Caching in Distributed Systems

% To avoid the
throughput limitations
of traditional data
retrieval algorithms, the
authors developed a
family of algorithms
that exploit emerging
smart-disk technologies
and increase data
throughput on
high-performance
continuous media

servers.

Stavros Harizopoulos
Carnegie Mellon University

Costas Harizakis and Peter Triantafillou

Technical University of Crete

Hierarchical Caching
and Prefetching for
Continuous Media
Servers with Smart Disks

ue to the rapid evolution in high-bandwidth networks and
the dramatic increase in CPU performance, I/0 systems have
become the performance bottleneck for demanding appli-
cations. Researchers have proposed many algorithms for
retrieving data from disks,!- but the throughput is limited. The primary

reason for this is disk access time, which
depends on slow mechanical movements
that are unlikely to speed up in the near
future. Storage device vendors are thus
offering disks with ever more powerful
embedded controllers and increasingly big
drive-level caches (see the sidebar “Trends
and opportunities in disk technology”).
Research efforts, in turn, are directed at
developing “smart disks” to exploit these
resources and thus improve overall system
performance.

This rapidly emerging smart-disk tech-
nology introduces additional system
resources, such as embedded drive-level
caches and powerful controllers. For exam-
ple, in a general system architecture for a
continuous media server, different cache
hierarchies coexist with powerful embed-
ded controllers at different points on the
data path (see Figure 1). These coexisting
elements permit greater parallelism
between algorithms operating on distrib-
uted caches within the system. More specif-
ically, we can view the CPU and the disk

1I/0 controllers and SCSI controller as dif-
ferent processing units; the data can flow
between the disk caches, the multiple disk
controller buffer, and the host cache.

We have developed several algorithms
that exploit these coexisting elements in
continuous media applications. Our algo-
rithms work in parallel to retrieve, or
“prefetch,” data from the disk surface to
either the disk or the SCSI controller
caches and concurrently transfer the data
from the lower cache hierarchies to the
host cache. At the same time, the host
streams the data from its RAM through the
network to the clients. As we will describe,
this parallelism—which is mainly based on
the intelligent controllers and the differ-
ent caches—can significantly improve
media server performance.

We measure performance in three ways:
by the maximum number of continuous
data streams that a drive can support, the
total RAM size requirements, and the start-
up latency. Our caching and prefetching
algorithms dramatically improve the num-

16

1092-3063/00/$10.00 © 2000 IEEE

IEEE Concurrency

The incorporation of drive-level
caches into disk drives has been critical
for improving 1/0 performance. For
example, you can now buy Quantum dri-
ves with up to 8 MBytes of cache. When
used along with caching and prefetch-
ing techniques, these embedded disk
caches can significantly increase the
drive’s performance. Moreover, storage
technology for large storage servers lets
you introduce caches at multiple levels
of the storage hierarchy, including the
host’s cache, the multidevice controller’s
cache, a disk array's controller cache, and
the drive-level cache.! Another signifi-
cant area of research deals with letting
applications pass hints to the underlying
operating system (or even the con-
troller). These hints can, for example,
describe future access references and
thus help create efficient plans for
prefetching and caching.

General technology trends call for
even higher performance from disk
controllers—we expect performance
greater than a 200 MHz Pentium by

Trends and opportunities in disk technology

2001. These “embedded CPUs” will
have an “embedded cache” with much
greater capacity than what is available
today. Another trend is the dramatic
increase in disk-drive transfer rates,
owing mainly to dramatic improve-
ments in linear storage density, in-
creased revolution speeds, and higher
bandwidth I/O buses. The transfer rates
have already reached 40 Mbytes per
second. However, the expected in-
crease in disk-head positioning time
is not expected to keep pace. This
suggests that clever prefetching strate-
gies will become even more impor-
tant for improving the disk system’s
performance.

Because of these trends, researchers
and developers have grown increasingly
interested in the concept of network-
attached storage (NAS) or network-
attached secure disks (NASDs) (see, for
example, www.pdl.cs.cmu.edu/NASD).
NASDs are storage devices with power-
ful controllers, operating on large on-
board caches. They can run streamlined

versions of storage, as well as file- and
network-related software protocol
stacks. Several efforts are attempting to
exploit these trends by letting programs
run at the controller level and thereby
increase the performance that storage
devices offer applications. One such
endeavor is the active disks project,
which aims to enable special device
operations unavailable with current
interfaces.?

References

1. R. Karedla, J.S. Love, and B.G. Wheery,
“Cache Strategies to Improve Disk Sys-
tem Performance,” Computer, Vol. 27,
No. 3, Mar. 1994, pp. 38-46.

2. E. Riedel, G. Gibson, and C. Faloutsos,
“Active Storage for Large-Scale Data
Mining and Multimedia Applications,”
Proc. Int’l Conf. Very Large Databases
(VLDB), Morgan Kaufmann, San Fran-
cisco, 1998.

ber of streams that a drive can support,
with small start-up latencies. In addition,
despite using “extra” drive-level caches,
these performance improvements do not
come at the expense of total additional
cache memory (at the host or the drive).
Also, given current technology trends,
the benefits of our techniques will likely
increase over time.

The application domain

A continuous media server offers
clients access to media types such as
video, audio, and so on. To avoid pre-
sentation anomalies, or “glitches,” the
media server must retrieve media data
continuously from the secondary mem-
ory at a specific rate. For example, a
media server mightinvolve a tape library,
from which it periodically extracts media
streams and writes them onto hard disks.
The server then serves client requests
from the disks. Typically, we require a
double buffer in main memory to ensure
a data stream’s continuous playback.
This buffer simultaneously fills and emp-
ties: data read from disks fills half the
buffer, while the other half is consumed
(the video plays). When data consump-

tion ends, a switch occurs and the media
server uses the newly full buffer to con-
tinue transmitting playback data and uses
the empty buffer for storage.

Because multple streams must be sup-

ported concurrently, the media server
typically serves streams in rounds,! which
endure for a given length of ime. During
around, the system reads one block from
each stream, which is adequate to sustain

<

System bus

>

g

{

Buffer cache

CPU 64 MBytes

RAM 512 MBytes
——

Multiple disks controller |

Buffer cache 16 MBytes

1/0 bus

]

| 1/0 controller

Buffer cache
4 MBytes

Magnetic surface

==

]
—

| 1/0 controller |

Buffer cache
4 MBytes

Magnetic surface

==

Figure 1. A general system architecture for a continuous media server.

July-September 2000

17

playback for the round’s duration. As
soon as the clients’ requests arrive, a call
admission policy decides which requests
the server will satisfy immediately, based
on the available resources. The server
rejects any remaining requests or places
them in a queue. A high-level scheduler
processes the admitted requests. In our
example, each video request that must be
served during a round is added to a ser-
vice list. A resolution mechanism maps
each requested video block to many adja-
cent disk sectors (typically, it maps one
video block to a single disk block). The
I/0 controller routes each newly created
disk-block request list to the appropriate
disk-drive device. Then, the low-level
scheduler schedules the corresponding
batch of requests separately for each
drive, reducing the disks” head-position-
ing overhead as much as possible. The
disk heads then transfer the requested
data from the disk surface to the disk-
level buffer cache and through the I/0
bus to the server’s (host) RAM. Finally,
the application running on the con-
tinuous media server transfers the data
through the network to clients.

Proposed algorithms

Our main performance metric is the
maximum throughput achievable by a
drive, which we define as the maximum
number of streams that a drive can sup-
port without glitches occurring. Two
important factors that limit a media
server’s cost—performance ratio are the
time required to transfer data from the
disk to main memory and the cost of the
cache memories. Recent research has
shown that these two parameters are
strongly interrelated and achieving high
throughput often comes at a huge
memory cost.> In our method, we
increase maximum throughput while
keeping round durations constant, with
relatively low memory requirements
and start-up latency. Thus, for a given
maximum throughput, we can actually
achieve better memory use and lower
latency.

The algorithms we present here
exploit several elements of a continuous
media server’s architecture, including

¢ the strong predictability of continu-
ous media requests;

e drive-level and other higher level
caches; and

e powerful controllers, which can
accept application-level hints about
the sequential nature of requests.

Our algorithms also take advantage of
the trend toward improving perfor-
mance through faster transfer time ver-
sus the relatively weaker gains from
improving disk head-positioning time.

To improve the drive’s maximum
stream throughput, our algorithms use
caching and prefetching strategies. More
specifically, they use disk and higher
level caches to prefetch continuous data
blocks (of one or more streams) that log-
ically follow their display. Despite the
significant time loss during prefetching
of large continuous media blocks, we
show here how using higher level caches
avoids the glitches caused by prefetch-
ing time overhead. Our technique actu-
ally increases overall stream throughput,
because prefetched requests are served
from the disk’s cache, without incurring
head-positioning overhead. Finally, our
techniques offer lower overall cache
memory requirements.

In the following examples, we focus on
a single drive’s performance. We assume
that each disk is logically divided in par-
titions and that each partition is a group
of contiguous tracks that stores many con-
secutive blocks of a continuous media
object. For example, if a disk’s bandwidth
can retrieve a maximum of 40 videos, then
given the size of each video (approxi-
mately 3 GBytes for an MPEG-2 90-
minute video), not all 40 videos will fit in
a single disk. Given this, we assume that
there are at least 40 logical partitions, each
storing several consecutive blocks of a
video, and that this placement is realistic.
In a hierarchical multimedia storage
server, for example, we can bring the next
video’s batch of blocks in from tertiary
storage. As another example, most disk
array environments use coarse-grained
striping techniques,* which create a place-
ment like the one we assume. In particu-
lar, we can assign each array disk a con-
secutive portion of a video in a round-

robin fashion. After such placement, each
disk stores many contiguous video por-
tions (containing tens of blocks, for exam-
ple) for numerous videos (up to a few hun-
dred). Our problem here is to develop
techniques that increase the number of
requests that each disk can support.

SWEEP AND PREFETCH

Scheme Sweep is a well-known con-
tinuous media-retrieval scheme that
improves throughput by reducing disk-
seek overhead. During a round, Sweep
reads each stream’s next block using a
SCAN-like scheduling policy.” Double
buffers in the main memory ensure con-
tinuous playback.

In a given round, a media-server disk
can support a specific upper bound in N
streams. This number is mainly depen-
dent on two parameters: the total posi-
tioning overhead (the time a disk needs
to position the disk head on the begin-
ning of a block) and the total transfer
time (the time it needs to transfer disk
data to main memory). Both of these
delays occur when the disk head retrieves
a data block that has not been prefetched;
we therefore call them random retrievals.
We denote the number of blocks ran-
domly retrieved in a round by the letter
v. The disk head prefetches blocks when
it reads adjacent blocks and stores them
into the disk cache. Reading prefetched
blocks creates no positioning overhead.
We denote the number of prefetched
blocks in a round by the letter p. If we
force the disk head to continue reading
the next block of the same stream into the
disk cache and do this for p streams, then
at the end of the round, the system will
have served v streams (as random
retrievals), while p blocks will reside in
the cache. In the next round, those p
blocks will serve p streams. Because read-
ing p blocks creates no positioning over-
head, the total number of streams the disk
can support is now greater. That is, we
have increased maximum throughput,
while keeping the round’s duration and
the block size constant.

Figure 2 demonstrates our Sweep and
Prefetch (S&P) technique. Figure 2a
shows the maximum number of streams
(25 in this example) that Sweep can sup-

18

IEEE Concurrency

port. In Figure 2b, we prefetch eight
blocks—one for each of the eight
streams—to increase the number of sup-
ported streams from 25 to 28. In each
round, there are 20 random retrievals and
eight prefetches. The reads from the disk
cache to the host cache run in parallel
with the (p + v) disk accesses. In Round 1,
the system supports the last five streams
from an additional higher level cache
buffer. When the requests for these five
streams arrive—along with each stream’s
first two blocks, which the “double-
buffering” scheme needs—the multiple
disk controller deposits the third block
into the host’s cache. The server delays
the data transmission for the five streams
until all three blocks have been retrieved
from the disk’s surface. Thus, higher level
caches can issue disk retrieval requests for
these five streams without experiencing
any glitches. After Round 2 in Figure 2b,
the host-level cache buffers required to
implement this “triple buffering” are no
longer needed and can be used by the new
streams. Scheme S&P can be fully para-
meterized with v and p, always at the
expense of disk cache memory size.

In this example, we assume that there
is a simplified disk drive with a transfer
rate of 10 Mbytes per second and a com-
bined seek and rotational fixed overhead
of 15 milliseconds for each request. We
further assume that there is a constant
display rate of 2 megabits per second and
around length of 1 second, which implies
ablock size of 250 Kbytes. Thus, at most,
the disk head can read 25 blocks within a
round, while the ratio of randomly
retrieved blocks that can be “exchanged”
(in terms of time) with prefetched blocks
is 5/8 (40 millisecond and 25 millisecond
retrieval times, respectively).

GRADUAL PREFETCHING

The S&P scheme services streams
without prefetching until the system
reaches its maximum throughput. It then
switches into the “prefetch” mode and,
by exploiting the higher level caches,
increases the maximum throughput
without creating glitches. However, this
scheme has a drawback: It requires three
cache buffers for each stream, and thus
each stream’s block will be skipped in

Round 1

Round 2

(a)

Round 1

Round 2
oOoooo

O0O0OXK

Round 3

(b)

Segment read from disk
[0 Segment played from disk cache
[¢] Segment played from higher-level cache

[o][e] [e][o] [e]

Figure 2. Scheme Sweep & Prefetch increases throughput by prefetching.
Each box represents a particular video block. A box under another box
represents adjacent blocks in the same stream. Two adjacent boxes in the
same line represent blocks of two streams that the lower-level scheduler will
schedule within a round in the same order as they appear (such as in SCAN

order). In the top two rounds (a), N = 25,

v =20, and p = 0; in the bottom

three rounds (b), N =28, v=20, and p = 8.

some round, creating extra start-up
latency. We overcome this drawback
using the Gradual Prefetching Scheme.
In gradual prefetching, we force the
media server to function under the
Scheme S&P all the time, regardless of
the number of concurrent streams being
served. Atany given time, the disk heads
therefore prefetch half of all supported
streams. For every two newly admitted
streams, one of them will have its next
block prefetched during the first round.
When the number of supported streams
reaches the maximum, the Gradual
Prefetching Scheme behaves like Scheme
S&P. However, this time, half of the
streams already have their next blocks in
the disk cache; if they are skipped in the
next round, no glitches will occur.
Gradual prefetching works with the
maximum number of supported streams.
Therefore, there is always enough time
within a round to prefetch an additional

block for half of all new streams. Given
this, no stream will experience extra
start-up latency, and we no longer need
triple buffering.

GROUPED PERIODIC
MULTIROUND PREFETCHING

The Grouped Periodic Multiround
Prefetching algorithm temporarily stores
prefetched blocks in the host’s cache.
Although disk caches and caches in other
levels can store many of these blocks, we
analyze the GPMP technique using only
RAM so that we can directly compare
our technique to other multimedia
retrieval schemes with memory man-
agement that do not exploit prefetching.

Scheme GPMP introduces the concept
of an epoch. The time interval of an epoch
(or virtual round) is the total duration of a
fixed number of actual rounds. GPMP’s
macroscopic behavior is similar to other
traditional grouped schemes®* if their

July-September 2000

19

Round 3 ... 5
Round 6

Round 1
XOOOO O0O000 00000 Ooodo ooooo ooooo o
Round 2
ooooo o 000 00000 00000 00000 0ooog O

00000 00000 00000 00000 00000 ooodo

O Segment played from RAM Segment read from disk

B [)

Figure 3. Grouped Periodic Multiround Prefetching temporarily stores
prefetched blocks in the host’s cache so that they don’t have to be retrieved
from the disk each round. Here, Round 1 corresponds to the server working at
maximum throughput. N =36, v=6, u =5, and p = 30.

Table 1. Simulated disk parameters.

DisK-DRIVE PARAMETER VaLue
Capacity (Mbytes) 10,886
Heads/recording surfaces 18
Cylinders 6,720
Sectors per track 140 t0 220
Sector size (bytes) 512
RPM 10,000
5 4
Seek function’ (msec) seek(d) - H.867007 +1.31500 Vd ,d <1344
%,8635 007 +2.1007°d,d 1,344
Average seek time (msec) 8

Average transfer rate (MBps) 14
System bus transfer rate
(MBps)

40 (Ultra SCSI)

1. We can express the head-positioning time delays as a nonlinear function of d, where d'is
the number of consecutive cylinders that the head must traverse.

round duration is set equal to a GPMP
epoch. However, GPMP’s reliance on
prefetching results in a different func-
tionality. At the system level, GPMP
offers finer grained disk requests per
stream, more flexible configuration, and
higher service quality, because GPMP has
lower start-up latencies.

During a GPMP round, the media
server serves all streams—that is, the
server delivers all blocks that sustain play-
back of the supported streams to the host
application, which manages the data flow.
The key idea is that these blocks don’t
have to be retrieved from the disk each
round; some of them are in the cache.

Thus, during a round, only a group con-
taining a fraction (v) of the supported
stream is randomly retrieved, while
enough time remains in the round for
prefetches for each stream (where rep-
resents the number of blocks prefetched
within the same stream).

In the next round, the blocks that sus-
tain the playback of the next group—
which also contains v streams—are read
from the disk surface along with the «
prefetched blocks for each v stream (the
streams within a round, as well as the dif-
ferent streams in subsequent rounds, are
being served as before, in a SCAN man-
ner). All streams will be served during

each round because the N — v blocks,
which were not retrieved from the disk
during the current round, are in the
cache, having been prefetched in previ-
ous rounds (N being the total number of
streams supported). The # prefetched
blocks of a stream read during a given
round sustains its playback from the
cache for the next # rounds. That s, after
u rounds, the same streams read from
disk during a given round have to be read
from disk again.

The epoch is k# = # + 1 rounds. The
total number of streams supported under
GPMP is N=v (u + 1). Figure 3 demon-
strates GPMP using the same framework
as the previous figures. The maximum
number of streams supported at # = 5 is
36 (v=6). Gradual prefetching strategies
ensure that during Round 1 in Figure 3,
the 30 streams not served from disk have
their blocks already stored in the cache
as a result of prefetching during the pre-
vious rounds. More specifically, because
we assume that Round 1 corresponds to
the server working at maximum through-
put, each of the second group of six
streams has one remaining block in the
cache, each of the third group of six
streams has two blocks in the cache, and
so on. “Played” blocks are immediately
discarded.

Performance evaluation

We analytically evaluated the perfor-
mance of our algorithms. For space rea-
sons, we present here our results from a
simulation, which closely matches the
results from our formal analysis. We sim-
ulated a continuous-media server that
includes the retrieval of continuous
media streams from secondary storage
into RAM through a system bus, and a
pregenerated workload equivalent to that
of a typical server use. To realize our sim-
ulation, we used the DiskSim Simulation
Environment.® However, DiskSim does
not address some onboard cache man-
agement issues that newer disk drives
handle and that are essential for imple-
menting our algorithms. These issues
are the ability to enable and disable
requested-data caching, so that the cache
can be replaced in various ways; the abil-

20

IEEE Concurrency

52

50
= 484
§ 46
s 444
o 42
% 40 Maximum throughput ——
= 381 GPMP 0.2 secs. ——
= 36 S&P 12 MBytes —+—
S 34 f S&P 8 MBytes ——
S 32 S&P 4 MBytes —=—
£ 30 S&P 2 MBytes —=—
é gg Sweep —=—
=
< 244 LS

22

20 T T T T T

0 16 32 48 64 80 96
Memory (MBytes)

Figure 4. Throughput performance versus memory requirements for
prefetching with Sweep & Prefetch algorithms and Sweep.

ity to switch prefetching off and on at var-
ious depths; and the ability to change the
disk cache segmentation. We added
these capabilities by slightly modifying
DiskSim’s source code.

THE EXPERIMENT

As our simulation example, we use a
video library that holds videos that are
90 to 120 minutes long. We order the
videos according to popularity, and
they follow a Zipfian distribution. Our
trace generator considers newly arrived
videos with a Poisson distribution, and
we assume disk partitioning: large por-
tions of the video are placed onto disk
successively. We implemented the S&P
family of algorithms in DiskSim using
the trace generator to pass hints and
evaluate our algorithms and Scheme
Sweep.

Because the DiskSim software re-
lease had outdated disk models, we
assumed another disk model (see Table
1). We set the seek-function values and
those of various delays and overheads
to equal those on currently available
disk drives.

REsuLTs

We tested the Sweep and S&P
schemes for their maximum achievable
throughput without glitches for disk
cache sizes of 2, 4, 8, and 12 Mbytes and
for rounds of 0.5, 1, 1.5, 2, 3, and 4 sec-
onds. We configured all schemes to use
the same amount of main memory for
each round length. The extra gains in

throughput for the S&P algorithms
came from exploiting the onboard cache,
which traditional techniques such as
Sweep cannot use. When we compare
our prefetching strategies to Sweep, we
see 20 to 70% improvements in
throughput for round lengths of 0.5 to
1.5 seconds and disk cache sizes of 2 to

12 Mbytes. For longer rounds, all S&P
configurations and Sweep converge
toward an upper bound. However, as
Figure 4 shows, longer round lengths
have little to no practical use, as they
explode memory requirements and cre-
ate undesirable start-up latency, espe-
cially for short media clips.

As Figure 4 shows, GPMP outper-
forms the traditional Sweep algorithm,
achieving higher throughput using the
same memory, but shows poor start-up
latency. Given the round length, we can
adjust GPMP’s parameters v and #, trad-
ing off increased throughput for low
start-up latency. Also if we set # = 0 and
choose an appropriate value for v,
GPMP’s performance equals Sweep’s. In
either case, the maximum throughput s
[(+ 1) - v] or simply & - v. As intuition
suggests, higher & values increase queu-
ing delays and hence create higher start-
up latencies for incoming requests.

Figure 5 shows the performance of a
single disk media server with round

=
o

)

Average startup latency (seconds

0 \

T —o—o—o—o—0—6—0—0—0—0—0—00F

T T
0 5 10 15

GPMP k = 45, round = 1 sec. ——
GPMP, k = 22, round = 1 sec. ——
GPMP k = 11, round = 1 sec. —+
GPMP k = 6, round = 1 sec. —=—
GPMP k = 14, round = 0.5 secs. —=—

T T
20 25 30 35 40
Average throughput (streams per hour)

GGPMP k = 3, round = 1 sec. ——
GPMP, k = 9, round = 0.25 secs. ——
Sweep, round = 1 sec. —~

Sweep, round = 0.5 secs. ——
Sweep, round = 0.25 secs. ——

Figure 5. Throughput performance versus start-up latency for the Grouped
Periodic Multiround Prefetching and Sweep algorithms with different k values

and round durations.

July-September 2000

21

durations from 0.25 to 1 seconds. For
low request-arrival rates, lower values of
k induce lower start-up latencies. As the
request-arrival rate increases, queuing
delays occur due to the server’s high
workload, and GPMP configurations for
higher throughput become more bene-
ficial for start-up latency.

Certain configurations with different
round lengths can yield the same
throughput, as long as parameter £ is
tuned appropriately (for example, when
round length is 0.25, £ is 19; when round
length is 1, & is 6). In this case, we pre-
fer the configuration with the lower
round length duration, because it has
lower start-up delays.

OUR PREFETCHING strategies introduce
significantly higher maximum through-
put for disks compared to the traditional
Sweep strategy for retrieving continuous
media blocks—as high as 60 to 70%
more for a 500 millisecond round. We
also found that Sweep could not exploit
the large, on-board buffer we used in our
simulation.

To our knowledge, disk manufactur-
ers have yet to publish any prefetching
techniques designed for continuous
media retrievals that also account for the
concept of a round. Furthermore, inter-
fering in the prefetching strategy led to
the expected benefits: requests found in
cache (hits) can be transferred by I/O
controllers to the host in parallel to
other, disk surface-to-buffer transfers.

The current technology trends sug-
gest that our techniques will show even
better results for future disk products,
because transfer rates will continue to
improve (at a much faster pace than seek
delays), and more powerful controllers
operating on even bigger embedded
caches are certain to follow. %

ACKNOWLEDGMENTS

The Exapsis project, which is funded by the
General Secretary of Research and Technol-
ogy, Greece, supported our research.

References

1. D.J. Gemmel et al., “Multimedia Storage
Servers: A Tutorial,” Computer, Vol. 28,
No. 5, May 1995, pp. 40-49.

2. E. Riedel, G. Gibson, and C. Faloutsos,
“Active Storage for Large-Scale Data Min-
ing and Multimedia Applications,” Proc.
Int’l Conf. Very Large Databases (VLDB),
Morgan Kaufmann, San Francisco, 1998.

3. E. Chang and H. Garcia-Molina, Effective
Memory Use in a Media Server, (extended
version), Stanford Tech. Report SIDL-WP-
1996-0050; www-diglib.stanford.edu/cgi-
bin/get/SIDL-WP-1996-0050 (current July
2000).

4. B. Ozden, R. Rastogi, and A. Silberschatz,
“Disk Striping in Video Server Environ-
ments,” Proc. Int’l Conf. Multimedia Com-
puting and Systems (ICMCS), IEEE Com-
puter Soc. Press, Los Alamitos, Calif., 1996.

[

. P.S. Yu, M.S. Chen, and D.D. Kandlur,
“Grouped Sweeping Scheduling for
DASD-Based Multimedia Storage Man-
agement,” ACM Multimedia Systems, Vol.
1, No. 2, 1993, pp. 99-109.

. C.L. Liu and J.W. Layland, “Scheduling
Algorithms for Multiprogramming in a
Hard Real-Time Environment,” J. ACM,
Vol. 20, No. 1, Jan. 1973, pp. 46-61.

f=

7. P.J. Denning, “Effects of Scheduling on
File Memory Operations,” Proc. American
Fed. Information Processing Societies
Conf. (AFIPS), Thomson Book Company,
Washington, D.C., 1967, pp. 9-21.

8. Y. Robogianakis et al., “Disk Scheduling
for Mixed-Media Workloads in Multime-
dia Servers,” Proc. Sixth ACM Int’| Multi-
media Conf., ACM Press, New York, 1998.

9. G.R. Ganger, B.L. Worthinghton, and Y. N.
Patt, The DiskSim Simulation Environment
Version 1.0 Reference Manual, CSE-TR-
358-98, Univ. of Michigan, 1998; www.
eecs.umich.edu/techreports/cse/1998/CSE-
TR-358-98.pdf (current July 2000).

Stavros Harizopoulos is a PhD student in
computer science at Carnegie Mellon Uni-
versity and a member of the Parallel Data
Laboratory. He studied electronics and com-
puter engineering at the Technical Univer-
sity of Crete, Greece. His research interests
are in high-performance storage systems, with
an emphasis on streaming media applications.
He is a Lilian Voudouri Foundation fellow-
ship recipient. This work is based upon his
undergraduate diploma thesis, under the
supervision of Peter Triantafillou. Contact
him at the Computer Science Dept., Carnegie
Mellon Univ., Pittsburgh, PA 15213-3891;
stavros@cs.cmu.edu.

Costas Harizakis is a graduate student in
electronics and computer engineering at the
Technical University of Crete. He received
his diploma in electronics and computer engi-
neering from the Technical University of
Crete. His research interests are in high-
performance intelligent storage systems and
distributed proxy caches supporting multi-
media applications. Contact him at the Dept.
of Computer Engineering, Technical Univ.
of Crete, Chania, Greece; harizak@speech.gr.

Peter Triantafillou directs the Software Sys-
tems Engineering and Network Applications
Laboratory at the Department of Electronic and
Computer Engineering at the Technical Uni-
versity of Crete, Greece. He has a PhD from the
Department of Computer Science at the Uni-
versity of Waterloo. His research efforts are in
high-performance multimedia computing and
networking. He has published extensively in
these and other areas and has served on the
DEXA °2000, EDBT ’2000, ACM MobiDE
’99, ACM SIGMOD ’99, FODO ’98, RIDE
’98, and EDBT *98 conference program com-
mittees and as a reviewer for many international
journals. Contact him at the Dept. of Computer
Engineering, Technical Univ. of Crete, Cha-
nia, Greece; peter@ced.tuc.gr.

22

IEEE Concurrency

