
Peter Triantafillou
Department of Computer Engineering,
Technical University of Crete, Chania,

Greece and
Computer Technology Institute, Patras

petcr@,ced.tuc. pr

Abstract
This paper presents techniques, which exploit recent

magnetic disk-drive technological developments (such as
the existence of embedded drive-level caches and powerful
controllers, and the ever-increasing transfer rates). It
contributes prefetching techniques into host- and drive-
level caches to improve the maximum number of
continuous data streams that a drive can support. We
show how our techniques can achieve significant
pegormance improvements while guaranteeing the
uninterrupted display of the continuous data. In addition,
despite our techniques’ utilization of drive-level caches,
the performance improvements do rwt come at the expense
of additional cache memory (at the host andor the drive).
Given current technology trends, the benefits of our
techniques are expected to become even greater.

1. Introduction

While many algorithms for retrieving continuous data
from disks have been proposed, their performance is
limited mainly by the disk access time which depends on
mechanical movements and is not expected to improve
rapidly. However, most vendors provide disks with an on-
board cache and powerful controllers, whose exploitation
can significantly decrease disk access times.

1.1 Multimedia delivery overview

In this study we focus on disk requests that occur
from the playback of video and audio. These data must be
retrieved from the secondary memory at a specific rate (or
else “hiccups” or “glitches” occur). The usual model of a
continuous media server involves the use of magnetic disk
from where the requests are served. To ensure the
continuous playback for a data stream, typically, a double
buffer in a main memory cache is needed. The data read
from disk fill one half of this buffer, while at the same
time the data previously stored from disk into the other
half of the buffer, are consumed (i.e., video plays). When
the consumption of these data ends, a switch occurs; the
full half of the buffer is used for playback and the empty
one for storing. As multiple streams must be supported

0-7695-0253-9199 $10.00 0 1999 IEEE

stavros Harizopoulos
Computer Science Department

Carnegie Mellon University, U.S.A
S tavros .HarizopoulosG,cs . c im .edu

concurrently, the media server typically services these
streams in rounds. During a round one segment (block) for
each stream is read and each block contains enough data to
sustain the playback for the duration of the round [2].

1.2 Disk-related Technological Developments, Trends,
and Research Opportunities.

A critical development has been the incorporation of
caches into disk drives. For example, modern drives [5,12]
can be bought with up to 4MB of cache. The technology
trends currently call for even higher-performance disk
controllers (with performance similar to a >200 MHz
Pentium) at year 2001. These “embedded CPUs” will have
available an “embedded cache” with capacity 32-64MB.

Another trend concerns the dramatic increase in the
transfer rates of disk drives, owing mainly to dramatic
improvements in the linear storage density and to speed-
ups in the revolution speeds of drives. Transfer rates will
near 30MB/s by year 2,000. However, the disk head’s
positioning times will not keep pace. This suggests that
clever prefetching strategies become even more important
for improving the disk system’s performance.

Because of the above trends, the concept of network
attached storage devices (NASDs) receives increasingly
greater attention by researchers and developers [3,7,8].
NASDs are storage devices with powerful controllers and
large on-board caches, able to run streamlined versions of
storage, file related, and network-related, software
protocol stacks. Also, several efforts are exploiting these
trends by enabling programs to run at the controller level
increasing the performance offered to applications.
Examples of such endeavors are the active disks and
intelligent disks projects [3,7,8]. In the same spirit as these
efforts in “smart disks” is the work in [6] in which special
capabilities possessed by modern disk controllers were
exploited to devise drastically more efficient scheduling
algorithms for mixed-media workloads.

1.3 The problem

The techniques we present here aim to increase the
disk drive’s performance for continuous media

Prefetching into Smart-Disk Caches for High Performance Media Servers

500

applications. Our main performance metric is the
maximum throughput achievable by a drive, defined as the
maximum number of supported streams. The proposed
algorithms exploit: (i) the predictability that media streams
show, (ii) the drive-level and other higher-level caches,
(iii) the powerful controllers which can process
application-level information, and (iv) the faster pace of
improvement of the transfer time versus that of the disk
head positioning time. The proposed algorithms are based
on prefetching strategies.

Specifically, disk and higher-level caches will be
used to prefetch continuous data segments (of one or more
streams) that logically follow their display. Despite the
significant portion of time that is lost during prefetching of
large CM blocks, we show: First, how to utilize higher-
level caches to avoid hiccups caused by the prefetching
time overhead. Second, that the throughput is increased as
the prefetched requests will be served from the disk’s
cache, without the overhead needed for positioning onto
disk, and third, that we can, at the same time, achieve
lower total cache memory requirements. We have
conducted analyses and experimentation, which testify for
these benefits.

We will concentrate on the performance of a single
drive. We assume that each disk is logically divided in
partitions. Each partition is a group of contiguous tracks. It
stores a number of consecutive blocks of a continuous
object. For example, if at most 20 videos can be retrieved
by a disk’s bandwidth, given the size of each video
(approx. 3GB for an MPEG-2 90-minute video) currently
not all 20 videos can f i t in a single disk. So we assume 20
logical partitions, each storing a number of consecutive
blocks of a video. We stress that this assumed placement is
realistic. In a hierarchical multimedia storage server [I 01
the next video’s batch of segments can be brought in time
from tertiary storage. In disk array environments, using
striping techniques like the ones suggested in [4,9] yields
such a placement. Each disk can be assigned a consecutive
portion of a video in a round-robin fashion. Each disk then
stores a large number of contiguous video portions (e.g.,
containing tens of blocks), for a large number of videos
(such as a few hundred videos). Our problem is to develop
techniques, which increase the number of requests that
each such disk can support.

2. Proposed Algorithms

Four new techniques for retrieving CM data from
disks are presented. Data segments are prefetched into disk
and host-level caches. The algorithms reduce the disk
access overhead more than it is feasible with conventional
policies, while avoiding glitches and reducing start-up
latencies.

2.1 The sweep & prefetch (S&P) technique

Scheme Sweep is the well-known scheme that
reduces disk seek overhead to improve throughput.

During a round, Sweep reads each stream‘s next segment
using SCAN. Double buffers in main memory are needed
to avoid glitches.

For a given duration of a round there is an upper
bound in the number of streams, N, that can be supported
by a disk. This number is mainly dependent on two
parameters. The total positioning overhead (i.e., the time
needed for the disk head to be positioned on the beginning
of a segment) and the total transfer time (i.e., the time
needed for the disk data to be transferred to main
memory). Both of these delays are experienced when
retrieving a data segment, which has not been prefetched
and thus this retrieval will be called “random retrieval“.
The number of segments retrieved this way in a round is
denoted by the letter v . On the other hand, if the disk head
continues reading the following segment and stores it into
the disk cache, this “prefetched” segment will be read at
no positioning overhead. The number of prefetched
segments in a round is denoted byp.

At the end of the round, v streams will have been
served (as “random retrievals”), while p segments will be
in the cache. In the next round, those p segments will
servep streams at no positioning overhead. Thus there will
still be enough time to read from the disk surface a block
for v streams and prefetch the next segments for p of these
v streams. Because the p segments are read at no
positioning overhead, the total number of supported
streams (p+v is now greater.

Figure 1 demonstrates S&P. A box refers to a video
block. A box under another box stands for the next block -
- contiguously placed on disk -- of the same stream. Two
adjacent boxes in the same line stand for the blocks of two
streams that will be scheduled within a round in the same
order as they appear (i.e., in SCAN order).

/

R-nd 1
m m m m m m m m m m m m m m m m m m m m m m m m m

Rwnd z
m m m m m m m m m m m m m m m m m m m m m m m m m

[a) N = 2 5 , v = 2 0 , p = O

’ We consider a disk drive with 10 MB/sec transfer rate and a seek and
rotational overhead of 15 ms. Also we assume a constant display rate of
2 Mbps and round length of 1 sec. Thus, the size of a segment will be
250 KB. At most 25 segments can be retrieved within a round. while
The ratio of randomly retrieved segments that can be “exchanged with
prefetched segments, is 5 / 8 (40 ms and 25 ms retrieval times).

50 1

Figure](a) introduces the maximum number of that
can be supported with Sweep. Then, in Figure 1(b), the
prefetching of 8 segments -- one for each of 8 streams -- is
used to increase the number of streams from 25 to 28. In
each round there are 20 random retrievals and 8
prefetches. The reads from the disk cache to the host
cache go on in pardlel to the disk accesses (p+.). In
round 1, the last 5 streams are supported from an
additional host-level cache. These streams will not suffer
a glitch. When the requests for these 5 streams arrive,
along with the first two blocks for each stream needed by
the "double-buffering" scheme, the third block is deposited
into the host's cache. The display of these 5 streams is
delayed until all three blocks have been retrieved from the
disk's surface. Thus, the host-level cache permits not to
issue disk retrieval requests for these 5 streams in some
round, without these streams experiencing any glitches.
The host's extra buffer for this "triple buffering" is no
longer needed after round 2 in Figure I(b).

Scheme S&P can be fully parameterized with v and
p , always at the expense of disk cache memory size.
Figure 2 shows an alternative combination of values for v
and p that results into higher throughput. By prefetching
15 segments, the maximum throughput is increased from
25 to 30. This is the upper bound of the maximum
throughput that S&P can achieve in this example. In
section 2.3 we will overcome this limitation.

Figure 2: Further throughput increment

2.2 Gradual Prefetching

Scheme S&P, as presented in section 2.1, starts
servicing the streams without prefetching until the
maximum number of streams are served. Then it switches
into the "prefetch" mode. However, it has the drawbacks
of requiring three cache buffers for each stream, whose
block will be "skipped" in some round and the associated
extra start-up latency.

In order to avoid these drawbacks, the S&P scheme
can be used all the time. The number of streams that are
prefetched at any time will be half of all streams
supported. This implies that in every two newly admitted
streams for one of them there will always be prefetching of
its next segment. This mode will be called Gradual
Prefetching. When the number of supported streams
reaches the maximum, then the Gradual Prefetching
Scheme behaves as the S&P scheme shown in Section 2.1.
At this time, half of the streams will have their next blocks

502

already in the disk cache and so if they are skipped in the
next round, these streams will not experience hiccups,

2.3 Multi-Round Sweep & Prefetch (MS%P)

Further increase in the maximum throughput is
possible by prefetching more segments for some streams.
Figure 3 demonstrates 2-level and 3-level prefetches. The
throughput is increased from 25 to 34 at the expense of
required cache size. Gradual prefetching can be applied to
this scheme, once the depth of prefetching is known (this
depends directly on p). Figure 3 shows that the hiccup-free
display of all streams is ensured. But with MS&P, a
technique ensuring that prefetches of different streams do
not interfere, overwriting each other's cached blocks, is
required. This technique, controlling for which streams
prefetching is done, is shown in Figure 4.

ROUM 1
mmmpIIm mmmmm cIoo5o 5ocI5cI m 5 5 c I o
mmmmm mmmmm
mmmmm mmmmm
mmmm
R W M 2
onnon DOODD mmmmm mmmmm o m o m m

m m 5 m m mmmmm
mmmmm mmmmm
mmmm

Round3 run-
onoon noooo onnnn onoon mmmmm mmmmm

mmmmm m m m s m
mmmmm mmmmm
m m m m

R a M 4 9 ..?? *-
OOOOD 5 m m m l 00000 00000 00000 boooo EamEad

D 01501 mmm=
5 m m s m m 5 m m E

tarnmm
N = 34. v = 10. E) L 24

L.qrm&kanmk S @ V U T I I D W f m M C e
P 3mvmm@cmar?rramcactm

Figure 3: Throughput increment with MS&P.

In MS&P, since multiple segments are prefetched for
a stream, the next stream s, to be read from the disk
surface will be separated (in terms of data placement onto
disk) by stream s, , j < j previously read from the disk
surface, by as many streams as the number of prefetched
segments for 3,. This ensures that the scheduled requests
for the segments s, , j < k < i of the streams placed
between the two streams s , s , will be satisfied from
cache in time that a place i'n cache will be free for the
segments of the stream s , to be prefetched. (Recall that
the scheduler uses a SCAN policy).

When different levels of prefetches occur in MS&P, a
similar policy must be followed, but with two different
values of the number of skipped streams. One for each of
the two groups of streams that have the same number of
prefetched segments. In figure 4 the diagram of MS&P in
figure 3 is redrawn to exemplify this.

2.4 Group Periodic Multi-round Prefetching (GPMP)

Scheme GPMP introduces the concept of an epoch.
The time interval of an epoch (or vinual round) is defined

Figure 4: 2-way periodical MS&P

During a round of GPMP all streams will be served.
The key idea is that their segments do not have to be
retrieved during each round from the disk; some will be
found in the cache. Thus, during a round only a group
containing a fraction, v, of the streams supported will be
randomly retrieved while there will remain enough time
within the round for U prefetches for each stream to take
place. The letter U is used here for the number of
segments prefetched within the same stream.

In the next round, the segments that sustain the
playback of the next group, also containing v streams, will
be read from the disk surface along with the U prefetched
segments for each one of the v streams. All streams will be
served during each round because the N - v segments
that have not been retrieved from the disk during the
current round will be found in the cache, since they had
been prefetched in the previous rounds. The U prefetched
segments of a stream read during a given round will
sustain its playback from the cache for the next U rounds.

The epoch consists of (U + 1) rounds. During an
epoch a complete sweep of the disk is performed. From a
disk behavior point of view, GPMP with the epoch looks
like the Sweep scheme with a round duration equal to the
epoch, but the aggressive prefetching strategy proposed
results in a round whose duration is (U + 1) times shorter.
This strategy also incurs significantly lower memory
requirements.

The total number of streams supported under GPMP
is N = v x (U + 1) . Figure 5 demonstrates GPMP. The
maximum number of streams supported at U = 5 is 36.
(v = 6). Gradual Refetching strategies ensure that
during Round 1 in figure 5, the 30 streams not served from
disk have their segments already stored in the cache as a
result of prefetching during the previous rounds. More
specifically, as it is assumed that Round 1 corresponds to
the status of an instance of the server working at its

maximum throughput, each of the second group of 6
streams in the figure have 1 remaining segment in the
cache, each of the third group of 6 streams have 2
remaining segments in the cache, and so on.

Round 1 e e 5 e m 50000 00000 00000 00000 00000 00000 0
esmme e
m a e r n e e
m e I I e I
m 5 e m e I
m m e m m I

Round 2
ODOOO o e m m m ieooo noono noono nonno DOODO U

e I I 5 I 5
P l l I m e
5 B B I II
eeee I 5
e s m m eo

-3..6

n-m b
00000 00000 00000 00000 00000 00000 I I m e I 5

m 5 m m m I
I P I I I e
e m 5 e i e e
emieem I
mmmmm m

E3 -mmfiomar) 0 - w m m W . v

N = 3 4 . v = 6. U = 5. D = 30

Figure 5: Throughput increase with GPMP

3. Analysis

The parameters used for the analysis, are:
R: the duration of a round; It is constant.
N : the maximum number of streams that can be displayed.
B : the size of a continuous object segment.
p : the total number of prefetched segments.
v : the number of randomly retrieved segments.
U: the number of prefetched segments of the same stream.
Mem: the total size of required system's RAM memory.
dCache: the size of the required disk cache memory.
Transfer: the transfer rate of the disk (disk surface to
memory).
Display: the display rate of a stream.
pos(d): computes the positioning overhead (seek plus
rotation) of the disk head, given seek distance d.

3.1 Throughput Analysis

We will express the maximum throughput of Sweep
and the S&P family of techniques (except GPMP, since it
employs a constant round) as a function of R. The round
lasts as long as a single segment is displayed. That is:

During a round also, N segments are transferred from
disk (or disk cache) to main memory. The delays that each
segment experiences are the disk head positioning and disk
transfer time for Sweep. In the S&P family of algorithms,
only v segments meet these delays. The remaining p
segments are played directly from the cache at no time
overhead. The time that remains until the completion of
the round is used for prefetching p additional segments at
the overhead of the disk transfer time only.

SO3

In order to ensure continuous playback for all N
streams, the worst case positioning overhead must be
assumed (disk transfer times do not vary). The most time-
consuming sweep would include all N segments separated
by equal number of cylinders, or a seek distance of
pos(ToralCy1 / N). For convenience, this time is called
POS. The time needed for a segment to be transferred
from disk to memory is equal to Llllransjer. As we try
to accommodate as many streams as possible during a
round, we derive the following equations for R:

Sweep: R = N x (POS + %ram,,,) (2)

S ~ P family:’ R=VWOS +%ran~d+~x%ran* (3)

In the above equation, we assume that the internal
transfer rate is equal to Transfer.

The number of streams that are supported with S&P
algorithms are N,,, = V + p . For GPMP it becomes
N ~ , ~ ~ ~ = v x (U + l), but by setting p = v X U , the
previous relation can be used. It should be reminded here
that N is different for different schemes. Equation (3) can
be written as:

S&P family: R = N x v~ POS (4)

From the above equations we can solve for the size of
a segment B as a function of N for both schemes.

Sweep: N xPOSxDisplayxTransfer (5) B=
Transfer - N x Display

vxPOSx DisplqxTransJer
S&P family B = Transfer NxDisplay (6)

From equations (I) , (2) , and (4) as well as fiom the
relation i v s&p = v + p , we can solve for the maximum
throughput N supported from each scheme:

(7)
N x POS x Display x TransJer Sweep: B =

Transfer - N x Display

Sweep without these techniques, we would have to make
the segments larger and thus extend the round. This would
mean higher latency and higher memory requirements. We
can also see from equation (9) that the gain of S&P
algorithms over Sweep is p x P O S / R % . Please note that
the value of p is different for each of the algori,thms in the
S&P family, as discussed in sections 2.1, 2.2, and 2.3.

3.2 Analytical Results

The values of Transfer and POS used for the graphs
are different from those used in the examples in figures 1-
4. An up-to-date disk drive is assumed with average
transfer rate of 14 MB/sec and average positioning delay
of 1 1 msec [Il l .

In this evaluation, techniques Sweep and Fixed-
Stretch [11 are considered for comparison with the
techniques presented here. This is done because these are
representative of two opposite choices in the fundamental
tradeoffs: Sweep minimizes seek delays at high memory
requirements while Fixed-Stretch minimizes the memory
use at the worst seek overhead.

In figure 6, a throughput versus round duration graph
has been constructed for schemes Fixed-Stretch, Sweep,
S&P, and MS&P (for the last two schemes various cache
configurations are considered). The theoretical upper
bound of throughput achieved is 56 -- that is, the disk head
transfers all data at no positioning overhead. For Fixed-
Stretch, a worst case positioning overhead of 22 msec was
taken into account, while the other schemes assume an
average positioning delay of 8 msec. As it can be seen
from the graph, all schemes improve their performance by
increasing the duration of the round. This happens as the
segment size is proportionally increased resulting in a
higher ratio of transferring time to access time (greater
disk utilization). The throughput increase is slowed down
as the round duration continues, to increase, as the
positioning overheads are never eliminated. All schemes
converge for large round lengths, approaching marginally
the upper bound.

= v x POS x Display x Trader
S&P family Transfor - N x Disploy (8)

From the above equations we can derive the maximum
gains that we achieve with the S&P algorithms over
Sweep, for a given round R (or a given segment B):

(9)

We can see from the above equation that S&P
techniques can further increase the throughput (to an
amount tuned by p), while they keep R (and the segment
size) constant. If we wanted to increase the throughput of

* POS is a function of N and so varies for each scheme. However,
typical values of N result into slight differences in POS for the two
schemes; therefore, for simplicity, the same POS in calculations is used
for both schemes.

4 5 1 1 5 2 2 5 3 3 5 4 9
-4

504

It can be seen from figure 6 that the S&P family of
algorithms achieve significantly higher throughput than
Sweep and Fixed-Stretch especially for short rounds (that
also imply short star-up latency). For example, for a round
lengh of 500 msec, MS&P achieves a throughput gain of
50% over Sweep.

As the round increases, MSBP curves meet those of
S&P for the same cache sizes. This happens as the
segment sizes become large and there is not enough cache
for multiple round prefetches. Similarly, as the round
decreases, more segments can be prefetched and so S&P
does not fully exploit the disk cache.

In the next figure, curves of throughput versus
memory are shown (although the relevant analysis is
omitted for space reasons). GPMP was plotted assuming a
constant round of 200 msec. S&P algorithms outperform
Sweep and Fixed-Stretch. For GPMP, the memory savings
at high throughputs over Sweep are very significant (over
60%). This is explained as follows. In order for Sweep to
increase its throughput, it has to continuously increase the
round length. This is turn results in greater block sizes,
which increase the total memory requirements.

0 20 40 6) 80 im 1;o 140 16) 1m
~ m O r y (r n

Figure 7: Throughput versus Memory

4. Conclusions

We contributed the S&P technique, which is based on
prefetching blocks into disk and host-level caches and
improves the disk drive’s maximum throughput. The
Gradual Prefetching technique avoided the drawbacks of
triple-buffering in S&P. MS&P overcame the maximum
throughput upper bound of S&P by prefetching more CM
data blocks. The GPMP algorithm introduced a round
breakdown scheme and an efficient way of organizing
streams, which lead to even higher performance.

The central conclusions are that:
Our prefetching strategies introduce significantly
higher disk maximum, up to 60-70% when compared
to Sweep.
In addition, despite the additional disk cache utilized
by our strategies, the same investment in total RAM
(at the host andor the disk) for our strategies and

Sweep results in higher achievable maximum
throughput with our strategies.
Finally, the current technology trends suggest that for
future disk products our techniques will show even
better results. Transfer rates will continue to improve
at a much faster pace than seek delays and more
powerful controllers operating on even bigger
embedded caches will appear.
The performance of the proposed schemes was

studied through analysis. The validation of the
performance benefits claimed by the analysis came
through the implementation of the proposed algorithms
into a drive accurate simulation model. (The details have
been omitted for space reasons; please see [l I]). In the
future we plan to study the relationships between our
techniques and disk scheduling algorithms such as Fixed
Stretch [I] and GSS 1131.

References

[l] E. Chang and H. Garcia-Molina, “Effective Memory Use in a
Media Server (extended version)”, Stanford University, Tech.
Report SIDL-WP-1996-0050. (httD://www-diglib.stanford.edu).
[2] D.J. Gemmel, H.M. Vin, D.D. Kandlur, P.V. Rangan, and
L.A. Rowe, “Multimedia Storage Servers: A Tutorial”, IEEE
Computer, May 1995, pp.40-49.
[3] K. Keeton, D. A. Patterson, and J. Hellerstein, “A Case for
Intelligent Disks (DISKS)”, SIGMOD Record, vol. 27, no. 3,
August 1998.
[4] B. Ozden, R. Rastogi and A. Silberschatz, “Disk Striping in
Video Server Environments”, IEEE Intern. Conf. on Multimedia
Computing and Systems, June 1996.
[SI http: / /www. quantum. com/products/hdd/arlas-lOk.
[6] Y. Rombogiannakis, G. Nejes , P. Muth, M. Paterakis, P.
Triantafillou, and G. Weikum, “Disk Scheduling for Mixed-
Media Workloads in Multimedia Servers”, 6th ACM Multimedia
Conference, September 1998.
[7] E. Riedel, G. Gibson, and C. Faloutsos, “Active Storage for
Large-scale Data Mining and Multimedia Applications”, In Proc.
of Int. Conf. on VLDB, 1998.
[8] E. Riedel and G. Gibson, “Active Disks - Remote Execution
for Network-Attached Storage”, Tech. Report, CMU-CS-97-198.
191 P. Triantafillou and C. Faloutsos. “Overlay Striping and
Optimal Parallel YO in Modern Applications”, Parallel
Computing, March 1998, (24) pp 21-43.
[I O] P. Triantafillou and T. Papadakis, “On-demand Data
Elevation in Hierarchical Multimedia Storage Servers”, Proc.
231d Int. Conf. on VLDB, August 97,226-235.
[I 1 3 P. Triantafillou and S. Hanzopoulos, “Prefetching into
Smart-Disk Caches for f i g h Performance Media Servers”,
(extended version - available upon request).
[121 http://www.seagate.com/disk/cheetah.
[13] P.S. Yu, M.S. Chen and D.D. Kandlur. Grouped
sweeping scheduling for DASD-based multimedia storage
management ACM Multimedia Systems, l(3): 99-109,
1993.

505

http://www.seagate.com/disk/cheetah

