A Case for Micro-Cellstores: Energy-Efficient Data
Management on Recycled Smartphones:

Stavros Harizopoulos
HP Labs
Palo Alto, CA, USA
stavros@hp.com

ABSTRACT

Increased energy costs and concerns for sustainability make
the following question more relevant than ever: can we turn
old or unused computing equipment into cost- and energy-
efficient modules that can be readily repurposed? We be-
lieve the answer is yes, and our proposal is to turn unused
smartphones into micro-data center composable modules. In
this paper, we introduce the concept of a Micro-Cellstore
(MCS), a stand-alone data-appliance housing dozens of re-
cycled smartphones. Through detailed power and perfor-
mance measurements on a Linux-based current-generation
smartphone, we assess the potential of MCSs as a data man-
agement platform. In this paper we focus on scan-based par-
titionable workloads. We show that smartphones are overall
more energy efficient than recently proposed low-power al-
ternatives, based on an initial evaluation over a wide range
of single-node database scan workloads, and that the gains
become more significant when operating on narrow tuples
(i.e., column-stores, or compressed row-stores). Our initial
results are very encouraging, showing efficiency gains of up
to 6%, and indicate several promising future directions.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION

Modern smartphones have the computational power of a
5-year-old PC, but at a fraction of the size and energy con-
sumption (110x smaller volume than a standard 1U server,
and 200x less peak power). More than 1 billion cellphones
are shipped yearly; in 2010, according to IDC, over 300 mil-
lion of those were smartphones (a 74.4% increase over 2009).
Smartphones have a typical consumer refresh cycle of two to
three years. Over the next few years, we expect a total of
one billion smartphones to become obsolete; the aggregate

*The views contained herein are the authors’ only and do not
necessarily reflect the views of Hewlett-Packard or Google.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DaMoN 2011

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

POWER —*

Spiros Papadimitriou
Google Research
Mountain View, CA, USA
spapadim@gmail.com

computational power of these phones is similar to that of
all 500 top supercomputers in the world combined—but at
a fraction of their energy needs. How can this power be
harnessed?

A place where cost- and energy-efficient computing units
could be utilized at large numbers is a modern data center.
Data center operating costs are characterized by a continu-
ously growing energy cost component [5, 2]. Power and cool-
ing costs are soon expected to surpass the (amortized) cost of
purchasing servers. Demand for new and bigger data centers
is on the rise, fueled by both consumer and enterprise appli-
cations. However, could a significantly underpowered device
support applications that typically run on high-end servers?
In this paper, we argue that for certain classes of enterprise
data management problems, such as data warehousing and
analytics, there are several emerging trends that lend them-
selves to a micro-data center design based on underpowered
hardware (also known as “wimpy nodes” in the literature [3]).
These trends are (a) MPP-style processing (massively par-
allel processing), (b) column-oriented and compressed data
which ease pressure on the memory/network buses, and (c)
offering reliability through replication instead of expensive
hardware solutions.

Our proposal is to repurpose old or unused smartphones
and use them to assemble units, called Micro-Cellstores, that
contain dozens of interconnected smartphones which collec-
tively act as a data-appliance mini-cluster. A concept dia-

SHIELD

MICRO-USB DOCK

ETHERNET
——

ROUTER
EXTERNAL STORAGE

POWER SUPPLY
MCS UNIT
Figure 1: Micro-Cellstore Architecture.

gram of a Micro-Cellstore is shown in Figure 1. There are
several interesting questions around architecting and manu-
facturing Micro-Cellstores that are beyond the scope of this
paper, such as: What are viable methods for networking?
How can batteries and power management features be lever-
aged? What is the right ratio of phones, routers/hubs, and
external storage? Is cooling a problem?

Our focus in this paper is exploring the types of data
management workloads that can be efficiently supported by
MCS units, and compare the energy-efficiency of appliances
based on smartphones (ultra-wimpy nodes) against other
low-power alternatives. Our contributions are the following:

e Detailed power-profile characterization of a modern
smartphone (Nexus S, released in Q4 2010).

e Power efficiency measurements for partitionable, scan-
intensive database workloads on smartphones and two
types of wimpy platforms.

e Introducing the case for Micro-Cellstores (MCS).

The rest of the paper is organized as follows. In Section 2 we
cover related work, including recent proposals for “wimpy”
architectures. Section 3 motivates Micro-Cellstores and Sec-
tion 4 details the characteristics of modern smartphones.
Section 5 carries out our benchmarking and analysis of var-
ious single-node, scan-based database workloads. We con-
clude in Section 6.

2. RELATED WORK

Energy concerns are important enough to often dictate
where data centers are built. A growing number of efforts
to improve the energy efficiency of clusters and data centers
include holistic redesigns that treat a data center as a sin-
gle computer [4, 16], cluster workload consolidation to meet
power constraints and reduce energy requirements [15, 13,
12], and considerations of low-power architectures [3, 19]. In
this section we briefly discuss recent efforts in improving the
energy efficiency of database applications.

Energy efficiency in databases. Traditionally, database
systems have been optimized for performance, ignoring power-
related costs. However, the proliferation of scale-out archi-
tectures has forced data management systems to consider
energy as equally important to performance. Early research
studies argued for the redesign of several key components
such as the query optimizer, the workload manager, the
scheduler and the physical database design [7, 11, 9, 20].
Many of these suggestions assumed that, like cars, computer
systems had different optimal performance and energy effi-
ciency points. However, a subsequent detailed study on the
energy efficiency of a single database server [18] found that,
because of the start-up power draw, the highest perform-
ing configuration was also the most energy efficient. That
study did not consider multi-node configurations or low-
power hardware. In this paper, we investigate the latter.

Non-server architectures. In an effort to improve the en-
ergy efficiency of clusters, a number of studies have also
considered the use of low-power “wimpy” nodes consisting of
low-power storage (SSDs) and processors (mobile CPUs) [3,
19, 14, 17]. Primarily, these designs target computationally
“simple” data processing tasks that are extremely partition-
able, such as key-value workloads [3]. For such workloads,

wimpy clusters were shown to be more energy efficient com-
pared to traditional clusters built using more power-hungry
server nodes. However, this result may not hold in scenarios
such as database workloads which often exhibit sub-linear
scale-up characteristics, especially when full cluster cost is
considered [14].

Our work in this paper can be viewed as in the same cate-
gory as the above-mentioned wimpy-node architectures. To
our knowledge, we are the first to characterize the energy-
efficieny of modern smartphones when running database-
style tasks. Throughout this paper, we define energy effi-
ciency of a workload as the ratio of the query completion
rate (e.g., scans per hour) to the average power consumed
by the system.

3. A CASE FOR MICRO-CELLSTORES

There are three main emerging trends in enterprise data
management that lend themselves to a micro-data center
design based on underpowered hardware:

e Massively Parallel Processing (MPP): Parallel DBMSs
typically adopt the shared-nothing paradigm for scal-
ing out (rather than scaling up) to deal with increas-
ingly larger data volumes. For queries that scale lin-
early with the number of nodes in a cluster, an under-
powered cluster could reach acceptable performance
levels by using more nodes.

e Column-oriented and highly compressed data: Column-
stores have emerged as the prevalent architecture for
high-performance data management. Operating on
columnar, highly compressed data eases pressure on
the memory and network/IO buses (which are typi-
cally under-specced in a smartphone, due to concerns
over manufacturing cost).

e Reliability through replication: Modern systems in-
creasingly rely on replication for providing reliability,
rather than on expensive hardware-based solutions.
Such techniques are particularly suitable for smart-
phones which do not compare well to server-grade com-
ponents with respect to reliability.

Furthermore, recent work has demonstrated running MapRe-
duce jobs on a network of smartphones [6]. Micro-Cellstores
are inspired by the above observations, combined with the
expected abundance of used smartphones in the future (as
explained in the introduction).

In the concept of Figure 1, the proposed housing struc-
ture contains standardized micro-USB connectors and, pos-
sibly, WiF1i routers for connectivity. We also expect that
there will be some form of storage directly connected to the
router /hub. Furthermore, batteries may be leveraged in in-
teresting ways, e.g., to provide uninterrupted operation even
under intermittent power availability, to charge during off-
peak hours at possibly cheaper rates, or to smooth out the
cluster’s power profile. Studying the tradeoffs between the
different types of networking, deciding the best use for ex-
ternal storage, and exploring ways to harness the batteries
are beyond the scope of this paper.

We expect MCSs based on cheaply acquired, used smart-
phones to be environmentally sustainable, minimizing total
exergy cost. While our primary metric for efficiency in this
paper is power consumption, it should be noted that cost-
efficiency may have a favorable impact on our proposal, since

Year Model CPU RAM Storage (int./ext.) WiFi

1996 Nokia 9000 33MHz AMD Elan x486 2MB 6MB

2002 Sony P800 156MHz ARM9 ? 16MB -

Q2 2007 iPhone 412MHz' ARM 128MB 4,8, or 16GB b/g
Q4 2008 HTC Dream 528MHz MSM7201A (ARM11) 192MB 256MB / microSD b/g
Q2 2009 iPhone 3GS 600MHz* S5PC100 (Cortex-A8) 256MB 8,16, or 32GB b/g
Q4 2009 Motorola Droid 550MHz? OMAP3430 (Cortex-A8) 256MB 512MB / microSD b/g
Q1 2010 Nexus One 1GHz QSD8250 (Snapdragon) 512MB 512MB / microSD b/g/n
Q2 2010 iPhone 4 1GHz* Apple A4 (Cortex-A8) 512Mb 16 or 32GB b/g/n
Q4 2010 Nexus S 1GHz S5PC110 (Hummingbird) 512MB 16GB iNAND b/g/n
Q1 2011 HTC Thunderbolt 1GHz MSMS8655 (Snapdragon) 768MB 8GB / microSD b/g/n
Q2 2011 Droid Bionic 1GHz dual-core Tegra 2 512MB 2GB / microSD b/g/n
Q2 2011 Galaxy S 1T 1GHz dual-core Exynos412 or Tegra 2 1GB 16 or 32GB a/b/g/n

Table 1: Smartphone model feature summary.

smartphones would be otherwise discarded. A broader goal Smartphone characteristics
of this paper is to increase awareness of environmentally B MHz [RAM (ME)
sustainable solutions for computing infrastructures, and the 2000 .

MCS concept is aimed towards that end. The rest of the
paper focuses on specific aspects of the suitability of MCSs

(which consist of ultra-wimpy nodes) for database work- 1500
loads.
1000 =
4. MODERN SMARTPHONES
]
Although the concept of what we today recognize as a . °
“smartphone” is almost two decades old [1], until very re- 500 o'
cently the dominating characteristic of a “smartphone” was e .\'
the “phone.” Functionality was rather rudimentary and com- o e &
puting power was limited. The fairly recent explosion in the 0 s
1995 2000 2005 2010 2015

availability of reasonably fast wireless data networks has
spurred demand for more capable computing devices, and Year
vice versa, creating a virtuous cycle.

Figure 2: Smartphone clock speed and RAM over
The current concept of a smartphone as an always-connected

computing device that runs sophisticated applications was time.

brought into the mainstream by the Apple iPhone, which

was released four years ago. Since then, new, more power- e CPU frequency scaling statistics, by polling /sys/devi-
ful models are constantly introduced. Table 1 summarizes ces/.../time_in_state.

some key features of various smartphone models. Especially e Network connectivity changes, by listening for CONNEC-
during the past two years, the smartphone space has wit- TIVITY_ACTION broadcast events.

nessed exponential growth. Both CPU clock speeds and
RAM capacity have roughly doubled in that time. Figure 2
illustrates the clock and memory trends over time.

In 2011, several companies are expected to introduce smart- e Screen usage statistics, by listening for SCREEN_ON and
phones with dual-core CPUs. Furthermore, this trend does SCREEN_OFF broadcast events.
not show signs of slowing down. The ARM Cortex-A9 core
design, on which these planned devices are based, supports
up to four cores on the same chip and clock speeds up to
2GHz. Furthermore, since they are aimed at mobile devices,
these designs focus on maintaining power consumption char-
acteristics while increasing performance. Therefore, power
efficiency should increase even further over time.

e Network traffic statistics per interface, by polling /proc-
/net/dev (120 second interval, by default).

Each logger is a separate component (Android service) that
can be turned off when not needed. For each experiment,
we only collect the statistics we need. Furthermore, we ran
the device with logging fully enabled and compared baseline
power consumption (see below) with logging fully disabled,
and saw no measurable effect.

Log events are queued in memory and flushed to phone
4.1 Experimental methodology storage in batches (user parameter, typically 20 events).
Statistics collected through broadcast event receivers are
“pushed” only when something changes. For polled statistics
we used Android alarm APIs. We kept logging to the mini-
mum necessary and verified that it has no measurable effect
on power consumption by comparing battery level drop with
e Battery statistics, including battery level (%) and volt- logging on and off, over a period of several hours.

age, by listening for BATTERY_CHANGED broadcast events. During each experiment we acquired a partial wakelock,
e CPU load statistics, by polling /proc/stat at a user which prevents the CPU from sleeping (otherwise the O/S

specified interval (by default 60 seconds). may power down the CPU when there is no user interaction,

We collected measurements on a Samsung/Google Nexus
S smartphone, running Android 2.3.3 (GRI40, with Linux
kernel 2.6.35). We wrote logging software that records the
following;:

even if processes are running). Beyond that, we kept the
screen off, disabled all radios (cellular, WiFi, Bluetooth, and
GPS) by setting the phone in airplane mode, and disabled
all background services. Finally, before each run we charged
the battery normally (i.e., no bump charging).

Since measuring battery capacity is difficult without spe-
cialized equipment, we used a fresh battery for our experi-
ments. We converted ampere-hours to watt-hours using av-
erage voltage (time-weighted) during each experiment, based
on battery voltage sensor values (typical range was 4 +
0.03V). Android reports battery levels as integer percent-
ages of capacity. On the Nexus S, a 1% drop corresponds to
15mAh or about 60mWh. We ensured that each experiment
ran for at least one hour (much longer for idle power mea-
surements), which implies an error of at most 10% (typical
experiment power consumption was 0.7-1.2W).

The Hummingbird CPU in Nexus S uses dynamic fre-
quency scaling (DVFS), supporting clock rates of 100, 200,
400, 800MHz and 1GHz. Effective clock rates were esti-
mated by averaging frequencies, weighted by the fraction
of time spent at each frequency based on O/S statistics in
/sys. All experiments reported in this paper are with DVFS
turned on, using the ondemand governor. This configuration
is the most power-efficient overall. For CPU-bound work-
loads, the clock was indeed at or near its maximum. How-
ever, for disk-bound workloads, we observed that the O/S
successfully scaled the CPU down to the minimum frequency
that can handle the load (details ommited for space).

4.2 Characteristics

Table 2 summarizes some characteristic performance num-
bers for Nexus S. Sequential read bandwidths were mea-
sured by repeatedly reading a large enough array or file.
Peak CPU power consumption was estimated at full load
and 1GHz. Main memory and external storage bandwidths
(361 and 25 MiB/s) are comparable to those of a mid-grade
laptop (571 and 33 MiB/s; Intel SU9400 1.4GHz CPU and
500GB, 5400RPM drive). However, power consumption is
an order of magnitude smaller (SU9400 TDP is 10W).

Description Value
Memory read rate 361.9+57.8 MiB/s
Storage read rate 24.8+1.7 MiB/s
USB transfer rate ~ 13.3+0.8 MiB/s
CPU peak power 1090 £+ 80 mW

Table 2: Nexus S characteristics.

We observed that CPU power consumption is effectively
proportional to clock frequency [21] over a wide range of
clock speeds. Figure 3 shows average power consumption
versus effective clock frequency, with everything except the
CPU turned off. Because the intercept is non-zero, power
efficiency (mW/MHz) increases with clock rate.

S. ANALYSIS

Our goal in this section is to explore which types of data
management workloads are best suited for MCS units, and
compare the power consumption of smartphones to that of
other, energy-efficient architectures, when running a range
of parameterized workloads.

In previous work [18] we showed that, for a single-node
DBMS server, the most energy-efficient configuration is typ-

Average power vs. average clock

1200 -~ ;
3 s

1000
%i

800 + 1
+

600 -

mWatt

—8—

400

200 +

0 T T T T 1
0 200 400 600 800 1000
MHz

Figure 3: Averge clock frequency vs. power con-
sumption.

ically the fastest one. In follow-up work-in-progress [10] we
found that the same holds for low-power non-server archi-
tectures, such as laptops and desktops, and that laptops
can be more energy efficient than servers for several types of
database engine operations, such as scans, sorts, and joins.
Therefore, for the purposes of this paper, we only compare
against two energy-efficient platforms: a mini-desktop and
a laptop with an Ultra Low Voltage (ULV) processor.

In Section 5.1 we discuss what data management work-
loads are a natural fit for MCS units; in Section 5.2 we
present the experimental setup and our results. We offer
implications of our results in the concluding section.

5.1 Workload suitability for MCS

Low-power (or “wimpy”) architectures trade single-node
computational speed for higher energy efficiency. Compared
to a server node, a task will run significantly slower on a
wimpy node, but it will also consume much less energy. To
make up for slower individual nodes, wimpy archictectures
are typically positioned to run scale-out software infrastruc-
ture, with many more nodes than a server-based installation.
For throughput-intensive tasks that can scale linearly with
node count, this strategy is a win. Using more wimpy nodes
increases total throughput, without changing energy effi-
ciency (power and performance increase at the same rate).
That result was also verified experimentally [19].

Recent work, however, pointed out that several complex
parallel DBMS workloads exhibit sub-linear scalability, and
therefore the energy efficiency of wimpy-node architectures
may degrade as node count increases [14]. That analysis
used total cost for purchasing and operating servers over a
period of several years and showed that server-based clusters
can be more cost-efficient than wimpy clusters, depending
on the complexity of the workload. In our context, the final
cost of an MCS unit is not clear, as it will depend on whether
recycled phones come with a price tag. Thus, we compare
only operating costs, i.e., energy efficiency.

The performance and power characterization of Nexus S
from the previous section pointed that, while smartphones
are extremely low-power devices, disk and network I/O speed
as well as RAM size can be up to two orders of magnitude
less than servers, or one order of magnitude less than pre-
viously proposed wimpy architectures. Therefore, we are
interested in workloads with the following properties:

e Partitionable across a large number of nodes.

e Minimal network transfer.

g 300 Wide row-store scan ® Mac Mini

g 250 - ULV Laptop

2 200 - Nexus S - Disk

Q 150 -

& o0 -

)

5 50 -

g [] = _
Out_of—t“e’box paster \/ 0\:_\len faster \“ﬁmow«es\de“‘

Figure 4: Energy consumption per GB (lower is bet-
ter), for a wide-tuple scan on four different configu-
rations (Nexus S always operates on disk data).

e Favor increased CPU processing cycles per byte read
from disk.

e Do not require large in-memory structures.

Workloads that have the above properties include database
scans that may be followed by additional (partitionable) op-
erations (such as filtering, projection, aggregation) and cer-
tain types of joins that can run in a single-pass and involve
small network transfers (e.g., when the inner table shuffled
across all nodes also includes a highly selective predicate).
In the rest of this paper, we focus on database scans with-
out network transfers, with varying tuple widths (covering
row/column-stores with lightweight compression), and with
varying degree of CPU processing per tuple.

5.2 Experimental setup and results

We used the database storage manager developed in [8]
to run a series of database scans. This is a block-iterator
engine that can operate on both row- and column-oriented
data. We ran the same C++ code on all three platforms.
On Android we used the Native Development Kit (NDK,
release R5b). We experimented with the LINEITEM table
from TPC-H, using the same simplifications as in [8].

We compare Nexus S to two low-power systems: a 2010
Apple Mac Mini and an HP Compaq 2710p Tablet lap-
top. The Mac Mini features an Intel Core 2 Duo processor,
whereas the HP Laptop features an Ultra Low Voltage ver-
sion of the same processor. Both systems have 2GB RAM
and relatively slow disks: a 40MB/sec SATAII HDD in the
Mac Mini and a 80 MB/sec PATA SSD in the HP Laptop (we
also report projected results based on faster disks). Table 3
summarizes configuration and power consumption details for
all three systems. “Idle” is the power consumption at zero
load. For the Mac Mini and the Laptop we used a Brand
Electronics 20-1850 CI to measure total system power. This
power meter has +1.5% accuracy and collects readings once
a second. Each experiment was repeated multiple times to
get stable power measurements.

System CPU (cores) Power Disk

Mac Mini 2.4GHz (2) 7.1W — 26.8W 41MB/sec
Laptop 1.2GHz (2) 11.1W - 23.7W 78MB/sec
Nexus S 1GHz (1) 0.2W — 1.17TW 25MB/sec

Table 3: CPU specs and idle/peak power consump-
tion of tested systems.

In our first experiment, we used all systems in an out-of-
the-box configuration, to scan LINEITEM from disk, using a

7 60 Memory-resident workload,
3 variable CPU ops per tuple ~ _--"_,
= 40 w2z
3 S o
EJ_ _m " _-~="" - a--Nexus S - Disk
-7 e -
5207 2t e - @ -ULV Laptop
o & - - 4--Mac Mini
S o P - @ -Nexus S
0 20 40 60

Floating point ops per tuple (wide row-store)

Figure 5: Energy consumption per GB (lower is bet-
ter), for increasingly compute-intensive scans.

row-store representation (tuple width is fixed at 144 bytes).
The results are in Figure 4 (leftmost part). This figure shows
energy per GByte of data read (lower is better) for four dif-
ferent configurations of the two Intel systems. The righmost
configuration corresponds to the same scan when the table
fits entirely in memory, whereas for the two middle config-
urations we recompute the consumed energy assuming two
faster disks: one with 250MB/sec bandwidth and one with
500MB/sec. For the Nexus S we always show the energy
consumption for disk-resident data.

Figure 4 shows that Nexus S consumes significantly less
energy than the wimpy platforms for a row-store wide-tuple
scan in an out-of-the-box configuration. The Mac Mini and
ULV Laptop perform very poorly because they have fairly
slow disks (thus running time is high) while paying a sub-
stantial up-front penalty for idle power (for example, the
Mac Mini operates at 9.9-11.4W out of a 7.1-26.8W range).
However, under more realistic assumptions about typical
disk configurations, the wimpy nodes become competitive.
When the wimpy platforms operate on memory-resident data,
they consume less energy than Nexus S reading from disk.

For the remaining experiments we always show main-mem-
ory measurements for the two Intel systems, as the best-case
scenario for those systems.

Next, we keep the tuple width the same, but experiment
with increased number of computations per tuple. Figure 5
shows energy per GByte of data read (lower is better) for
varying computation intensity. For this experiment we mod-
ified the code, by injecting a number of floating point oper-
ations to emulate worst-case processing for each tuple (e.g.,
complex analytic workloads). Data set size and tuple width
are fixed for all runs. For the Nexus S we show both disk-
and memory-resident performance.

As Figure 5 shows, the Nexus S consumes less energy than
the other two systems when operating on memory-resident
data. However, the gap closes when there are tens of float-
ing operations executed in-between tuple reads. The en-
ergy consumption of Nexus S on disk-resident data converges
slowly to the consumption with memory-resident data. In
this experiment we wanted to show a large range of possible
operations (typical per-tuple transformations correspond to
a few floating operations).

In our last experiment, we compare energy efficiency when
evaluating a single predicate using four different table stor-
age representations: wide row-store (144 bytes), narrow row-
store (32 bytes), wide column-store (8 bytes), and narrow
column-store (1 byte). In all cases we use data from LINEITEM
to create various projections of different width. The narrow

> Energy Efficiency (higher is better):
$ 15 . fromwide rows to narrow columns
= B Mac Mini
> 1 4 W ULV Laptop
o Nexus S
S 05 -
0 W= - . l
o144 cow(32) co\umr\@ co\Umnm

Figure 6: Energy efficiency (higher is better) for
varying tuple widths and storage formats.

versions of the row and column tuples are also represen-
tative of compressed versions of the original tuples, as the
additional overhead of lightweight compression is small [8].
Because we do not know how memory capacities will evolve,
we compare the best-case scenario for the two Intel systems
(memory-resident data) with the worst-case scenario for the
Nexus S (disk-resident data); for memory-resident data, the
efficiency of the Nexus S increases further by 1.2-2.6x.

Figure 6 shows the results. This time we compute the
overall energy efficiency (higher is better) on the y-axis.
While the two Intel systems always operate close to maxi-
mum CPU utilization, the Nexus S starts as disk-bound (for
row-144) and becomes cpu-bound after row-32. For column-
store scans, the Nexus S is significantly more energy-efficient
than the other two systems—up to 6%, despite operating on
disk-resident data. In accordance to [18], all systems become
more efficient as they ran faster.

6. CONCLUSIONS

In this paper, we introduced the concept of a Micro-Cell-
store (MCS) unit, a data appliance consisting of recycled
smartphones. Through detailed power and performance mea-
surements on a Linux-based current-generation smartphone,
we assesed the potential of modern smartphones as a build-
ing unit for energy-efficient database appliances. Our results
confirm that smartphones are overall a more energy efficient
alternative, and further show that the gains become more
significant for narrow tuples (i.e., column-oriented stores, or
compressed row stores), achieving up to 6x improvement
even when compared against other low-power options.

Our intention with the ideas presented in this paper is
to motivate environmentally sustainable approaches, based
on reusing and repurposing computing equipment. Towards
this goal, there are several open questions around architect-
ing MCS units and developing purpose-built data manage-
ment software: How can total cost be competitive to that of
traditional data centers? What other workloads could pos-
sibly run on this platform? What are the limits of scaling
out data management tasks on wimpy or ultra-wimpy node
architectures? Is there any benefit in combining MCS units
with traditional servers to form hybrid data centers? If yes,
what software changes would be needed? We hope these
questions will motivate the research community to intensify
their efforts on energy-efficient solutions.

7. REFERENCES
[1] IBM Simon.
http://en.wikipedia.org/wiki/IBM_Simon.

2]

3]

[4]

[6]

[7]

8]

[9]

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

21]

Report To Congress on Server and Data Center
Energy Efficiency. In U.S. EPA Tech. Report, 2007.
D. G. Andersen, J. Franklin, M. Kaminsky,

A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: a
fast array of wimpy nodes. In SOSP 09, 2009.

L. A. Barroso and U. Holzle. The Case for
Energy-Proportional Computing. IEEE Computer,
40(12), 2007.

C. Belady. In the Data Center, Power and Cooling
Costs More than the IT Equipment it Supports.
Electronics Cooling, 23(1), 2007.

A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen,
and V. H. Tuulos. Misco: A MapReduce framework
for mobile systems. In PETRA, 2010.

G. Graefe. Database Servers Tailored to Improve
Energy Efficiency. In Software Engineering for
Tailor-made Data Management, 2008.

S. Harizopoulos, V. Liang, D. J. Abadi, and

S. Madden. Performance tradeoffs in read-optimized
databases. In VLDB, 2006.

S. Harizopoulos, M. A. Shah, J. Meza, and

P. Ranganathan. Energy Efficiency: The New Holy
Grail of Database Management Systems Research. In
CIDR, 2009.

W. Lang, S. Harizopoulos, M. A. Shah, J. M. Patel,
and D. Tsirogiannis. Improving the Energy Efficiency
of a DBMS Cluster. In Submitted for publication, 2011.
W. Lang and J. M. Patel. Towards Eco-friendly
Database Management Systems. In CIDR, 2009.

W. Lang and J. M. Patel. Energy Management for
MapReduce Clsuters. In VLDB, 2010.

W. Lang, J. M. Patel, and J. F. Naughton. On Energy
Management, Load Balancing and Replication. In
SIGMOD Record, 2009.

W. Lang, J. M. Patel, and S. Shankar. Wimpy Node
Clusters: What About Non-Wimpy Workloads? In
DaMoN, 2010.

J. Leverich and C. Kozyrakis. On the Energy
(In)efficiency of Hadoop Clusters. In HotPower, 2009.
R. Raghavendra, P. Ranganathan, V. Talwar,

Z. Wang, and X. Zhu. No "power” struggles:
coordinated multi-level power management for the
data center. SIGOPS Oper. Syst. Rev., 2008.

A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and
A. White. Low-power amdahl-balanced blades for data
intensive computing. SIGOPS Oper. Syst. Rev., 2010.
D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the energy efficiency of a database server.
In SIGMOD ’10, 2010.

V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan,

J. Franklin, and I. Moraru. Energy-efficient cluster
computing with FAWN: workloads and implications.
In e-Energy ’10, 2010.

Z. Xu, Y.-C. Tu, and X. Wang. Exploring
Power-Performance Tradeoffs in Database Systems. In
ICDE, 2010.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate online power
estimation and automatic battery behavior based

power model generation for smartphones. In
CODES+ISS, 2010.

