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ABSTRACT
Rising energy costs in large data centers are driving an agenda for
energy-efficient computing. In this paper, we focus on the role
of database software in affecting, and, ultimately, improving the
energy efficiency of a server. We first characterize the power-use
profiles of database operators under different configuration param-
eters. We find that common database operations can exercise the
full dynamic power range of a server, and that the CPU power con-
sumption of different operators, for the same CPU utilization, can
differ by as much as 60%. We also find that for these operations
CPU power does not vary linearly with CPU utilization.
We then experiment with several classes of database systems

and storage managers, varying parameters that span from differ-
ent query plans to compression algorithms and from physical lay-
out to CPU frequency and operating system scheduling. Contrary
to what recent work has suggested, we find that within a single
node intended for use in scale-out (shared-nothing) architectures,
the most energy-efficient configuration is typically the highest per-
forming one. We explain under which circumstances this is not
the case, and argue that these circumstances do not warrant a retar-
geting of database system optimization goals. Further, our results
reveal opportunities for cross-node energy optimizations and point
out directions for new scale-out architectures.

Categories and Subject Descriptors
H.2.4 [DatabaseManagement]: Systems – query processing; H.3.4
[Information Storage and Retrieval]: Systems and Software –
performance evaluation (efficiency and effectiveness).

General Terms
Experimentation, Measurement, Performance.

1. INTRODUCTION
In the same way that performance has been central to systems

evaluation (e.g., measuring completed tasks per unit of time, or
Queries per Second), energy-efficiency (e.g., completed tasks per
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unit of energy, or Queries per Joule) is quickly growing in impor-
tance for minimizing IT costs. Most recent work in improving en-
ergy efficiency in large data centers is either hardware/platform-
oriented or workload-management oriented. In the database soft-
ware field, there have only been a few preliminary studies in this
direction [4, 8, 9, 11, 20]. Our aim is to better understand the
energy characteristics of database systems on modern hardware.
The focus of this paper is first assessing and then exploring ways

to improve the energy efficiency of a single-machine instance of a
database server, with standard server-grade hardware components,
running a wide spectrum of data management tasks. We focus on
the efficiency of a single node in a scale-out (shared-nothing) ar-
chitecture, a common building block for a variety of data analysis
systems, from Hadoop clusters to massively parallel databases.
Our main contributions are as follows:

• A detailed study of the power-performance profiles of core
database operators on modern scale-out hardware. To our
knowledge, ours is the first study to provide this characteri-
zation. Unlike in other contexts [15, 3], we found CPU power
does not vary linearly with CPU utilization, and utilization is
a poor proxy for CPU power. Surprisingly, we found that the
CPU power used by various operators can vary up to 60%,
even when they have the same utilization.

• A thorough investigation of the effects of both hardware and
software knobs on the energy efficiency of complex queries
in two widely used engines: PostgreSQL and System-X1.

• In almost all cases, we find that unlike what previous stud-
ies have suggested, the highest performing configuration is
the most energy-efficient. In the few cases where this does
not hold, the improvements in energy efficiency are less than
10%. This result is mainly due to the large, up-front power-
costs in current server components, as discussed in Section 5.

We purposely do not focus on techniques spanning multiple nodes
(e.g., resource consolidation in underutilized clusters [10]) or on al-
ternative energy-efficient hardware configurations (e.g., low-power
non-server grade components [1]). These two are promising direc-
tions that require extensive treatment, and in the last section of the
paper we speculate on how our results can be used towards these
explorations.

1.1 Where does power go?
To assess the opportunities for optimization, we start by mea-

suring the power of system components from idle to fully utilized.
Figure 1 shows the power break down (measurement details are in
1System-X is a popular commercial DBMS.
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Figure 1: Power breakdown of test machine.

Sections 2 and 3) of one configuration of our 8-core (dual-CPU) test
machine. An important factor for any study in energy efficiency is
the hardware setup used; Section 2 discusses hardware trends and
argues why this particular setup’s power profile is close to what we
expect to be a typical node in a cluster.
The right half of the pie-chart (grayed out) is the idle power con-

sumption and accounts for about half of the peak power. As the
breakdown shows, the three main components contributing to the
waste are the idle power of the two CPUs, the fixed power of RAM
and the rest of the system-board components. The idle power of the
HDDs is relatively small, and the consumption of the SSDs is close
to zero. The left half of the pie-chart shows the additional power
consumed when all CPUs and disks are fully utilized. The SSDs
and HDDs draw similar power, however, the dominant components
are the two CPUs (+ 112W). Next, we examine in more detail the
components that exhibit measurable dynamic power range, i.e., the
difference between idle and peak power.

1.2 Power use and resource utilization
The largest power consumer in our system are the CPUs. These

are two quad-core Intel Xeon E5430 CPUs (Harpertown) which
use aggressive power management techniques. To our knowledge,
there are no studies that show the CPU power use of database-like
operators in modern processors as the CPU utilization varies. The
literature provides several power models, however, as a recent study
shows [15], these models begin to break down in CPUs with shared
resources and aggressive power management techniques. Rather
than attempting to derive yet another power model, we focus on
computations, data access patterns, core and cache sharing pat-
terns, and data sizes that are directly relevant to database opera-
tors. To factor out overheads that a complete DBMS may carry, we
implement high-performance, micro-benchmark kernels for cache-
conscious hash joins and parallel sorting. For scan operators we use
an open-source minimum overhead row/column storage manager.
Figure 2 shows the total CPU power consumption for several op-

erators, as we vary the number of cores used, from 1 to 8 (each
core is 100% utilized, point 0 is the idle power). In this paper,
when we refer to CPU utilization, we mean the fraction of total
cores used since each of our micro-benchmark processes will fully
utilize a core from the OS perspective. Figure 2(a) corresponds
to a performance-oriented process scheduling policy whereas Fig-
ure 2(b) uses an energy-conserving policy (details are in Section 3).
Surprisingly, different operators can vary by more than 60% in

power consumption (e.g., sort and row-scan using two cores). Sec-
tion 3 explains this result and presents further details and perfor-
mance results with these micro-benchmarks. We also find that in
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Figure 2: CPU power vs. utilization for database operators.

SSDs, power-use is nearly proportional to utilization (Section 3),
something we were not able to find in the literature. These results
reveal opportunities for cross-node energy optimizations (e.g., the
last 30% of a node’s CPU computation capacity comes essentially
for free) and inefficiencies in server CPUs that new/alternative hard-
ware should address (e.g., need for smaller CPU caches). Section 5
discusses these and other implications in detail.

1.3 Affecting energy efficiency: what “knobs”?
We define energy efficiency as the ratio of useful work done to

the energy used, which is the same as the ratio of performance to
power:

EE =
Work done

Energy
=

Work done

Power×Time
=

Perf

Power
(1)

As database software is rich in tunable parameters, from system-
level constants to query planning and execution, and our exper-
iments so far point to several options that can affect power-use,
these parameters can potentially affect energy efficiency. The most
promising knobs are the ones that can directly trade CPU cycles
for disk access time since these are two resources with significantly
different power-use profiles. Such tradeoffs exist in access meth-
ods (sequential scans vs. clustered and non-clustered index scans),
column-oriented vs. row-oriented record access, compression tech-
niques (lightweight vs. heavyweight), and join algorithms (hash-
join or sort-merge vs. nested loop join). Recent work has specu-
lated that some of these knobs may be promising [4, 8], and others
have shown specific cases where energy efficiency is improved [11,
9, 20] at the expense of performance.
With all these available knobs at hand, we set to find regions

where performance may be sacrificed for energy efficiency. Such
tradeoffs would make the case for considering energy apart from
pure performance inside a modern, scale-out server node.
Note that, throughout the paper, we focus on operators and queries

that commonly appear in data analysis tasks and data warehous-
ing workloads. In online transaction processing (OLTP) workloads,
most of the software knobs we consider in this paper are not usually
applicable (e.g., long-running scans, joins, different query plans,
columnar storage, compression). Although our results do not di-
rectly apply, recent research shows [6] that modern OLTP appli-
cations can significantly improve transaction throughput, and thus
energy efficiency, by redesigning the entire OLTP engine, rather
than just tuning it.
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Figure 3: Energy efficiency vs. performance in System-X.

1.4 Energy efficiency vs. performance
To increase the generality of our results and ensure that we do

not miss out on opportunities for improving energy efficiency due
to system-specific limitations, we experimented with a total of five
systems/database kernels. We implemented two minimum over-
head kernels, one for performing parallel, cache-conscious hash
joins, and one for sorting, using Alphasort and a custom imple-
mentation of parallel merging. We then chose a high-performance,
open-source database storage engine that supports both column-
oriented and row-oriented database scans along with light-weight
compression [7]. Lastly, for full-fledged DBMSs, we chose a pop-
ular open-source DBMS (PostgreSQL) and a popular commercial
DBMS (System-X).
In the overwhelming majority of our experiments (we collected

over 1000 data points) we observe that, for any given database
task (from simple scans to multi-user query workloads), the most
energy-efficient configuration is the highest performing one. We
found isolated cases where small gains in energy efficiency can be
achieved by choosing a lower performing operating point. Even if
we were to assume a zero-power system board (to derive an upper
limit) these gains extend to only 10-12%.
Figure 3 shows the energy efficiencies of TPC-H query 5 in

a System-X database for 128 different configurations. Note, this
graph is a parametric graph in which both axes – energy efficiency
(y-axis) and performance (x-axis) — are dependent variables; they
both depend on the configuration. We see that energy efficiency
goes hand-in-hand with performance. As Section 4 discusses, there
is almost always a configuration that can further improve energy
efficiency by simply improving performance. Even for the points
near peak performance, their energy efficiency varies less than 10%.
Figure 4 shows microbenchmark results that are representative

of the picture we see repeatedly in our experiments. The left graph
shows the energy efficiency for a set of SSD disk-resident column-
store scans. Again, each point corresponds to a different configura-
tion (we varied number of CPUs, CPU frequency, and compression
algorithms). As before, the highest performing configuration is the
most energy efficient. The right graph isolates three points and
shows how the performance and energy efficiency change when
employing two different compression methods (“light” stands for
FOR and “heavy” for FOR-delta [7]). This is a case where energy
efficiency and performance improve at different rates. As a result,
if all components other than CPU and disks consumed zero power
(depicted as “energy efficiency for CPU only”–we discuss this in
Sections 4 and 5), we would have seen a small drop in energy ef-
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Figure 4: Scan results (including compression).

ficiency when switching from a “light” compression method to a
faster “heavy” one.

1.5 Analysis of results and implications
Our results come in direct contrast to recent work [8, 9, 20] that

has suggested that energy efficiency and performance are often two
different optimization goals. Taking a closer look at the results in
those papers we can see that the differences stem from computing
energy efficiency without taking into consideration the power of pe-
ripheral components and the idle power of the CPU. This is a result
of the fixed up-front power that most system components exhibit at
their lowest performance points, which we explain in Section 5.
Although our results seem to discourage any further software-

level energy reduction methods within a single-node DBMS, we
believe that they point to opportunities in (a) cross-node energy effi-
ciency techniques for co-locating computation and optimizing data
placement and movement, and (b) alternative single-node hardware
architectures that remove inefficiencies in current designs.

2. BACKGROUND ANDMOTIVATION
Energy efficiency of computing equipment in data centers is an

important concern for several reasons. First, powering and cooling
costs are starting to overtake the cost of hardware [5]. Second, in-
creased energy use has negative implications for density, reliability,
and scalability within a data center. Finally, increased data center
energy use has prompted environmental concerns leading govern-
ments across the world seeking to regulate enterprise IT power. For
these reasons, we are starting to see a shift in industry and research
towards optimizing for energy efficiency.
This shift is broad, ranging from chips to data-centers. Chip de-

signers have considered a variety of power-saving techniques such
as dynamic frequency and voltage scaling (DVFS), clock routing
optimization, asymmetric multi-cores, and so on. System archi-
tects have suggested strategies for dynamically managing DRAM
power states, disk speed control, or spinning down disks. We are
seeing new energy-efficient platform redesigns that meet the per-
formance SLAs of a small, but important class of workloads, e.g.,
web servers and data analysis [1, 5, 16]. Finally, recent work
proposes ensemble-level optimizations, for example, shifting work-
loads around for meeting power and temperature constraints or con-
solidation for improved energy use [19]. Going forward, data-
center architects are investigating holistic redesigns that treat the
data center as a single computer [3, 14].



Component Min (W) Max (W)
2xIntel Xeon E5430 Quad Core 2.66GHz 48W 160W

4x4GB FB-DIMMS (RAM) 40W 40W
4x300GB Seagate Savvio 10K.3 2.5” 14W 24W
4x64GB Intel X-25E 2.5” (SSD) 0.2W 10W

System board (remaining components) 54W 54W

Table 1: Configuration of our database server.

Towards this end, some are calling for energy proportional hard-
ware [2]. A perfectly proportional component uses no power when
not in use and only uses power in constant proportion to its per-
formance. Since energy efficiency is the ratio of performance to
power, energy-proportional hardware provides constant energy ef-
ficiency at all performance regimes. With such hardware, we need
not employ higher-level techniques to adjust for the most efficient
point. The hardware designers provide the best efficiency possible,
and the software designers continue to worry about performance.
Today, however, components are hardly energy proportional, but

their dynamic power range and proportionality are steadily improv-
ing. CPU vendors initially introduced low-power versions of their
processors for the mobile market. To improve proportionality for
server-class CPUs, vendors started to introduce increasingly finer
active and sleep power states. Commercial products already
include hooks to control power states of DRAM, and new mem-
ory controllers are on the way that dynamically adjust these states.
There are also new types of non-volatile memory around the corner
like PCRAM [12] and memristor [18], vying to replace DRAM al-
together. For drives, we see new drives with multiple spin rates as
well as lower power drives with more sleep states. Finally, SSDs
are on track to replace hard drives in contexts where capacity is
not the limiting factor. Our experiments later will show that these
drives exhibit near linear proportionality.
Using these newer components, we still are left with the question

of how to best assemble these into larger, energy-efficient systems.
There are two main approaches for building data-management ar-
chitectures: scale-up (shared memory and shared disk) and scale-
out (shared-nothing). The former has many connected components:
servers and disks, all managed as a single whole. For these, the
most energy-efficient approach involves choosing the right balance
of components for a task and powering down unneeded resources.
Today, however, we are limited to high-end, typically more power-
hungry components that are used in such architectures.
On the other hand, scale-out approaches involve picking the best

single node configuration and then connecting them via a scalable
network. This approach seems more amenable to energy efficiency
optimizations for data-centric workloads. We can pick from a va-
riety of components for more aggressive energy optimizations on
single node, and then horizontally scale the task to achieve needed
performance while maintaining the same energy efficiency. Other
projects like FAWN [1] and microslice servers [5] have taken this
approach but not for database workloads. Thus, in this paper, we
focus on understanding the power-performance tradeoffs for a sin-
gle database node in a scale-out setting. Others have started to look
at such architectures [9, 20], but those analyses fall short. They
neither provide a detailed study of database operators on modern
CPUs nor do they account for total system power.
Our current single node setup uses modern (as of 2009) CPUs,

DRAM, and SSDs. We chose this setup because it is inline with fu-
ture trends in components: the CPU has several active power states
and the SSDs are state-of-the-art. Moreover, the system is balanced
for performance; the disks when fully utilized can keep all the cores
busy on simple operations like sorting and hashing.

3. WHERE DOES POWER GO?
In this section, we analyze the power profiles of different hard-

ware components in the context of database operations. The goal is
to increase our understanding of how these operations affect power
consumption and, ultimately, to reveal the energy saving potential.
For that purpose, we designed a set of micro-benchmarks to exer-
cise the hardware components of a database server using typical
database-centric operations such as scans, joins, and sorts.
In this study we used an HP xw8600 workstation running a 64-bit

Fedora 4 Linux with kernel 2.6.29. The configuration of our server
is presented in Table 1. The system has two Intel Xeon E5430
2.66GHz quad core processors, for a total of 8 cores. Each pro-
cessor has an 32K L1 instruction and data cache, and two 6MB L2
caches shared by two cores.
In all of our experiments, we used a Brand Electronics 20-1850

CI to measure the total system power. This power meter has±1.5%
accuracy and collects readings once a second. To isolate the power
drawn by the SSDs, HDDs, and the CPUs, we attached a clamp me-
ter to the 5V and 12V lines to the components from the power sup-
ply. We used an ExtechMA120 200A AC/DCmini clamp-on meter
which had a resolution of 100mA and an accuracy of ±2.8%. By
multiplying the current measured with the line voltage, we derive
our power measurements. To increase the resolution of the clamp
meter, when possible, we wrap the 5V or 12V lines multiple times
around the clamp meter’s loop, and divide the measurement with
the number of loops. Throughout this paper, all reported power and
performance measurements are an average over multiple trials.
The last two columns in Table 1 denote the minimum and maxi-

mum power consumption of each component. To estimate the total
CPU power at load, we run a CPU-intensive computation with a
small memory footprint on each core, and attribute the increase
in system power from idle entirely to the CPU. Although memory
is responsible for 20% of idle power consumption (Figure 1, Sec-
tion 1), we were not able to measure noticeable variations in power
consumption using different workloads that varied the amount of
memory accessed and the access patterns applied (sequential vs
random memory accesses). Therefore, throughout this study, we
assume that the only way to vary memory power use is by physi-
cally removing memory modules.
All components other than CPUs, disks, and RAM, are repre-

sented as “system board” in Table 1 and collectively consume 54W
(again, we were not able to measure noticeable differences between
minimum and maximum power). While these components include
fans, the network card, the GPU, and the motherboard, the majority
of the power budget, according to manufacturer specs, is attributed
to the memory and IO controller units on the motherboard (we did
not exercise the full capabilities of the GPU as we were always re-
motely connected to the test machine). The total power consump-
tion of our system in idle state was measured at 156W .
Note that, from a power consumption perspective, we believe

our hardware setup closely approximates a node in production-use
scale-out architectures. We purposely configured the system with
16GB of RAM and not 32GB, as we only had available DIMMs of
4GB each; these DIMMs consume the same power as the more ex-
pensive 8GB ones, which would make it possible to have 32GB of
RAM at a 40W power budget for main memory. Next-generation
chip processes could easily double that amount for the same power
budget. Our 8 disks provide an aggregate of 1.5GB/sec bandwidth,
and adding four more SSDs could yield an additional 1GB/sec at
only a 3.5% increase in total server power.
For each row in Table 1, the difference between maximum and

minimum power consumption denotes the dynamic power range
(maximum increase in power consumption) attributed to a specific
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component. Note however, that dynamic power range does not nec-
essarily reveal opportunities for energy saving, it only indicates the
energy saving potential. In general, energy inefficiency stems from
systems’ poor energy proportionality, i.e., power use does not in-
crease in proportion with performance, which is due to the poor
proportionality of individual hardware components. In order to an-
alyze the energy efficiency of database systems, it is important to
study first how power consumption varies as a function of each
component’s utilization. Next, we examine in isolation the two
components that exhibit dynamic power range: disks and CPUs.

3.1 Disks
Our database server utilizes both enterprise hard drives (HDDs)

and solid state drives (SSDs). Unlike memory, these components
exhibit higher power variability, being responsible for 15% of total
active power. One common characteristic in both storage technolo-
gies is the existence of two operational states, idle and active, each
consuming a different amount of power. What is not clear from past
work is the energy proportionality (if any) of these devices while
executing database-centric operations.
To study the energy proportionality of SSDs and HDDs, we use

a minimum overhead row-store/column-store kernel [7] that emu-
lates a row-based or column-based database-storage engine and can
also perform simple predicate evaluation and aggregations. The
kernel utilizes direct IO to reduce the CPU overhead while access-
ing data blocks and asynchronous IO to improve device throughput.
To measure the power consumption of SSDs as a function of

device utilization, we configured these devices in RAID-0 (strip-
ing) and we used our kernel to read a 100GB file sequentially; the
block size was set at 128KB. Device utilization was computed as
the ratio of measured to maximum throughput. Predicates of in-
creasing complexity were progressively applied to introduce CPU
overhead that effectively reduced the throughput measured. Again,
we isolated SSD power using the clamp meter. In Figure 5, we
plot the power use of the four SSD devices as a function of device
utilization. As Figure 5 clearly demonstrates, SSDs exhibit perfect
energy proportionality; they consume almost nothing with no load
and exhibit linear power increases with additional load.
Figure 5 also shows the power profile of HDDs measured using

the same procedure. HDDs are clearly not energy proportional be-
cause they consume nearly half the power at idle state and approx-
imately 80% of maximum power when the device becomes active.
The initial power cost comes from spinning the disk platter, and we
speculate the second jump comes from exercising additional cir-
cuitry and caches. Thereafter, HDDs exhibit a linear increase with
utilization. As shown in previous work, the poor proportionality of
drives can significantly reduce energy efficiency, especially when
these devices are under-utilized [11].

3.2 CPUs
Interestingly, the CPUs are responsible for 85% of the power in-

crease at load in our system. Several power models have been pro-
posed that assume a linear correlation between CPU utilization and
power consumption [15]. However, linear models for total CPU
power are good approximations under very specific conditions: a)
operations are cpu-bound, b) there are no shared resources among
CPU cores, and c) no power management techniques are applied.
These conditions, however, do not hold for database operations

as these are not always CPU-bound. Additionally, in modern multi-
core CPUs the processing elements (cores) typically share several
resources such as part of the cache hierarchy and the memory bus.
Furthermore, hardware and software power management techniques
are commonly applied. Modern CPUs dynamically vary CPU fre-
quency depending on the workload applied. At the software level,
operating systems utilize energy-saving scheduling techniques that
minimize CPU power consumption.
Given the aforementioned conditions, it should come as no sur-

prise that linear power models do not accurately predict the power
use of modern CPUs running data management tasks [15]. Our goal
in this paper is not to develop a new power model for modern CPUs.
Instead, we are interested in understanding a) how CPU power is
affected by database operations and b) the efficacy of hardware and
software power management methods in this context. Towards that
goal, we developed a set of micro-benchmarks that perform three
classes of database operators, namely hashing, sorting, and scans.
The micro-benchmarks are designed to exercise all cores as well as
their shared resources, such as CPU cache and memory bus.

3.2.1 Micro-benchmarks
The first micro-benchmark is a custom join kernel that imple-

ments a CMP-adaptation of a cache-conscious hash join algorithm
[17] for computing the join of two memory-resident relations in
parallel. Like the grace hash join, our join kernel proceeds in three
steps: a) partitioning, b) build, and c) probe. In the partitioning
step, we divide the relations into partitions such that each build
partition with its hash index fits into L2 cache (3MB per core).
For each partition, we populate a hash index with the build tuples
and probe the index with the other relation. Each step is executed
in parallel by all cores via horizontal partitioning of the input rela-
tions and the intermediate partitions. The build relation holds 100K
tuples, and the probe relation holds 20M 100-byte tuples.
The second micro-benchmark consists of a sort kernel that im-

plements two in-memory parallel sorting algorithms tailored to CMP
architectures. Both sorting algorithms are cache-conscious variants
of AlphaSort [13]. The first variant, called AlphaSort-S, produces
cache-sized sorted runs in parallel and then merges these runs us-
ing a serial merging phase. The second variant, called AlphaSort-
P, applies a parallel merging phase. The main difference between
AlphaSort-S and AlphaSort-P is that the latter exercises all process-
ing elements throughout the entire execution of the sorting task.
The input to both sorts are 120M integers (480MB total).
Our last micro-benchmark for measuring CPU power is the scan

kernel used in Section 3.1. In this section, we use it to scan both
uncompressed rows in memory and compressed columns on disk.
To run these scans in parallel, we simply issue multiple simulta-
neous scans on different files. The row scan operates over 60M
32-byte rows (1.9 GB total, in-memory), and the column scan runs
over 60M 4-byte integers compressed using FOR-delta [7], for a
total 64MB on-disk. Each run includes multiple scan iterations (for
disk-resident files, direct IO ensures no Linux-cache buffering), to
allow our Watt meter to collect several measurements.
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3.2.2 Analyzing Power Consumption
In this section, we focus mainly on CPU power consumption of

the micro-benchmarks running under different scheduling strate-
gies and frequency settings. Section 4 examines energy efficiency
in greater detail. To show the effects of process scheduling, we try
two different policies: energy-efficient and performance-oriented.
The former is a policy in the latest Linux kernel that first co-locates
processes on one CPU before using the other to save power. The
latter is one we implement by spreading processes across CPUs
to maximize memory bandwidth. Figure 6 shows the difference
between energy-efficient (top) and performance-oriented (bottom)
scheduling on our CPUs. In all figures, the performance-oriented
policy is the default, and the energy-efficient policy is labeled.
Figure 2 (Section 1) shows the CPU power for our database op-

erators as we vary the number of cores used. In all cases, each core
was fully-utilized when used, and the server automatically adjusted
the frequency. Note the sudden power increases when cores 1 and 2
are used in the performance-oriented policy and when cores 1 and
5 are used in the energy-efficient policy. These are the fixed power
costs as the CPUs transition from idle states to active. Looking
closer at (b), we see that these up-front costs exist for all operators
but are much more pronounced for the row scan and hash join.
Although we cannot provide a conclusive explanation for this ef-

fect, using Intel’s Vtune performance profiling software, we found
that operators with those high up-front costs also exhibit higher
memory bus utilization. Figure 7 presents the bus utilization of
each operator as we vary the number of cores and the scheduling
policy. It shows discontinuities at the same points as Figure 2, and
the bus is nearly saturated once both CPUs are active for row scan
and hash join. We speculate that these operators activate and put
more stress on the memory subsystem of the CPU, leading to in-
creased power consumption.
These experiments lead to two important conclusions. First, CPU

power is not a linear function of the number of cores used (which is
what we mean by CPU utilization). Second, for a fixed configura-
tion (number of cores, scheduling policy), different operators may
differ significantly (60% in our experiment) in power consumption.
Thus, simple models based purely on utilization are not suitable for
predicting the CPU power, let alone system power, when running
database operators.
In the next set of experiments, we focus on the power consump-

tion of each individual operator, starting with the join kernel. We
experimented with different number of cores, scheduling policies,
and CPU frequencies. Our CPU can operate at two frequencies:
2GHz and 2.6GHz, which we manually adjusted and fixed for these
experiments. Figure 8 shows the power profiles of the hash join
as we varied these parameters. It also shows the same hash join
but with a larger build relation of 20M tuples (640 MB), causing
each partition to be larger than the L2 cache (non-cache conscious).
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Figure 7: Memory bus utilization of different operators.

This case simulates both a non-cache conscious hash join and an
in-memory random index scan. Note, unlike the previous graphs,
these are parametric graphs in which both axes depend on the inde-
pendent variable, number of cores used. The performance (x-axis)
is the inverse of the runtime.
There are some interesting effects to note. First, the curves are

all concave down (bend down) except when the energy efficient
policy activates the second CPU. This is because once one core on
one of our CPUs is used, all cores on that CPU transition from
idle to active power states. In addition, the CPU activates and
exercises other needed shared components like caches and mem-
ory interfaces. Thus, we see large power increases when a CPU
becomes active, and additional performance comes at little added
power cost. Second, lower frequency uses less power but also runs
slower, which does not translate into much higher efficiencies as
we show later in Section 4. Third, for the non-cache conscious
join, the power use is lower for the high frequency curve compared
to the cache-conscious join, but the low frequency curves are in a
similar power range. This suggests that the cores on the non-cache
conscious join are probably stalled on the cache and thus cannot
effectively use the additional cycles at high frequencies.
Figure 9 shows our experiments with the sort kernel. We omit

the graphs with energy efficient scheduling as it did not make much
of a difference. AlphaSort-P exhibits an almost-linear increase in
power consumption as performance increases. On the other hand,
AlphaSort-S consumes comparatively less power because whenmore
cores are used, the fraction of time spent on the serial phase in-
creases, and so most of the cores remain underutilized. In both
cases, the lower frequency does not make a significant enough dif-
ference in power to justify the decreased performance.
Figure 10 shows the same experiments for the scan operators.

We see that in-memory row scan has a highly non-linear profile,
with several performance points overlapping with each other, un-
like any other operator. For clarity we only plot results for the two
scheduling policies under high frequency; the low frequency results
have a similar shape, shifted towards left and down. This graph now
fully explains the power-use profile of in-memory row scan: For
performance-oriented CPU scheduling (solid square points, “Hi-
freq”), going from one to two parallel scans (1 core to 2 cores in
two different CPUs) doubles performance with a large increase in
power (40W , which is comparable to the 44W increase from idle
to 1 core). The next two points offer smaller increases in perfor-
mance and power, as the memory bus to each CPU becomes the
bottleneck. With four parallel scans, the memory bus in both CPUs
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saturates and additional scans offer no increases in performance or
power (hence the overlap of all solid square points for 4,5,6,7, and
8 cores). With energy-efficient scheduling (empty square points,
“Hi-freq EE-sched”) the point overlap comes early, for 2,3, and 4
cores, as all these scans share the memory bus of the same CPU.
For 5 cores there is again a jump in CPU power as the second CPU
(and its memory bus) are activated. Subsequent small increases in
performance, when close to peak power, are due to the fact we mea-
sure average scan completion time, and some scans finish earlier in
the case of EE-scheduling.

Note that hash joins, like row scans, also highly utilize the mem-
ory bus (Figure 7), but are able to continue increasing performance
with each additional core used, as each core can work on a cache-
resident data set. Compressed disk-resident column scans (right
part of Figure 10) behave like the sorts, again with the scheduling
policy not making much difference. These scans are not bound
by the memory bus (they hardly saturate the I/O bus on the four
SSDs) as they require more CPU cycles for each byte read (due to
both columnar storage and compression). Once again, though, in
all scan cases the best performing high-frequency point is the most
energy efficient.

4. ENERGY VS PERFORMANCE
In this section, we take a more holistic approach and study how

hardware and software “knobs” affect the energy efficiency of data-
base workloads. Towards that goal, we not only revisit our micro-
benchmarks from an energy efficiency perspective, but also exper-
iment with a variety of queries on full-fledged database engines:
PostgreSQL and commercial System-X.
Although database systems are notorious for the plethora of con-

figurable parameters that they support, in this section, we select
those that potentially have the greatest impact on energy efficiency.
In particular, we vary the following database-level “knobs”: a)
algorithm/plan selection, b) intra-operator parallelism (# of cores
running a single operator), c) inter-query parallelism (# of indepen-
dent queries running in parallel), d) physical layout (row vs column
scans), e) storage layout (striping), and f) choice of storage medium
(HDD vs. SDD). We also vary the platform-level knobs from be-
fore: scheduling policies and frequency settings.

4.1 Algorithm/Plan Selection
Recent work has suggested that to find plans that achieve im-

proved energy efficiency, we will need to redesign optimizers to
model energy costs and re-target their plan selection criteria [8, 9].
In this section, we test this assumption by measuring the energy
efficiency of a wide range of queries that exercise all components
of a database server. We use two popular, feature-rich databases:
PostgreSQL, an open-source engine, and System-X, a commercial
product. These engines implement a wide selection of query eval-
uation algorithms and utilize a cost-based optimizer. Additionally,
they provide interfaces or “hints” for influencing choices during
query optimization. After running many complex queries includ-
ing those from the TPC-H benchmark, we present a sample of the
results that summarize our most important findings.

4.1.1 Access Methods
Access methods are the fundamental building blocks of every

query plan, and, in many cases, they determine the performance
of a query. So naturally, we start by studying how different ac-
cess methods affect energy efficiency. We measured the perfor-
mance and energy efficiency of a single (non-parallelized) scan
query: “select * from LINEITEM where L ORDERKEY< value”.
Throughout this paper, we ran all queries over TPC-H tables against
a 10GB TPC-H database. We ran this query using different selec-
tivities, access methods (index scan, sequential scan) and storage
configurations on both systems. We tried six storage configura-
tions, listed in order of increasing sequential bandwidth: HDD-1,
HDD-2, SSD-1, SSD-2, HDD-4, SSD-4, where the number indi-
cates the number of drives in RAID-0 (striping).
Figure 11 presents the energy efficiency and performance of the

scan query running in PostgreSQL. Note, this again is a parametric
graph in which the axes depend on the storage configuration and
access method. The left and right graphs show the results for se-
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Figure 11: Performance and energy-efficiency of access meth-
ods in PostgreSQL.
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lectivities 10% and 100%, respectively. These graphs clearly show
that energy efficiency and performance are linearly correlated. This
happens because the dynamic power range among these points is
small, only 19% of the minimum 165W . Thus, power remains
relatively constant and energy efficiency varies directly with per-
formance. Interestingly, this graph shows isolated cases that devi-
ate from this relationship. For example, consider the second and
third best performing points in the right graph, corresponding to
sequential scans on HDD-4 and SSD-2, respectively. HDD-4 pro-
vides marginally better bandwidth, but uses 7W more power. The
net effect is that the additional power is not worth the bandwidth
gains. Nonetheless, the overall efficiency gains are small, less than
6%. We saw similar results for this query in System-X.

4.1.2 Compression
Figure 4(b) from Section 1 shows the energy efficiency of our

scan kernel running disk-resident column scans using different lev-
els of compression. Again, we see that when we consider total
power, better performance implies better efficiency. If, however,
we consider only CPU and disk power, the added power from heavy
compression is not worth the performance benefit, though the effi-
ciency gains for the slower algorithm are small.

4.1.3 Join Algorithms
Since joins are one of the central operations in database systems,

we next study the efficiency of different join algorithms. To do so,
we issued the following (non-parallelized) equi-join query: “select
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Figure 13: Performance and energy efficiency of different
query plans for executing TPC-H Q5 on System-X.

* from LINEITEM, ORDERS where L ORDERKEY=O ORDERKEY
and L ORDERKEY< k”. We used k to control the join selectivity.
We ran this query on both systems using different selectivities, join
algorithms (sort merge and hash join), and hardware configurations
(CPU frequency, storage system).
Figure 12 shows the energy efficiency and performance of these

experiments in PostgreSQL for 10% selectivity. Once again we
see a linear relationship because the dynamic power range among
these configurations is small, only 14% of the minimum (169W )
of these. These results are consistent across different selectivities
and database engines. Although deviations from the monotonic re-
lationship between performance and energy efficiency exist (e.g.,
see circle in Figure 12), the difference in efficiency is less than 4%.

4.1.4 Complex Queries and Join Orderings
Given that we saw strong linear relationships for access meth-

ods and joins, we hypothesized that more complex queries with
different join orders would exhibit the same behavior. To test this
assumption, we considered TPC-H Q5 which is a complex five-way
join query with sorting and aggregation. We ran this single (non-
parallel) query on PostgreSQL and System-X and varied CPU fre-
quency, storage layout (HDD-2, HDD-4, SSD-4), and join orders.
Figure 13 shows, as expected, a linear relationship for System X.
All points with the same shape are different join orders for a par-
ticular hardware setting. Again, the dynamic power range among
all these configurations was small, 13% of the minimum 174W .
PostgreSQL showed similar results.
For all non-parallel queries (single process using only one core),

variations in CPU power from different single core utilizations com-
bined with variations in storage power do not move the needle com-
pared to the fixed system power costs. These results suggest that in
this case, there is no need to change the optimizer.

4.2 Intra-operator Parallelism
With the advent of chip multiprocessors, there has been a contin-

uous effort to leverage on-chip parallelism in order to improve the
performance of computationally intensive tasks. In this context,
several database operators have been optimized for CMP architec-
tures. Utilizing more cores typically improves the performance of a
database operator, but it also increases power consumption. Hence,
we next examine the energy efficiency of intra-operator parallelism
in the context of CMPs. To do so, we revisit the parallel micro-
benchmarks presented in Section 3 from an energy efficiency per-
spective.
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Figure 14: Energy efficiency vs. performance for parallel in-memory hash join, as the number of CPU cores used varies from 1 to 8.
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Figure 15: Energy efficiency of parallel in-memory sorting.

4.2.1 Parallel hash join
Figure 14 shows the energy efficiency and performance of our

cache-conscious hash join as we varied the number of cores used.
The left and right graphs compute energy efficiency using only the
CPU power and total system power, respectively. The right graph
shows a strong linear correlation between energy efficiency and
performance, and for points near any given performance level, the
efficiency hardly varies.
The left graph shows the energy efficiency curve that only in-

cludes CPU power. Again, we see a slightly weaker, but still linear
relationship. Also, even though the best performing is not quite the
most efficient, the difference is small (see top circle). The other cir-
cle shows the points where the energy efficient scheduling moves
from using one CPU to two (4 cores to 5). Although performance
improves in this case, energy efficiency remains the same because
the added power of the other CPU cancels out the performance ben-
efits.

4.2.2 Parallel Sorts
In the previous experiment, our join kernel was able to utilize all

cores for the entire execution, but this is not always the case. Se-
rial computation and load balancing issues may underutilize CMPs.
To understand the energy efficiency implications for these cases,
we revisit the parallel sort micro-benchmarks from Section 3. Fig-
ure 15 shows the energy efficiency and performance of AlphaSort-S
and AlphaSort-P, the serial and parallel merge versions of the sort
kernel. Although AlphaSort-S uses less power than AlphaSort-P,
it also further underutilizes the CPU as the number of cores in-
creases, which wastes power and leads to much worse energy effi-
ciency. This experiment shows that to reach maximum efficiency,
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Figure 16: Parallel scan queries in PostgreSQL.

we not only should optimize for performance on a single core, but
also optimize for performance by fully utilizing all cores.
Although all these parallel operators show roughly the same en-

ergy efficiency-performance behavior as the non-parallel ones, their
dynamic power range is large, nearly 92W . This is 60% of system
idle power and 191% of CPU idle power. We initially expected
large dynamic range to allow opportunities for trading energy ef-
ficiency for performance. Section 5 explains, however, that we
see the same behavior because of the concave down nature of the
power-performance curves (see Figures 8 and 9) as well as the
fixed power costs. For such curves, the relative performance in-
creases are worth the added relative power, so energy efficiency
improves with performance.

4.3 Inter-Query Parallelism
In all the previous sections, we studied energy efficiency during

the execution of a single query. However, database systems com-
monly execute multiple queries at the same time. In this section
we study how energy efficiency is affected as we increase the con-
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Figure 17: Performance and energy-efficiency of parallel TPC-
H Q12 queries in System-X.

currency (# of queries running parallel) in the system. Initially, we
consider simple scan queries that mainly exercise I/O and the mem-
ory sub-system, and then we progressively examine more complex
queries that stress all the components of a database server.
We first study the effects of running multiple scan queries con-

currently. Figure 4(a) from Section 1 shows the energy efficiency
and performance of our compressed column scan kernel from Sec-
tion 3 on four SSDs. In this experiment, we varied the frequency,
compression method, and number of simultaneous scans from 1-
8 (i.e., number of cores used). Once again, we see a linear en-
ergy efficiency-performance relationship even though the dynamic
power range is large.
We next ran many concurrent PostgreSQL scan queries from

Section 4.1.1 under various hardware and software configurations.
Figure 16 presents the most interesting results. It shows the per-
formance and energy efficiency of a main-memory clustered index
scan (top) and an unclustered index scan on 4 SSDs (bottom). In
both cases, we see that at a certain concurrency level (8 for clus-
tered, and 16 for unclustered) the throughput peaks and then drops
because we reach the capacity of the database software. Once
again, energy efficiency, whether including CPU power only or to-
tal power, basically follows performance. Note, for the main mem-
ory scan, the energy efficiency peaks at slightly higher concurrency
when considering CPU power only, but the difference is small.
Finally, to understand the energy efficiency of concurrent com-

plex queries running on our system, we ran two TPC-H queries,
Q12 and Q5 on System X. The former is a single join query with
aggregation, and we ran it under various concurrency levels (1-
64), storage layouts, and frequencies. Figure 17 shows the results
for 1% and 10% selectivity. Apart from a few deviations, we see
the same linear relationship between energy efficiency and perfor-
mance.
Figure 3 from Section 1 shows the results for Q5 as we varied fre-

quency, CPU scheduling, storage layout (in memory, SSD4,HDD2,
HDD4), and number of cores used (1-8). We again see a strong
correlation between energy efficiency and performance. Although
near peak performance we see some variation in energy efficien-
cies, the spread is small, less than 10%.
To summarize, regardless of query complexity and what knobs

we use, i.e., access methods, operator algorithms, and type and
level of parallelism, energy efficiency and performance go hand
in hand.
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Figure 18: Recalculating energy efficiencies in two hypothetical
scenarios.

5. ANALYSIS AND IMPLICATIONS
Although Section 3 showed that power-use profiles vary signifi-

cantly from operator to operator, Sections 1 and 4 showed that re-
gardless of the configuration and execution strategy the most energy-
efficient operating points were also the best performing. These re-
sults contradict the recent speculation about the need and oppor-
tunity for DBMS software to optimize for energy efficiency apart
from performance [4, 8], and also contradict recent work that agrees
with this speculation [9, 11, 20].
In this section, we explain these disagreements by understand-

ing the conditions under which energy efficiency is optimal and
contrast our results with past work in this light. Although our
conclusion implies that software-level knob tuning specifically to
improve energy efficiency within a single node is not useful, we
discuss new challenging single-node problems and promising di-
rections for multi-node techniques.

5.1 The balance of power and performance
Recall from equation 1 that energy efficiency, defined as the ratio

of useful work done to the energy used, is equivalent to the ratio
of performance to power. As we add system components one at a
time, or use more resources, both the power and performance of the
system change. Total power increases, and we expect performance
to also improve. At any point, energy efficiency improves when the
relative improvement of performance is greater than the relative
increase of power:

Δ Perf

Perf
>

Δ Power

Power
(2)

When the two sides are equal, we have a balance of the relative im-
provements of each, and thus maintain the same efficiency. When
the relation reverses, we are in a region of decreasing efficiency —
a region of diminishing returns. That is, the increased performance
from the additional resource does not justify its power cost.
In our system, there are two main reasons for why the most ef-

ficient configuration was typically the best performing. First, as
Figure 1 shows, almost 50% of peak power is consumed at idle.
This fixed power cost adds a large constant term to the denomina-
tor in equations (1) and (2) which makes all subsequent relative
power increases worth the added performance, especially when the
dynamic power range is small.
Although significant, idle power is not the sole cause. Figure 18(a)

recalculates the energy efficiency of System-X from Figure 3, this



time discounting system board power-use. Even in this case, the
opportunities for affecting the energy efficiency are small. Fig-
ure 18(b) shows the efficiencies using only “active power,” that is
by subtracting out all idle power. Even in this unrealistic case,
although the points are more dispersed, the spread in energy effi-
ciency among the best performing points is only 30%. Section 4
also shows similar results when only considering CPU power.
The second reason for this effect is the shape of the power- per-

formance curves for these workloads. Rearranging the terms in the
above equation helps explain why:

1

EE
=

Power

Perf
>

Δ Power

Δ Perf
. (3)

The left hand side (inverse of energy efficiency) is the slope of the
line from the origin to the current point (configuration) on a power-
performance curve. The right hand side is the “tangent” slope, the
slope of the line from the current point to the next point that reflects
the added resource. It tells whether the curve bends down, remains
steady, or bends up. When the curve is concave down (bends down)
or remains steady (linear with non-zero power intercept), the tan-
gent slope is smaller, thus, increasing energy efficiency. But, when
the power-performance curve is concave up (bends up), there is an
optimal balanced efficiency point after which the tangent slope is
larger, thus decreasing energy efficiency.
The power-performance curves in Section 3 of our components

are all concave down or steady. The CPU profiles are concave
down, especially in the cases of poorly scheduled joins and row
scans. This concavity occurs because once the CPUs are active,
they activate all cores simultaneously and other resources. As a re-
sult, the power “jumps” with each activated CPU and the remaining
power increments are smaller. Combining these profiles with pro-
portional SSD profiles still results in concave down profiles. Thus,
we find for all our workloads, the most efficient configurations are
also the best performing.
Examining two recent efforts that argue for energy efficiency op-

timizations [9, 20], we see that the analyses are based either on
CPU-power only or on the system’s “active power.” In the former,
the margin of improvements is greatly reduced by factoring in the
power costs of all components. The effect is even more pronounced
in the latter because all fixed costs are omitted.
Lastly, the authors in [11] experimented with a large shared-

memory production server running TPC-H. The improvements in
energy efficiency came when they removed up to four fifths of their
200+ HDDs. Their power-performance curve as the number of
disks varied was concave up. We suspect that as disks were added,
average disk utilization dropped leading to only marginal improve-
ments in performance. Meanwhile, each disk contributed a fixed
power cost, and after a point, the added performance was not worth
it. In contrast, all fixed power costs were upfront in our system, not
as additional resources were used. We speculate that if that shared
memory system had used SSDs, the energy proportionality of SSDs
would have enabled them to avoid these inefficiencies, and it too
would exhibit maximum energy efficiency at best performance.

5.2 Implications for database computing

5.2.1 One (hardware) size fits all?
Although the notion of “one-size-does-not-fit-all” in database

software design is steadily gaining acceptance, it comes as a sur-
prise that server hardware designs show a striking adherence to the
one-size-fits-all philosophy. The last significant change in data-
management server architecture was the shift to shared-nothing clus-
ters, largely motivated by price-performance considerations. For

modern internet-scale applications, scaling out by orders of magni-
tude is significantly cheaper than scaling up a large SMP server.
Energy costs, however, have the potential to be the catalyst to-

wards yet another turn in hardware design of large-scale platforms.
Recent work [1, 16] has demonstrated that, for random retrieval
and data analysis application, significantly different node architec-
tures would be better from a power-performance perspective. If
indeed we are heading towards a collection of heterogeneous nodes
in a data center, each cluster optimized for specific classes of ap-
plications, then what characteristics should these nodes have for
database applications? We believe this is a promising direction for
future work. Based on the results from Section 3 we can add the
following to the list of desired characteristics:
(a) CPUs: high-parallelism, low-frequency, small caches, sim-

pler designs. Database systems are already well-equipped to han-
dle available hardware parallelism. Since CPUs pay a high start-
up power cost, after which, each additional active core comes at
smaller relative increases in power, database-optimized architec-
tures should leverage high levels of parallelism within and across
CPUs. Although in our experiments lowering the CPU frequency
did not improve energy efficiency, it did not worsen it either. This
is important, because a lower operating frequency can reduce the
fixed CPU power cost, which may allow for more energy trade-
offs.Lastly, database operators do not always need the CPU cache
(or they can be made to work with smaller caches). Therefore, sim-
pler CPU designs with fewer levels in the memory hierarchy may
lead to more efficient designs for database workloads.
(b) Solid state storage. SSDs (and we expect any other upcom-

ing electronic non-volatile storage technology) are already close to
ideal energy proportionality, as we saw in Section 3. Therefore any
energy-efficient node architecture should be based on SSDs and
not on mechanical HDDs which necessarily carry a fixed power
cost (due to disk spinning). Since we expect HDDs to remain for at
least a few years the cheapest option for raw storage capacity, it will
be important to focus on techniques that reduce storage require-
ments to lower the initial investment in solid state storage. Example
of such techniques are: compression (even lossy), de-duplication,
giving up meta-data storage structures, and storing data summaries
instead of exact data.

5.2.2 Shared-nothing, everything, or in-between?
Since we have shown limited opportunity for software-based en-

ergy optimizations within a node, we look to the multi-node case.
There are two traditional designs to consider: shared nothing and
shared disk. A promising research direction is to consider energy
optimizations across an entire cluster. Clusters provide extreme
scalability. They are, however, often over-provisioned for most
tasks, and resources go unused wasting power [3]. Unfortunately,
data availability is important, and in a shared nothing environment
storage and computing power are coupled. We must find a way
to turn off nodes and still maintain data access when the cluster is
underutilized. Physical design, replication, hardware-level mecha-
nisms, and data movement are all ripe for investigation. Although
current ongoing work in this area considers physical design [10],
little work considers dynamic data movement. Databases can eas-
ily reassign work among nodes, but the cost of moving data around
may exceed the gain in energy by suspending nodes.
An alternative is to use a shared disk design, which decouples

storage from compute. If equipped with SSDs, the storage system
becomes more energy proportional, and what remains is affecting
compute energy proportionality through consolidation [19]. Our
experiments show that operators like hash join can force a CPU to
consume power disproportionately to its utilization, so consolida-
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Figure 19: Performance of different configurations of Q5 when
power target is set below 200W.

tion would help to avoid waste power. To enable this, we would
need accurate models for predicting power consumption. Finally,
since shared disk is limited in scalability but can offer simplified
energy management, a hybrid approach with clusters of shared disk
systems might prove to be the most practical.

5.2.3 Controlling peak power
Another important consideration in data centers is peak power

consumption. Racks, especially older ones, have limited capac-
ity to deliver power and, when overdrawn, can cause fuses to trip.
Peak power use can also increase temperature beyond the capacity
to cool or significantly increase the cost of the cooling. As a result,
data centers often need to enforce power budgets and rely on coor-
dinated controllers at all levels from the rack to the node to enforce
them [14]. At the node level, hardware mechanisms can regulate
power quickly, but have little insight into application performance.
A challenging problem is for database software to tune execu-

tion to work within a target power envelope while still maximizing
performance. Figure 19 re-plots the points from the various con-
figurations for Q5 on System-X, this time by showing only con-
figurations that consume power just below 200W. Although any of
those configurations lies within the target for power consumption,
performance can vary up to 4x. Using software mechanisms to cap
power consumption while maximizing performance shows promis-
ing potential for future research.

6. CONCLUSIONS
In this paper, we study the power-performance characteristics of

various database analytic workloads on a modern server intended
for scale-out architectures. We are first to detail the power pro-
file of core database operations like scans, hash joins, and sorts.
Our results show that the CPU power used by different operators
can vary widely, by up 60% for the same CPU utilization, and that
CPU power is not linear with utilization. We also experiment with
two widely deployed database systems, PostgreSQL and a popular
commercial DBMS, varying both software and hardware knobs to
understand their energy efficiency effects. In most of our experi-
ments, we found that the best performing configuration was also
the most energy efficient. In the few cases where this did not hold,
energy efficiency did not improve by more than 10%. This rela-
tionship is a result of large up-front power costs in modern server
components. Our investigations, however, do point to two promis-
ing directions for energy efficiency improvements: resource con-
solidation across underutilized nodes to save power without sac-
rificing performance, and alternative energy-efficient hardware to
lower fixed-power costs.
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