display
=

× × ×
− ×

(6)

From equations (2) and (4) as well as from the relation pvN PS +=& , we can solve

for the maximum throughput N supported from each scheme:

Sweep:

Transfer
Display

R
POS

N Sweep

+
= 1 (7)

S&P family:
POSTransfer

DisplayR
POSpR

N PS

+×
×+

=&
(8)

From the above equations we can derive the maximum throughput gains that we
achieve with the S&P family of algorithms over Sweep, for a given round R (or a given
segment B):

R

POSp
NNN SweepSweepPS

×
×+=& (9)

We can see from the above equation that S&P techniques can further increase the
throughput (to an amount tuned by p), while they keep R (and the segment size) constant. If
we wanted to increase the throughput of Sweep without these techniques we would have to

make the segments larger and consequently extend the duration of the round. This would
mean also higher latency and higher memory requirements.

We can also see from equation (9) that the throughput gain of S&P algorithms over

Sweep is p POS

R

×
% . The throughput gains over scheme Sweep with the same round length

that introduced in the scenarios of figures 5-8 can be now computed accurately according to
the last relation:
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p = 8 (Figure 5) throughput gain = 10.4 %

p = 15 (Figure 6) throughput gain = 19.5 %

p = 24 (Figure 7) throughput gain = 31.2 %

p = 30 (u = 5) (Figure 8) throughput gain = 45 %

3.5.2 Memory

For the time it has been assumed that no buffer sharing exists. Each stream requires
twice the size of a segment in main memory so that the playback rate is sustained,
independently of the variations in segment reads within two consecutive rounds. That is,

there is a memory requirement for both Sweep and S&P algorithms of:

Mem N B= × ×2 (10)

S&P family of algorithms have an additional cache memory requirement that depends
on the value of p for S&P and on the values of p and v for MS&P and GPMP (or on v and u,
for GPMP). The formulas computed in this section assume a provided scheduling and
caching policy that delivers at least one segment from cache before it prefetches another one,
so that an unread disk cache resident segment is not overwritten. This scheduling policy is the
one presented in section 3.3.

When p v≤ the cache required for S&P is :

S&P ( p v≤ ) pBdCache ×= (11)

The next equations compute the cache requirements of MS&P )( vp > :

MS&P [ ]dCache B p i v
i

p
v

= × − ×
=







∑
0

(12)

Or (by substituting vNp −= in (12)) we set:
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MS&P [ ]
 

dCache B N v i
i

N
v

= × − × +
=

−

∑ ( )1
0

1

(13)

To understand (12) please refer to figures 7 & 8.

The above equations hold for GPMP. In GPMP, since uvN ×= the following holds:

GPMP [ ]∑
−

=

+×−×=
1

0

)1(
u

i

ivNBdCache (14)

The total memory that GPMP needs is computed from equations (10) and (14) as:

GPMP [ ]






 +×−+××= ∑
−

=

1

0

)1(2
u

i

ivNNBMem (15)

For a given N, we can use equations (5), (6) and (10) to derive the memory savings
that S&P family algorithms introduce over Sweep. From equations (5), (6) we get:

SweepPS B
N

v
B ×=& (16)

Then, using equation (10) we derive for S&P and MS&P:

SweepPS Mem
N

v
Mem ×=& (17)

The above equation does not include the cache that S&P and MS&P use; the
associated cache size -- as computed in equations (11) and (12) -- can be added to the above
equation. However, as it is pointed out in the first two chapters, modern disk drives come
with large on-board caches that are not used by Sweep but can be exploited by S&P. Other
cache hierarchies can be used too. Even with that addition, S&P and MS&P outperform
Sweep; this can be extracted from the graphs in section 3.5.3 and is verified in the next
chapter.
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GPMP can be compared directly to Sweep as it can be configured to not use any disk
cache. Thus, equations (10), (15) and (16) result in the memory savings of GPMP over

Sweep (the rather complicated fraction can never be greater or equal to one -- this can also be
seen in the graphs of section 3.5.3):

[ ]
Sweep

u

i
GPMP Mem

N

ivNNv

Mem ×
×








 +×−+××
=

∑
−

=
2

1

0

2

)1(2
(18)

Memory Sharing

So far, it has been assumed that each stream needs a fixed buffer in host’s RAM of
size B×2 . Memory requirements can be further reduced if the requests share their buffer
space [2, 3]. Towards this, a shared memory pool can be used; when it starts the
consumption of the data of a segment, the continuously increasing portion of data “played” is
not longer needed and so its space can be occupied by data from other requests. According to
[1] the minimum memory space required to support N streams under scheme Sweep -- with
memory sharing -- is:

)
)2(

()1(
Transfer

SN
RDisplayNBNMem

×−−××+×−= (19)

The same relation can be used for S&P and MS&P. GPMP though, cannot use a
memory sharing technique on the prefetched segments. Nevertheless, memory sharing can be
applied to the segments that correspond to the playback in the current round. Thus, the
memory needed under GPMP with memory sharing is derived from equations (14) and (19):

[ ]∑
−

=
+×−×+×−−××+×−=

1

0

)1()
)2(

()1(
u

i
GPMP ivNB

Transfer

SN
RDisplayNBNMem (20)

or

[ ]
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RTransfer
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Even with this observation the overall memory needs of GPMP are far less than those
of Sweep.

A scheme studied in [1] that tries to reduce the variability between the I/Os of a

request by performing them in a fixed order from round to round, is the Fixed-Stretch.
Because I/Os in a round are spaced out (the worst possible seek distance TotalCyl is used to
ensure continuous playback) memory sharing is done at its maximum; the segment size,
though, is larger as the round duration is artificially enlarged. According to [1] the minimum
memory requirements of Fixed-Stretch with memory sharing and the size of the associated
segment size are:

2

)1( +×
=−

NB
Mem SF

(22)

( )
)( DisplayNTransfer

DisplayTransferTotalCylposN
B SF ×−

×××
=− (23)

The segment sizes of Fixed-Stretch and Sweep are compared in the following
equation:

( )
SweepSF B

POS

TotalCylpos
B ×=− (24)

3.5.3 Analytical Results

In order to compare better the performance of the new algorithms at various cache size
configurations, different values of p and different round lengths, the graphs in this section

based on the above equations have been constructed. The values of Transfer and POS are
different from those used to demonstrate the techniques in figures 5-8. A real-world,
projected to be up-to-date for the end of 1998, disk drive is assumed with average transfer rate
of 14 MB/sec and average positioning delay of 11 msec. This disk drive is discussed
analytically in chapter 4. The graphs in this section use these values for Transfer and POS so
that a direct comparison with the experimental results (of the next chapter) can be done.

Other multimedia retrieval schemes have also been proposed in the academia.
Nevertheless, in this evaluation only Sweep and Fixed-Stretch are considered as a comparison
to the techniques presented here. This is done because these two schemes are representative
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of two opposite choices in the fundamental tradeoffs: Sweep minimizes seek delays at high
memory requirements while Fixed-Stretch minimizes the memory use at the worst seek

overhead. Other schemes lie between these two schemes, such as GSS proposed in [7]. The
algorithms that this study proposes -- especially GPMP -- exploit only the advantages of each
of the two extreme schemes -- Sweep and Fixed-Stretch (as it can been seen from the graphs).
Therefore, a comparison is not necessary to show that GPMP outperforms all other hybrid
schemes.

In figure 10, a throughput versus round duration graph has been constructed for
schemes Fixed-Stretch, Sweep, S&P and MS&P (for the last two schemes various cache

configurations are considered. The theoretical upper bound of throughput achieved is 56 --
that is, the disk head transfers all data at no positioning overhead. For Fixed-Stretch, a worst
case positioning overhead of 22 msec was taken into account, while the other schemes assume
an average positioning delay of 8 msec. As it can be seen from the graph, all schemes
improve their performance – the throughput achieved -- by increasing the duration of the
round. This happens as the segment size is proportionally increased resulting in a higher ratio

of transferring time to access time (greater disk utilization). The throughput increase is
slowed down as the round duration continues to increase, as the positioning overheads are
never eliminated. All schemes converge for large round lengths, approaching marginally the
upper bound.
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Figure 10: Throughput versus round duration
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It can be seen from figure 10 that the S&P family of algorithms achieve significantly
higher throughput than Sweep and Fixed-Stretch especially for short rounds (that also imply
short star-up latency). For example, for a round length of 500 msec, MS&P achieves a
throughput gain of 50% over Sweep.

It is reminded that GPMP achieves high throughput by keeping the round duration
short, so it is not included in figure 10. In addition, as the round increases, MS&P curves
meet those of S&P for the same cache configurations. This happens as the segment sizes
become large and there is not enough cache to support multiple round prefetches.
Correspondingly, as the round duration decreases, more segments can be prefetched and so,

after a bound, S&P does not fully exploit the disk cache.

In the next figures, graphs of throughput versus memory are constructed for all
schemes without memory sharing (figure 11, Fixed-Stretch is not included) and with memory
sharing techniques as discussed in the previous section (figure 12). GPMP is plotted on these
graphs assuming a constant round duration of 200 msec. GPMP is the only algorithm --
among those plotted -- that keeps the round length constant and increases its throughput
through further memory requirements. The other algorithms are based on lengthening the

round duration to increase their throughput, as it can be seen from the previous graph. We
can see that the S&P family algorithms outperform Sweep and Fixed-Stretch. Especially for
GPMP, the memory savings at high throughputs over Sweep and Fixed-Stretch are very
significant (over 60% for specific values of throughput).
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3.6 Interlaced Placement and Prefetching

The cache size that S&P and MS&P need can be further reduced if we interfere in the
way the segments are placed onto disk. The data placement policy that is proposed, interlaces
the segments of different streams so that different requests can be served at no positioning
overhead. The aim of the scheme is to combine prefetching and seek overhead elimination

for a certain number of streams and produce a lower disk cache requirement. With an
interlaced placement on disk it may be possible during the prefetching round to read segments
from different streams, in addition to the next segments of the initial streams. Those segments
belong to other streams can be played directly as they were random retrievals, while the rest
of the segments originate from traditional prefetching and so they can be kept in cache for the
next round. It is clear that if this placement is achievable, it can multiply the benefits gained

from both S&P and MS&P. Figure 13 demonstrates this interlaced placement. The same
throughput as in Figure 7 is achieved, but this time the disk cache needed is 24 segments
instead of 42.

Although it is difficult to predict the demand of requests and their relative timing, it is
possible to transfer the problem of an optimal placement to the writing phase, through
delaying some requests, leaving empty spaces and monitoring the use of the media server.
Even if an optimal placement is not achieved this way, we can interfere in tertiary memory
and have the most popular streams already interlaced in tapes. In the future we plan to study
interlaced placement in more detail.
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Figure 13: Interlaced Placement and Prefetching
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Chapter 4

Experimentation

Further evaluation and verification of the algorithms analyzed in the previous chapter
came through simulation of part of a hypothetical Continuous Media server. This simulated
part includes the retrieval of continuous media streams from secondary storage into RAM
through a system bus as well as an already generated workload that represents a typical use of
the Media server. The latter is taken as a substitute of the function of the CM server parts’ –
not simulated here -- that lie above and below of the disks-to-RAM data flow level in the
server’s hierarchy (please refer to figure 1 in chapter 1). Towards the purposes of an accurate
simulation the DiskSim Simulation Environment [40] has been used; minor changes have
been made in the source code so that the algorithms proposed in this study could be
supported.

4.1 The DiskSim Simulation Environment
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DiskSim is an efficient, accurate and highly-configurable disk system simulator
developed at the University of Michigan [40, 41]. It includes modules that simulate disks,
intermediate controllers, buses, device drivers, request schedulers, disk block caches, and disk
array data organizations. In particular, the disk drive module simulates modern disk drives in
great detail while it has been carefully validated against several production disks at high
accuracy. Some of the major functions (e.g., request queuing/scheduling, disk block caching)
that can be present in several different components (e.g., operating system software,

intermediate controllers, disk drives) are implemented as separate modules that are linked into
components as desired. DiskSim can be driven by externally-provided I/O request traces or
internally-generated synthetic workloads.

However, DiskSim does not address some of the aspects of latest-technology disk
drives that concern the management of the on-board cache and are essential for the
implementation of the proposed algorithms. These are:

(i) The capability of the disk controller to dynamically interfere in the way
caching is done as to allow extremely aggressive read-ahead and no read-
ahead to co-exist in a given schedule. Also, the capability of the controller to
enable/disable caching of requested data so that replacements in cache can
occur in various ways.

(ii) The adaptive segmentation of the disk cache as described in chapter 2, section
2.1.

(iii) The capability of the system to pass hints to the disk controller as for the
nature of the workload or to dynamically impose caching policies.

The above matters have been addressed in this study by slightly modifying the source
code of DiskSim as well as by interfering in the parameters of the parameter file – the input of
DiskSim that specifies the simulated system. The latter is done in such way that certain
computed values along with some assumptions from a macroscopic point of view can result in
the same effects the actually implemented modules would have.

More specifically, a new trace format created as to include hints provided from a
higher level of the CM server, that concern the prefetching strategy. Towards the
implementation of S&P algorithms, an integer value has been added in the new format for

every request; this number will specify the number of segments to be prefetched each time
(can be zero), according to each algorithm. When it comes to the controller to service a
request, the code has been changed as to permit dynamically defining the size of prefetching
according to the input. In addition, many large cache lines are defined and combined with a
FCFS replacement policy, so that the ordering and the values of the requests within the trace
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file can result in the same effects of an adaptively segmented cache which can be dynamically
tuned as for the replacement policy.

4.2 Experimental Testbed and Simulated Disk

The same assumptions as in the theoretical analyses hold: a single disk, constant
display rate of 2 Mbps, contiguous placement of streams onto disk, double buffering scheme
in main memory. Also the same restrictions hold too: the service of the requests is done in
rounds and uninterrupted playback of streams is ensured – that is all requests belonging in a
round should be satisfied within the time limits of the round.

A video library is considered that holds videos of 90-120 min of length, ordered
according their popularity. Our trace generator considers newly arrived videos at a Poisson

distribution (or, alternatively, in a constantly increasing rate) and picks their time lengths from
the video library according to Zipv’s law. Partitioning in disk is assumed so that large
portions of the video are placed onto disk successively. The S&P algorithms are implemented
in the trace generator as previously discussed. Furthermore, scheme Sweep is also evaluated.

Capacity (MB) 10,886

Heads/Recording Surfaces 18

Cylinders 6720

Sectors per Track 140 to 220

Sector Size (bytes) 512

RPM 10000

Seek Function (msec) ( ) { 1344;10315.110867.1

1344;10*1.2108635.3

43

63

<×+×
≥+×

−−

−−= dd

dd
dseek

Average Seek Time (msec) 8

Average Transfer Rate (MB/sec) 14

System Bus Transfer Rate (MB/sec) 40 (Ultra SCSI)

Table 1 : Simulated disk parameters

As the disk models delivered along with the software release of DiskSim [40] are out-
of-date, another disk model was assumed. The values that determine the seek function are the
same as in [52]. The values of various delays and overheads have been set to be
representative of modern disk drives. While our model is not a real word product, its
characteristics are very close to those of existing ones (please see table 1). Various cache
sizes are considered during the simulation.
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4.3 Experimental Results

Scheme Sweep, S&P, and MS&P were tested for their maximum achievable

throughput –- at the constraint of uninterrupted playback -- for disk cache sizes of 2, 4, 8, and
12 MB and for round lengths of 0.5, 1, 1.5, 2, 3, and 4 sec. The results are presented in the
following graphs. In figure 14 a curve of throughput versus round length is constructed while
in figure 15 a graph of throughput versus memory requirements is shown. For the latter case,
a double memory buffer scheme is assumed (as discussed in chapter 3). In the second graph,
scheme GPMP is introduced. It is reminded that GPMP behaves identically with Sweep with

a round duration equal to an epoch. Thus, a fixed round of 200 msec is assumed -- same as in
theoretical analysis -- and no further simulation results are needed (only memory
computations). Finally, Fixed-Stretch has been left out for a future implementation, since the
theoretical results were not very encouraging.
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4.4 Discussion

By comparing the graphs of the previous section to those derived theoretically in

section 3.5.3, we can verify the expected performance improvements of S&P algorithms over
Sweep. The only difference between the experimental and the theoretical results is a down
shift of all experimental curves by approximately 5 streams (units of Throughput). However,
the correlation of the algorithms remains as theoretically defined. The shift occurs as the
actual disk transfer rate for the kind of the workload studied is not equal to the expected one.
The latter is justified as a large read request has to suffer additional delays due to head

switches when crossing track and cylinder boundaries; that is, the transfer rate of a large
segment is no longer equal to the rate with which a single sector is read. In our disk model,
the expected transfer rate is 14 MB/sec (as the one used in theoretical evaluation) while the
measured one is 12.6 MB/sec. If we set the latter value in the evaluation of chapter 3, then,
approximately, we derive the same graphs (not shown here) as the experimental ones.

Apart from the verification of the new algorithms, the simulator was used to study the

functionality and efficiency of the disk cache. Observations on steps followed by the
simulated system show that a large on-board buffer is not exploited by Sweep. (To our
knowledge, disk manufacturers have not published any prefetching technique designed for
continuous media retrievals that takes also into account the concept of a Round).
Furthermore, interfering in the prefetching strategy actually leads to the expected benefits.
More specifically, it has been observed that requests found in cache (read hits) can be
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transferred to the host in parallel to disk-to-buffer transfers of other requests retrieved from
the disk surface. For example, during the service of 3 requests found in the cache as a result

of a 3-depth MS&P prefetching, the disk-to-buffer transfer of the next 4 segments (1 random
retrieval and 3 prefetches) goes in parallel to the buffer-to-host transfer of the initial requests’
data.

The central conclusions are that:

♦ Our hierarchical prefetching strategies introduce significant higher disk maximum
throughput compared to the traditional strategy (Sweep) for retrieving CM blocks. For
example, for round length equal to 1 sec and cache size equal to 8 MB the number of
streams that can be supported by MS&P is almost 30% greater than Sweep (see Figure

14).

♦ In addition, figure 15 clearly shows that despite the additional disk cache size required by
our prefetching strategies, the same investment in total RAM for our strategies and Sweep
results in higher achievable maximum throughput with our strategies.

♦ Finally, the current technology trends suggest that for future disk products our techniques
will show even better results. For example, transfer rates will continue to improve at a
much faster pace than seek delays and more powerful controllers operating on even bigger
embedded caches will appear.
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Chapter 5

Conclusions

5.1 Summary of Contributions

Current and future technologies to be used in Continuous Media servers architectures,
especially in modern disk drives, have been carefully studied and reported.

Towards the improvement of cost/performance of a CM server, this study contributes
a number of techniques based on the idea of prefetching amounts of data equal to the size of
the individual requests.

♦ Today’s state of the art as it is expressed through the introduction of cache hierarchies into
Media servers and employment of large on-board cache buffers onto modern disks,

♦ Promising innovations such as NASDs,

♦ Advances in communications and data channels, and

♦ Evolution, beyond any predictions in microprocessor technologies

create a strong foundation on which new, aggressive prefetching strategies can be studied,
proposed and long-term evaluated.
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In this work,

♦ Prefetching into the disk cache the next segment of several streams resulted into the S&P
scheme; however there exists an upper bound on the number of streams that prefetching
can be performed..

♦ The Gradual Prefetching technique assured short start-up latencies for the S&P algorithm.

♦ The maximum throughput upper bound of S&P has been overcome by aggressively
prefetching more CM data blocks which will be needed in future rounds; the MS&P
algorithm addressed the issues around multi-round prefetching.

♦ Combining extremely aggressive multi-round prefetching and traditional ways of
increasing throughput -- round duration lengthening -- the GPMP algorithm introduced a
round breakdown scheme and an efficient way of organizing the required memory which
lead to even higher performance.

The performance of above schemes was studied first through analysis. Detailed
graphs outlined the expected gains. The validation of the theoretic results came through the
implementation of the proposed algorithms into a drive accurate simulation model. Through
simulation, the underlying technological premises have proved to be feasible.

The techniques proposed in this research:

♦ Introduced significant throughput improvements (up to 60-70% when compared to Sweep
at a 500 msec round).

♦ Showed how to improve the cost/performance of a CM server by exploiting existing
hierarchical caches.

♦ Achieved low start-up latency and eliminated any associated tradeoffs.

♦ Pointed out new research directions.

♦ Proved that the improvement in the maximum throughput requires a smaller investment in
RAM cache memories, despite our schemes’ heavy reliance on host and disk caches.

5.2 Future Work

The proposed schemes should be studied under coarsed-grained striping techniques,
since the existing striping techniques are completely oblivious to the existence of the multi-
level caches and their exploitation with our prefetching techniques, which can significantly
improve a disk array’s performance.

The GPMP algorithm should be further studied and analyzed. An optimal round
breakdown should be computed. A common case in GPMP is a value of u that results into a
non integer value for the number of groups. While the gains are not affected, this case has to
be studied as for the delivery scheme within a round. Analytical formulas should be derived.
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Finally, the scheduling policy within a round has to be studied as to service new requests at
minimal start-up latencies.

The data placement policy discussed in Interlaced Placement should be further
inspected. Algorithms that take into account the workload of the media server and affect the
writing of the streams from tertiary memory onto disk will be implemented. Ways of
alternatively storing continuous media data in tape libraries may be proposed. A thorough
evaluation should indicate the further benefits.

The final step should be a study over a mixed workload (both continuous and discrete
requests) based on real world parameters. The management of the cache should be well
defined before mixed requests can be efficiently serviced.
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