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Abstract 
This paper presents techniques, which exploit recent 

magnetic disk-drive technological developments (such as 
the existence of embedded drive-level caches and powerful 
controllers, and the ever-increasing transfer rates). It 
contributes prefetching techniques into host- and drive- 
level caches to improve the maximum number of 
continuous data streams that a drive can support. We 
show how our techniques can achieve significant 
pegormance improvements while guaranteeing the 
uninterrupted display of the continuous data. In addition, 
despite our techniques’ utilization of drive-level caches, 
the performance improvements do rwt come at the expense 
of additional cache memory (at the host andor  the drive). 
Given current technology trends, the benefits of our 
techniques are expected to become even greater. 

1. Introduction 

While many algorithms for retrieving continuous data 
from disks have been proposed, their performance is 
limited mainly by the disk access time which depends on 
mechanical movements and is not expected to improve 
rapidly. However, most vendors provide disks with an on- 
board cache and powerful controllers, whose exploitation 
can significantly decrease disk access times. 

1.1 Multimedia delivery overview 

In this study we focus on disk requests that occur 
from the playback of video and audio. These data must be 
retrieved from the secondary memory at a specific rate (or 
else “hiccups” or “glitches” occur). The usual model of a 
continuous media server involves the use of magnetic disk 
from where the requests are served. To ensure the 
continuous playback for a data stream, typically, a double 
buffer in a main memory cache is needed. The data read 
from disk fill one half of this buffer, while at the same 
time the data previously stored from disk into the other 
half of the buffer, are consumed (i.e., video plays). When 
the consumption of these data ends, a switch occurs; the 
full half of the buffer is used for playback and the empty 
one for storing. As multiple streams must be supported 
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concurrently, the media server typically services these 
streams in rounds. During a round one segment (block) for 
each stream is read and each block contains enough data to 
sustain the playback for the duration of the round [2]. 

1.2 Disk-related Technological Developments, Trends, 
and Research Opportunities. 

A critical development has been the incorporation of 
caches into disk drives. For example, modern drives [5,12] 
can be bought with up to 4MB of cache. The technology 
trends currently call for even higher-performance disk 
controllers (with performance similar to a >200 MHz 
Pentium) at year 2001. These “embedded CPUs” will have 
available an “embedded cache” with capacity 32-64MB. 

Another trend concerns the dramatic increase in the 
transfer rates of disk drives, owing mainly to dramatic 
improvements in the linear storage density and to speed- 
ups in the revolution speeds of drives. Transfer rates will 
near 30MB/s by year 2,000. However, the disk head’s 
positioning times will not keep pace. This suggests that 
clever prefetching strategies become even more important 
for improving the disk system’s performance. 

Because of the above trends, the concept of network 
attached storage devices (NASDs) receives increasingly 
greater attention by researchers and developers [3,7,8]. 
NASDs are storage devices with powerful controllers and 
large on-board caches, able to run streamlined versions of 
storage, file related, and network-related, software 
protocol stacks. Also, several efforts are exploiting these 
trends by enabling programs to run at the controller level 
increasing the performance offered to applications. 
Examples of such endeavors are the active disks and 
intelligent disks projects [3,7,8]. In the same spirit as these 
efforts in “smart disks” is the work in [6] in which special 
capabilities possessed by modern disk controllers were 
exploited to devise drastically more efficient scheduling 
algorithms for mixed-media workloads. 

1.3 The problem 

The techniques we present here aim to increase the 
disk drive’s performance for continuous media 
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applications. Our main performance metric is the 
maximum throughput achievable by a drive, defined as the 
maximum number of supported streams. The proposed 
algorithms exploit: (i) the predictability that media streams 
show, (ii) the drive-level and other higher-level caches, 
(iii) the powerful controllers which can process 
application-level information, and (iv) the faster pace of 
improvement of the transfer time versus that of the disk 
head positioning time. The proposed algorithms are based 
on prefetching strategies. 

Specifically, disk and higher-level caches will be 
used to prefetch continuous data segments (of one or more 
streams) that logically follow their display. Despite the 
significant portion of time that is lost during prefetching of 
large CM blocks, we show: First, how to utilize higher- 
level caches to avoid hiccups caused by the prefetching 
time overhead. Second, that the throughput is increased as 
the prefetched requests will be served from the disk’s 
cache, without the overhead needed for positioning onto 
disk, and third, that we can, at the same time, achieve 
lower total cache memory requirements. We have 
conducted analyses and experimentation, which testify for 
these benefits. 

We will concentrate on the performance of a single 
drive. We assume that each disk is logically divided in 
partitions. Each partition is a group of contiguous tracks. It 
stores a number of consecutive blocks of a continuous 
object. For example, if at most 20 videos can be retrieved 
by a disk’s bandwidth, given the size of each video 
(approx. 3GB for an MPEG-2 90-minute video) currently 
not all 20 videos can f i t  in a single disk. So we assume 20 
logical partitions, each storing a number of consecutive 
blocks of a video. We stress that this assumed placement is 
realistic. In a hierarchical multimedia storage server [I  01 
the next video’s batch of segments can be brought in time 
from tertiary storage. In disk array environments, using 
striping techniques like the ones suggested in [4,9] yields 
such a placement. Each disk can be assigned a consecutive 
portion of a video in a round-robin fashion. Each disk then 
stores a large number of contiguous video portions (e.g., 
containing tens of blocks), for a large number of videos 
(such as a few hundred videos). Our problem is to develop 
techniques, which increase the number of requests that 
each such disk can support. 

2. Proposed Algorithms 

Four new techniques for retrieving CM data from 
disks are presented. Data segments are prefetched into disk 
and host-level caches. The algorithms reduce the disk 
access overhead more than it is feasible with conventional 
policies, while avoiding glitches and reducing start-up 
latencies. 

2.1 The sweep & prefetch (S&P) technique 

Scheme Sweep is the well-known scheme that 
reduces disk seek overhead to improve throughput. 

During a round, Sweep reads each stream‘s next segment 
using SCAN. Double buffers in main memory are needed 
to avoid glitches. 

For a given duration of a round there is an upper 
bound in the number of streams, N, that can be supported 
by a disk. This number is mainly dependent on two 
parameters. The total positioning overhead (i.e., the time 
needed for the disk head to be positioned on the beginning 
of a segment) and the total transfer time (i.e., the time 
needed for the disk data to be transferred to main 
memory). Both of these delays are experienced when 
retrieving a data segment, which has not been prefetched 
and thus this retrieval will be called “random retrieval“. 
The number of segments retrieved this way in a round is 
denoted by the letter v .  On the other hand, if the disk head 
continues reading the following segment and stores it into 
the disk cache, this “prefetched” segment will be read at 
no positioning overhead. The number of prefetched 
segments in a round is denoted byp. 

At the end of the round, v streams will have been 
served (as “random retrievals”), while p segments will be 
in the cache. In the next round, those p segments will 
servep streams at no positioning overhead. Thus there will 
still be enough time to read from the disk surface a block 
for v streams and prefetch the next segments for p of these 
v streams. Because the p segments are read at no 
positioning overhead, the total number of supported 
streams (p+v is now greater. 

Figure 1 demonstrates S&P. A box refers to a video 
block. A box under another box stands for the next block - 
- contiguously placed on disk -- of the same stream. Two 
adjacent boxes in the same line stand for the blocks of two 
streams that will be scheduled within a round in the same 
order as they appear (i.e., in SCAN order). 

/ 
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[a) N = 2 5 , v = 2 0 , p = O  

’ We consider a disk drive with 10 MB/sec transfer rate and a seek and 
rotational overhead of 15 ms. Also we assume a constant display rate of 
2 Mbps and round length of 1 sec. Thus, the size of a segment will be 
250 KB. At most 25 segments can be retrieved within a round. while 
The ratio of randomly retrieved segments that can be “exchanged with 
prefetched segments, is 5 / 8 (40 ms and 25 ms retrieval times). 
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Figure ](a) introduces the maximum number of that 
can be supported with Sweep. Then, in Figure 1(b), the 
prefetching of 8 segments -- one for each of 8 streams -- is 
used to increase the number of streams from 25 to 28. In 
each round there are 20 random retrievals and 8 
prefetches. The reads from the disk cache to the host 
cache go on in pardlel to the disk accesses (p+.). In 
round 1, the last 5 streams are supported from an 
additional host-level cache. These streams will not suffer 
a glitch. When the requests for these 5 streams arrive, 
along with the first two blocks for each stream needed by 
the "double-buffering" scheme, the third block is deposited 
into the host's cache. The display of these 5 streams is 
delayed until all three blocks have been retrieved from the 
disk's surface. Thus, the host-level cache permits not to 
issue disk retrieval requests for these 5 streams in some 
round, without these streams experiencing any glitches. 
The host's extra buffer for this "triple buffering" is no 
longer needed after round 2 in Figure I(b). 

Scheme S&P can be fully parameterized with v and 
p ,  always at the expense of disk cache memory size. 
Figure 2 shows an alternative combination of values for v 
and p that results into higher throughput. By prefetching 
15 segments, the maximum throughput is increased from 
25 to 30. This is the upper bound of the maximum 
throughput that S&P can achieve in this example. In 
section 2.3 we will overcome this limitation. 

Figure 2: Further throughput increment 

2.2 Gradual Prefetching 

Scheme S&P, as presented in section 2.1, starts 
servicing the streams without prefetching until the 
maximum number of streams are served. Then it switches 
into the "prefetch" mode. However, it has the drawbacks 
of requiring three cache buffers for each stream, whose 
block will be "skipped" in some round and the associated 
extra start-up latency. 

In order to avoid these drawbacks, the S&P scheme 
can be used all the time. The number of streams that are 
prefetched at any time will be half of all streams 
supported. This implies that in every two newly admitted 
streams for one of them there will always be prefetching of 
its next segment. This mode will be called Gradual 
Prefetching. When the number of supported streams 
reaches the maximum, then the Gradual Prefetching 
Scheme behaves as the S&P scheme shown in Section 2.1. 
At this time, half of the streams will have their next blocks 
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already in the disk cache and so if they are skipped in the 
next round, these streams will not experience hiccups, 

2.3 Multi-Round Sweep & Prefetch (MS%P) 

Further increase in the maximum throughput is 
possible by prefetching more segments for some streams. 
Figure 3 demonstrates 2-level and 3-level prefetches. The 
throughput is increased from 25 to 34 at the expense of 
required cache size. Gradual prefetching can be applied to 
this scheme, once the depth of prefetching is known (this 
depends directly on p). Figure 3 shows that the hiccup-free 
display of all streams is ensured. But with MS&P, a 
technique ensuring that prefetches of different streams do 
not interfere, overwriting each other's cached blocks, is 
required. This technique, controlling for which streams 
prefetching is done, is shown in Figure 4. 
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Figure 3: Throughput increment with MS&P. 

In MS&P, since multiple segments are prefetched for 
a stream, the next stream s, to be read from the disk 
surface will be separated (in terms of data placement onto 
disk) by stream s, , j  < j previously read from the disk 
surface, by as many streams as the number of prefetched 
segments for 3,. This ensures that the scheduled requests 
for the segments s, , j < k < i of the streams placed 
between the two streams s , s , will be satisfied from 
cache in time that a place i'n cache will be free for the 
segments of the stream s ,  to be prefetched. (Recall that 
the scheduler uses a SCAN policy). 

When different levels of prefetches occur in MS&P, a 
similar policy must be followed, but with two different 
values of the number of skipped streams. One for each of 
the two groups of streams that have the same number of 
prefetched segments. In figure 4 the diagram of MS&P in 
figure 3 is redrawn to exemplify this. 

2.4 Group Periodic Multi-round Prefetching (GPMP) 

Scheme GPMP introduces the concept of an epoch. 
The time interval of an epoch (or vinual round) is defined 



Figure 4: 2-way periodical MS&P 

During a round of GPMP all streams will be served. 
The key idea is that their segments do not have to be 
retrieved during each round from the disk; some will be 
found in the cache. Thus, during a round only a group 
containing a fraction, v, of the streams supported will be 
randomly retrieved while there will remain enough time 
within the round for U prefetches for each stream to take 
place. The letter U is used here for the number of 
segments prefetched within the same stream. 

In the next round, the segments that sustain the 
playback of the next group, also containing v streams, will 
be read from the disk surface along with the U prefetched 
segments for each one of the v streams. All streams will be 
served during each round because the N - v segments 
that have not been retrieved from the disk during the 
current round will be found in the cache, since they had 
been prefetched in the previous rounds. The U prefetched 
segments of a stream read during a given round will 
sustain its playback from the cache for the next U rounds. 

The epoch consists of (U + 1) rounds. During an 
epoch a complete sweep of the disk is performed. From a 
disk behavior point of view, GPMP with the epoch looks 
like the Sweep scheme with a round duration equal to the 
epoch, but the aggressive prefetching strategy proposed 
results in a round whose duration is (U + 1) times shorter. 
This strategy also incurs significantly lower memory 
requirements. 

The total number of streams supported under GPMP 
is N = v x (U + 1) .  Figure 5 demonstrates GPMP. The 
maximum number of streams supported at U = 5 is 36. 
( v  = 6 ). Gradual Refetching strategies ensure that 
during Round 1 in figure 5,  the 30 streams not served from 
disk have their segments already stored in the cache as a 
result of prefetching during the previous rounds. More 
specifically, as it is assumed that Round 1 corresponds to 
the status of an instance of the server working at its 

maximum throughput, each of the second group of 6 
streams in the figure have 1 remaining segment in the 
cache, each of the third group of 6 streams have 2 
remaining segments in the cache, and so on. 
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Figure 5: Throughput increase with GPMP 

3. Analysis 

The parameters used for the analysis, are: 
R: the duration of a round; It is constant. 
N :  the maximum number of streams that can be displayed. 
B :  the size of a continuous object segment. 
p :  the total number of prefetched segments. 
v :  the number of randomly retrieved segments. 
U: the number of prefetched segments of the same stream. 
Mem: the total size of required system's RAM memory. 
dCache: the size of the required disk cache memory. 
Transfer: the transfer rate of the disk (disk surface to 
memory). 
Display: the display rate of a stream. 
pos(d): computes the positioning overhead (seek plus 
rotation) of the disk head, given seek distance d. 

3.1 Throughput Analysis 

We will express the maximum throughput of Sweep 
and the S&P family of techniques (except GPMP, since it 
employs a constant round) as a function of R. The round 
lasts as long as a single segment is displayed. That is: 

During a round also, N segments are transferred from 
disk (or disk cache) to main memory. The delays that each 
segment experiences are the disk head positioning and disk 
transfer time for Sweep. In the S&P family of algorithms, 
only v segments meet these delays. The remaining p 
segments are played directly from the cache at no time 
overhead. The time that remains until the completion of 
the round is used for prefetching p additional segments at 
the overhead of the disk transfer time only. 
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In order to ensure continuous playback for all N 
streams, the worst case positioning overhead must be 
assumed (disk transfer times do not vary). The most time- 
consuming sweep would include all N segments separated 
by equal number of cylinders, or a seek distance of 
pos(ToralCy1 / N). For convenience, this time is called 
POS. The time needed for a segment to be transferred 
from disk to memory is equal to Llllransjer. As we try 
to accommodate as many streams as possible during a 
round, we derive the following equations for R: 

Sweep: R = N x (POS + %ram,,,) (2) 

S ~ P  family:’ R=VWOS +%ran~d+~x%ran* (3) 

In the above equation, we assume that the internal 
transfer rate is equal to Transfer. 

The number of streams that are supported with S&P 
algorithms are N,,, = V  + p .  For GPMP it becomes 
N ~ , ~ ~ ~  = v x  (U + l),  but by setting p = v X U ,  the 
previous relation can be used. It should be reminded here 
that N is different for different schemes. Equation (3) can 
be written as: 

S&P family: R = N x v~ POS (4) 

From the above equations we can solve for the size of 
a segment B as a function of N for both schemes. 

Sweep: N xPOSxDisplayxTransfer ( 5 )  B= 
Transfer - N x Display 

vxPOSx DisplqxTransJer 
S&P family B =  Transfer NxDisplay (6) 

From equations ( I ) ,  (2) ,  and (4) as well as fiom the 
relation i v  s&p = v + p , we can solve for the maximum 
throughput N supported from each scheme: 

(7) 
N x POS x Display x TransJer Sweep: B = 

Transfer - N x Display 

Sweep without these techniques, we would have to make 
the segments larger and thus extend the round. This would 
mean higher latency and higher memory requirements. We 
can also see from equation (9) that the gain of S&P 
algorithms over Sweep is p x P O S / R % .  Please note that 
the value of p is different for each of the algori,thms in the 
S&P family, as discussed in sections 2.1, 2.2, and 2.3. 

3.2 Analytical Results 

The values of Transfer and POS used for the graphs 
are different from those used in the examples in figures 1-  
4. An up-to-date disk drive is assumed with average 
transfer rate of 14 MB/sec and average positioning delay 
of 1 1  msec [Il l .  

In this evaluation, techniques Sweep and Fixed- 
Stretch [ 11  are considered for comparison with the 
techniques presented here. This is done because these are 
representative of two opposite choices in the fundamental 
tradeoffs: Sweep minimizes seek delays at high memory 
requirements while Fixed-Stretch minimizes the memory 
use at the worst seek overhead. 

In figure 6, a throughput versus round duration graph 
has been constructed for schemes Fixed-Stretch, Sweep, 
S&P, and MS&P (for the last two schemes various cache 
configurations are considered). The theoretical upper 
bound of throughput achieved is 56 -- that is, the disk head 
transfers all data at no positioning overhead. For Fixed- 
Stretch, a worst case positioning overhead of 22 msec was 
taken into account, while the other schemes assume an 
average positioning delay of 8 msec. As it can be seen 
from the graph, all schemes improve their performance by 
increasing the duration of the round. This happens as the 
segment size is proportionally increased resulting in a 
higher ratio of transferring time to access time (greater 
disk utilization). The throughput increase is slowed down 
as the round duration continues, to increase, as the 
positioning overheads are never eliminated. All schemes 
converge for large round lengths, approaching marginally 
the upper bound. 

= v x POS x Display x Trader 
S&P family Transfor - N x Disploy (8) 

From the above equations we can derive the maximum 
gains that we achieve with the S&P algorithms over 
Sweep, for a given round R (or a given segment B): 

(9) 

We can see from the above equation that S&P 
techniques can further increase the throughput (to an 
amount tuned by p), while they keep R (and the segment 
size) constant. If we wanted to increase the throughput of 

* POS is a function of N and so varies for each scheme. However, 
typical values of N result into slight differences in POS for the two 
schemes; therefore, for simplicity, the same POS in calculations is used 
for both schemes. 

4 5 1 1 5 2 2 5 3 3 5 4 9  
-4 
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It can be seen from figure 6 that the S&P family of 
algorithms achieve significantly higher throughput than 
Sweep and Fixed-Stretch especially for short rounds (that 
also imply short star-up latency). For example, for a round 
lengh of 500 msec, MS&P achieves a throughput gain of 
50% over Sweep. 

As the round increases, MSBP curves meet those of 
S&P for the same cache sizes. This happens as the 
segment sizes become large and there is not enough cache 
for  multiple round prefetches. Similarly, as the round 
decreases, more segments can be prefetched and so S&P 
does not fully exploit the disk cache. 

In the next figure, curves of throughput versus 
memory are shown (although the relevant analysis is 
omitted for space reasons). GPMP was plotted assuming a 
constant round of 200 msec. S&P algorithms outperform 
Sweep and Fixed-Stretch. For GPMP, the memory savings 
at high throughputs over Sweep are very significant (over 
60%). This is explained as follows. In order for Sweep to 
increase its throughput, it has to continuously increase the 
round length. This is turn results in greater block sizes, 
which increase the total memory requirements. 

0 20 40 6) 80 im 1;o 140 16) 1m 
~ m O r y ( r n  

Figure 7: Throughput versus Memory 

4. Conclusions 

We contributed the S&P technique, which is based on 
prefetching blocks into disk and host-level caches and 
improves the disk drive’s maximum throughput. The 
Gradual Prefetching technique avoided the drawbacks of 
triple-buffering in S&P. MS&P overcame the maximum 
throughput upper bound of S&P by prefetching more CM 
data blocks. The GPMP algorithm introduced a round 
breakdown scheme and an efficient way of organizing 
streams, which lead to even higher performance. 

The central conclusions are that: 
Our prefetching strategies introduce significantly 
higher disk maximum, up to 60-70% when compared 
to Sweep. 
In addition, despite the additional disk cache utilized 
by our strategies, the same investment in total RAM 
(at the host andor the disk) for our strategies and 

Sweep results in higher achievable maximum 
throughput with our strategies. 
Finally, the current technology trends suggest that for 
future disk products our techniques will show even 
better results. Transfer rates will continue to improve 
at a much faster pace than seek delays and more 
powerful controllers operating on even bigger 
embedded caches will appear. 
The performance of the proposed schemes was 

studied through analysis. The validation of  the 
performance benefits claimed by the analysis came 
through the implementation of the proposed algorithms 
into a drive accurate simulation model. (The details have 
been omitted for space reasons; please see [l I]). In the 
future we plan to study the relationships between our 
techniques and disk scheduling algorithms such as Fixed 
Stretch [ I ]  and GSS 1131. 
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