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ABSTRACT
As access times to main memory and disks continue to di-
verge, faster non-volatile storage technologies become more
attractive for speeding up data analysis applications. NAND
flash is one such promising substitute for disks. Flash offers
faster random reads than disk, consumes less power than
disk, and is cheaper than DRAM. In this paper, we investi-
gate alternative data layouts and join algorithms suited for
systems that use flash drives as the non-volatile store.

All of our techniques take advantage of the fast random
reads of flash. We convert traditional sequential I/O algo-
rithms to ones that use a mixture of sequential and random
I/O to process less data in less time. Our measurements on
commodity flash drives show that a column-major layout of
data pages is faster than a traditional row-based layout for
simple scans. We present a new join algorithm, RARE-join,
designed for a column-based page layout on flash and com-
pare it to a traditional hash join algorithm. Our analysis
shows that RARE-join is superior in many practical cases:
when join selectivities are small and only a few columns are
projected in the join result.

1. INTRODUCTION
With the ever increasing disparity between main memory

and disk access times, enterprise applications are hungering
for a faster non-volatile store. In this paper, we explore how
to leverage one such promising technology, flash drives, for
data analysis applications.

Driven by the consumer electronics industry, flash is be-
coming a practical non-volatile storage technology. Flash
drives are ubiquitous in cameras, cell-phones, and PDAs.
Major PC vendors are shipping laptops with flash drives.
Moreover, flash is starting to make its way into the enterprise
market. For example, vendors such as SimpleTech, Mtron,
and FusionIO are selling flash-based solid-state drives aimed
at replacing SCSI drives and entire disk arrays. But, are
flash drives an effective replacement for traditional disks?

Flash drives have several traits that make them attrac-
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tive for read-mostly enterprise applications such as web-page
serving and search. Table 1 compares flash drives to disks.
Flash drives offer more random read I/Os per second (1500
to 100,000 IO/s), offer comparable sequential bandwidth
(20-80 MB/s), and use a tenth of the power (0.5 W). Flash is
cheaper than DRAM (∼$18/GB) and is non-volatile. More-
over, flash continues to get faster, cheaper, and denser at a
rapid pace. In particular, NAND flash density has doubled
every year since 1999 [13].

Unfortunately, flash offers little or no benefit when used as
a simple drop-in replacement for disk for data analysis work-
loads in databases. Traditional query processing algorithms
for data analysis are tuned for disks; they stress sequen-
tial I/O and avoid random I/O whenever possible. Thus,
they fail to take advantage of the fast random reads of flash
drives.

In this paper, we investigate query processing methods
that are better suited for the characteristics of flash drives.
In particular, we focus on speeding up scan (projection) and
join operations over tables stored on flash. Our algorithms
use a mixture of random reads and sequential I/O. When
only a fraction of the input (rows and columns) are needed,
these algorithms leverage the fast random reads of flash to
retrieve and process less data and thereby improve perfor-
mance.

To make scans and projections faster, we examine a PAX-
based page layout [2], which arranges rows within a page
in column-major order. When only a few columns are pro-
jected, this layout avoids transferring most of the data while
incurring the cost of “random” I/Os to seek between differ-
ent columns. We explore the tradeoff between row-based
and PAX-based layouts on flash experimentally. Our results
show that a PAX-based layout is as good or better even at
a relatively small page size of 64KB, a size that works well
with traditional buffer management.

We then present a new join algorithm, called RARE-join
(RAndom Read Efficient Join), that leverages the PAX-
based layout. RARE-join first constructs a join index and
then retrieves only the pages and columns needed for com-
puting the join result. We show both analytically and using
times from our scan experiments that this join outperforms
traditional hash-based joins in many practical cases: when
join selectivities are small and only a few columns are pro-
jected in the join result [6]. Although the specific methods
we leverage in our algorithms have been previously studied,
motivating their use and applying them in the context of
flash storage is our main contribution.

In the next section, we give an overview of flash tech-



NATA USB IDE FC
Disk Flash Flash Flash

GB 500 4 32 146
$/GB $0.20 $5.00 $15.62
Watts (W) 13 0.5 0.5 8.4
seq. read (MB/s) 60 26 28 92
seq. write (MB/s) 55 20 24 108
ran. read (IO/s) 120 1,500 2,500 54,000
ran. write (IO/s) 120 40 20 15,000
IO/s/$ 1.2 75 5
IO/s/W 9.2 3,000 5,000 6,430

Table 1: Disk and Flash characteristics from manu-
facturer specs or as measured where possible. Prices
from online retailers as of May 16, 2008. SATA-disk:
Seagate Barracuda; USB-Flash: Buffalo; IDE-Flash:
Samsung 2.5”IDE; FC-Flash: STech’s ZeusIOps 3.5”
FibreChannel.

nology. Section 3 describes our experiments with scans and
projections. Section 4 describes our join algorithm and com-
pares it to traditional join methods. In section 5, we present
the related work and then we conclude in Section 6.

2. FLASH CHARACTERISTICS
There are two types of flash available: NAND and NOR.

NAND flash is typically used for data storage, and NOR is
typically used in embedded devices as a substitute for pro-
grammable ROM. Since current solid state drives are typi-
cally composed of NAND flash, we focus on NAND.

Table 1 summarizes the relevant characteristics of current
flash drives compared to disks.1 Along with the conventional
metrics, the table also lists the random I/O rate per dol-
lar (IO/s/$), which measures the drive’s price-performance,
and the random I/O rate per Watt consumed (IO/s/W),
which measures the drive’s energy-efficiency. Although flash
drives are more costly per gigabyte, they well outperform
disk drives on metrics such as IO/s, IO/s/$ and IO/s/Watt.

NAND flash is typically organized into blocks of 128KB,
which are the minimum erase units, and these blocks are
subdivided into pages of 2KB. Once erased, all bits in the
block are set to “1”. Subsequently, selected bits can be pro-
grammed or set to “0” at a finer granularity. There is no
generic rewrite option. Thus, unoptimized random writes
are slow because they typically involve a read, erase (which
is slow), and program.

Currently, most NAND flash is limited to about 100,000
erase-write cycles per block. To avoid premature failure,
most flash drives include wear leveling logic that remaps
writes to evenly update all blocks. With wear leveling, writ-
ing continuously to a 32GB drive at 40 MB/s would cause
the drive to wear-out after 2.5 years. Since most drives are
not fully utilized, this typically implies a lifespan of 5-10
years, which is acceptable.

3. SCANS AND PROJECTIONS
Relational scans and projections return some of the columns

for some of the rows in a table. Since “seeks” are relatively

1Although we do not quote a price for the ZeusIOps drive,
enterprise flash drives like this one are significantly more
expensive in terms of $/GB.
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Figure 1: Row and PAX page layout

cheap on flash, it can be cost-effective to introduce addi-
tional seeks instead of reading data not needed in the query.
In this section, we consider the PAX page layout, which is
efficient for reading one column at a time but requires a seek
to skip over columns.

In Section 3.1, we describe the PAX page layout, discuss
the drawbacks for using PAX to reduce disk I/O, and show
why it is suitable for flash. In Section 3.2 we present our im-
plementation and experimental results that verify the bene-
fits of our approach.

3.1 PAX on Flash
Most commercial relational DBMS use a row-based page

format where entire rows are stored contiguously, as shown
on the left side of Figure 1. A slot array of 2-byte slots at
the end of the page contains pointers to the start of each
row. In this example, the table has four columns of sizes 4,
8, 32, and 4 bytes; the row size is 48 bytes. The page size is
64 KB. A full page contains 64 KB / (48+2) bytes = 1310
rows. We ignore page headers here for simplicity.

In contrast, the PAX (partition attributes across) lay-
out [2] creates mini-pages within each page. The rows of
the page are vertically partitioned among the mini-pages.
Each mini-page stores data for a single column. Each mini-
page for a fixed-length column is an array of column values
with an entry for every row on that page; the ith entry on
each mini-page is the column value for row i. Mini-pages for
variable-length columns use slot arrays. The right side of
Figure 1 shows this layout for the same example table. The
4-byte columns get 64 KB * (4/48) = 5460 byte mini-pages;
the 32-byte column’s mini-page is 43,680 bytes. Since no
slot arrays are needed for these fixed length columns, the
page with PAX layout holds data for 1365 rows.

In the original PAX proposal, Ailamaki et al. argued for a
PAX layout to improve CPU cache utilization when scanning
a subset of the columns [2]. They did not, however, consider
a change to disk I/O access patterns. Here, we consider how
a PAX layout can be used with flash to reduce total data
transferred and thereby improve performance for scans.

With the row-based layout, a scan query that needs only a
subset of the table columns must retrieve all of the columns
of the table. With the PAX layout, however, a scan query
can read only the required columns by “seeking” to the next
column’s mini-page (when the columns are not adjacent).



When the time spent seeking from one mini-page to the
next is less than the time to read the unneeded mini-pages
between them, performing the random read (seek) is better.

Enterprise disk drives can read sequential pages at around
100 MB/s and a short seek takes about 3-4 ms. Therefore,
a seek to skip mini-pages on disk must skip at least 300-400
KB (100 MB/s × 3-4 ms) to be worthwhile. If mini-pages
are 300 KB, then full pages must be multiple MB. However,
the “right” page size in a relational DBMS reflects many
other factors, such as buffer pool size, buffer-cache hit ra-
tios, update frequency, and per-page algorithmic overheads.
Unfortunately, these and other economic considerations [4]
lead most commercial RDBMSs to use much smaller page
sizes, typically between 8 KB and 64 KB.

Although the PAX layout does not improve read perfor-
mance for disks, it is worthwhile on flash. The seek over-
head on flash is much smaller. For the IDE flash drive in
Table 1 with 28 MB/s sequential read bandwidth and 0.25
ms seek time, it makes sense to skip mini-pages of only 7
KB (28 MB/s × 0.25 ms). Full pages can therefore be only
32-128 KB. With a 32 KB (or larger) page, a scan query
that projects less than three-quarters of a table will com-
plete faster using a PAX layout. Since mini-pages are not
always aligned at page-size boundaries of flash pages; some
extra data will be read when bringing a single column into
memory. In the next section, we verify these numbers ex-
perimentally.

Column stores also partition the table data by columns to
allow fast access to a subset of the columns [14]. Our query
processing methods apply to such column layouts as well
as to PAX layouts on flash. However, a column layout has
two important limitations when compared to PAX layout.
First, many parts of a traditional database engine, such as
the storage layer, I/O subsystem, buffer pool, recovery sys-
tem, indexes, some operators, and so on, expect and operate
on fixed size pages. Thus, a column layout requires touching
all these components and effectively redesigning the engine.
A PAX layout, on the other hand, only requires reimple-
menting the storage layer methods that retrieve data from
a page, since only the page organization has changed from
a traditional row layout, not the page contents. Second,
column stores may require multiple I/Os to update multiple
columns of a single row. With a PAX layout, only one I/O is
needed, since all columns are stored on the same page. We
therefore investigate performance with PAX layouts since
they involve a less disruptive change.

3.2 Experiments
In our implementation, we use tightly packed mini-pages.

We read data in multiples of 4 KB, even if the needed mini-
page is less than 4KB. For our experiments, we modified the
code released in [6], which is a bare-bones high-performance
storage manager. This code implements relational scanners
on a single-threaded C++ code base, using Linux’s Asyn-
chronous I/O capabilities to issue multiple outstanding I/O
requests and overlap computation with disk transfer time.

We evaluate a single scan query of the form “select O1,
O2, .. from ORDERS where predicate(O1)” in which the
predicate yielded 10% selectivity. The ORDERS table is
loosely modeled after TPC-H data. We simplify the schema:
the table contains eight 4-byte integers for a row length of
32 bytes; we create 60 million rows, for a total table size
of about 2 GB. We ran the experiments on the Samsung
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Figure 2: Comparing row vs. PAX layouts for scans
and projections.

32 GB IDE flash drive (from Table 1) formatted with the
Linux ext3 file-system. The baseline case is a scan of the
entire table, which corresponds to the performance of a row
store.

Figure 2 compares the performance of scans as we vary
the number of columns projected for three different page
sizes: 32 KB, 64 KB, and 128 KB. For all page sizes, the
fewer columns the query projects, the better it performs.
The “ideal” curve assumes the true read bandwidth of the
IDE drive and no “seek” delays. As we increase the page
size (and thus each mini-page read is larger), the overhead
of seeking is amortized. PAX pages of 32 KB are as good as
the baseline (row layout) case no matter how many columns
are read, and better when up to 88% of the data are read.
PAX pages of 64 KB always outperform the baseline case
and come close to ideal performance.

4. JOINS
In this section, we show how to leverage the PAX layout

to compute joins. We analytically compare a traditional
Grace-hash join to a new join algorithm, RARE-join, that
incurs additional random I/Os to save total data accessed.

4.1 RARE-join
Our new join algorithm, called the RARE-join (RAndom

Read Efficient join), has two main conceptual steps.

• It computes a join index by accessing only the join
columns of the input tables.

• It adapts Li and Ross’ jive-join [10] for PAX layouts
on flash. Jive-join uses a join index to compute the
join result in a single read pass through the input.

The main idea is to save I/Os by accessing only the join
columns and mini-pages holding the values needed in the
result rather than the entire input. The savings comes at
the cost of increased “seeks” and computing the join index,
which we show can be worthwhile when using flash.

To describe RARE-join and illustrate its benefits, we com-
pare it with a well-known hash-based join: Grace-hash [8].
Traditional Grace-hash operates over a row layout. We also
include a simple variant, Grace-PAX, which operates over
a PAX layout; the underlying scans access only the mini-
pages for columns projected in the result. We analyze two
basic modes for these joins: when there is enough memory



to compute the join in one pass through the input, and when
more passes are needed. We also analyze an important, in-
between mode for RARE-join: when it makes one pass over
the input but must materialize the join index.

For each algorithm, we assume that I/O cost dominates
runtime and give its costs in terms of the number of I/Os
required. We assume that the costs of a sequential read,
a sequential write, and a random read are the same. To
correct for this simplifying assumption, we adjust the I/O
costs in our examples using measurements from Section 3
where possible and appropriate. Table 2 shows the notation
that we use for the pseudocode and cost equations.

Symbol Meaning
T1 Table 1
R Join result
J1 Join column of T1

V1 Remaining columns of T1 projected in result
id2 Row-id of join result from Table 2
I2 Temp file filled with id2

JI Temp file holding join index
M Memory available for join
h Hash-table overhead
σp1 Fraction of T1 pages needed

for computing the join

Table 2: Notation used for cost equations. T2 is
always the smaller table and its symbols are analo-
gous to those for T1. The |X| notation specifies the
number of page I/Os for X.

4.2 One-pass joins
Grace hash can compute the result in one simple pass over

the input if a hash-table on T2, the smaller table, can fit in
memory, i.e. h|T2| < |M |, It first reads and builds a hash-
table on T2. Then it reads T1, probes the hash-table, and
spools the results to R. All accesses are sequential and the
total I/O cost is simply:

|T1|+ |T2|+ |R| (1)

Grace-PAX is better for two reasons. First, it needs less
memory to operate in one pass because only the join and
projection columns of T2 must fit in memory, h(|J2|+|V2|) <
|M |. Second, since it skips the unneeded columns, the total
I/O cost is less:

|J1 + V1|+ |J2 + V2|+ |R| (2)

In roughly the same memory as a 1-pass Grace-PAX, a
1-pass RARE-join, shown in Figure 3, reduces the I/O cost
further. RARE-join reads and builds a hash-table on the
join column, J2, and row-id, id2. Then, it probes the hash-
table with J1. Unlike Grace, it fetches only those mini-
pages necessary to produce the join result. For all matches,
RARE-join fetches and pins the mini-pages containing row
id2 from V2 and fetches the mini-pages containing row id1

from V1. Since it scans in T1 order, the new V1 mini-pages
can immediately replace old ones while the V2 pages are
buffered. RARE-join spools the result to R. More precisely,
the memory requirement is: h(|J2|+ |id2|) + σp2|V2| < |M |,
and the total I/O cost is:

1. Read J2 and build hash-table
2. Read J1 and probe hash-table
foreach join result <id1, id2> do

Read projected values of row id1 from V1

Read projected values of row id2 from pinned V2

mini-pages else from flash
Write result into R

Figure 3: 1-pass RARE-join: when the hash-table
on J2 and needed mini-pages of V2 fit in memory.

1. Read J2 and build hash-table
2. Read J1 and probe hash-table
foreach join result <id1, id2> do

Read projected values of row id1 from V1

/* R and I2 are both partitioned by id2 */

Write projected values into partition of R
Write id2 into partition of I2

3. Read I2 and process it.
foreach partition of I2 do

foreach id2 in partition do
Read projected values of row id2 from V2

Write values into partition of R

Figure 4: (1+ ε) pass RARE-join: when the hash-
table on J2 and output buffers fit in memory.

|J1|+ σp1|V1|+ |J2|+ σp2|V2|+ |R| (3)

Thus, given sufficient memory for the 1-pass case, RARE-
join outperforms Grace-PAX which outperforms Grace in
our cost model. In reality, however, the advantages de-
pend upon the overheads for each I/O of mini-pages and the
“page” selectivity. Depending on these parameters, we can
adapt RARE-join to make it behave more like Grace-PAX:
fetch V2 with J2 or V1 with J1 or both.

4.3 More than 1 pass
If there is not enough memory to hold the hash-table on T2

for Grace or on J2 and V2 for Grace-PAX, both degrade into
a two pass algorithm. The first pass partitions both tables
on the join column such that the runs of the smaller table
fit into memory. This pass involves a read and write. The
second pass reads each partition into memory and computes
the join. Thus, the total I/O cost for Grace is:

3(|T1|+ |T2|) + |R| (4)

and likewise for Grace-PAX:

3(|J1 + V1|+ |J2 + T2|) + |R| (5)

Most joins will need at most two passes with flash, since
the outgoing buffer size can be small, e.g., 64 KB. With 2 GB
of main memory, there is room to create 32,000 partitions.
Therefore, a two-pass Grace join suffices for T2 up to 65TB,
which is much larger than the size of current flash drives.

4.3.1 (1 + ε) pass RARE-join
RARE-join has more flexibility than Grace and thereby

provides improved performance. If J2 fits in memory, but



Name Address Age Team
Ben 18 Main St 7 Orange
Julie 21 Iris Ln 8 Red
Sam 110 Hays Dr 7 Green
Sarah 2 Main St 7 Blue
Alex 90 Primrose 8 Red
Lena 44 Madison 7 Orange

Figure 5: Player Table.

Team Field Time Row Id
Red Terman 1 1
Orange Ohlone 9 2
Orange Carmelo 3 3
Blue Briones 2 3

Figure 6: Game Table.

V2 does not, RARE-join can still compute the result with
one pass through the input, but must materialize the join
index. This (1 + ε) pass RARE-join is shown in Figure 4.
To illustrate the algorithm, we step through it for the ex-
ample join query: “select name, team, time from player,
game where player.team = game.team;” using the Player
and Game tables shown in Figures 5 and 6.

As in the 1-pass case, RARE-join first builds a hash-table
on J2 and probes it with J1. Figure 7 shows the hash-table
for our example.

The result of probing the table in step 2 is the join index,
which has one entry for each row in the join result R. Since
the probes occur in J1 order, the necessary V1 mini-pages
can be read sequentially and written directly to the result R.
Since we use a PAX layout, we write only the V1 columns to
R and leave the portion of each page for V2 columns “blank”
until step 3. Note, this write pattern for R is efficient on
flash since we pay the cost of the erase in this phase and
“program” the V2 values in step 3.

Unlike in the 1-pass case, we cannot fit V2 in memory.
A simple approach is to read the needed V2 mini-pages on
demand. This approach, however, might retrieve the same
mini-pages more than once since we generate results in J1

order. Instead, like jive-join, we partition the join index into
runs in step 2, so that the V2 mini-pages referenced in each
run can fit in memory. Actually, jive join [10] creates sorted
runs of the join index, which it then merges so that it can
later fetch the rows of T2 sequentially. We borrow from this
idea, but observe that, with flash, we need not access V2

in sequential order. We only need to ensure that all values
needed from a single page are obtained with one page read.

Therefore, in step 2, we simply partition the join index by
the T2 page number (encoded in id2), so all row ids for the
same T2 pages go in the same partition. We need not materi-
alize the id1 column of the join index since V1 is streamlined
to the result in step 2. Thus, the I2 partitions only contain
id2 values and are implicitly in T1 order.

For step 3, the entire set of V2 pages in a partition must
fit in memory at once. The number of partitions needed
is therefore |V2|/|M | and the partitioning function can be
either a hash or range partitioning scheme. We partition R
the same way so that in step 3, we can fill in the blank parts
of R with corresponding V2 values, one partition at a time.
After step 3, we combine the pages from all partitions of R

Blue, 3
Red, 1
Orange, 2 → Orange, 3

Figure 7: (1 + ε) RARE: hash-table on Game.Team

1
4
1

2
3
2
3

Figure 8: (1 + ε) pass RARE, step 2: I2 partitions.

into a single file simply by linking them together. Figures 8
and 9 show the contents of the partitions in our example
and Figure 10 shows the final result table.

Since we need one buffer page for each partition of R and
I2 in step 2 and there are at most |V2|/|M | partitions, the
memory requirement is h(|J2|+ |id2|) + 2(|V2|/|M |) < |M |.
The total I/O cost of all three steps is:

|J1|+ σp1|V1|+ |J2|+ σp2|V2|+ |R|+ 2|I2| (6)

Combining the previous two equations, RARE outperforms
Grace-PAX when:

2|J1|+ (3− σp1)|V1|+ 2|J2|+ (3− σp2)|V2| > 2|I2| (7)

The left hand side is savings from reading the join columns
and only the needed mini-pages of V1 and V2 once instead
of three times. This savings must outweigh the additional
cost of materializing and reading the row-ids id2 from the
join index.

We illustrate the potential benefits of RARE-join with the
following example. Suppose T1 and T2 each have 8 columns
of 4 bytes and the join result contains only 3 columns from
each, i.e. 5 total with the common join column. Let T1

and T2 contain 256 million rows (8 GB) apiece. Further
suppose half the rows in T1 each match one row in T2 and
the page selectivities are 1. Also, assume a system with 2
GB of memory. We can then estimate the savings using the
performance numbers from Section 3 as follows.

Both V1 and V2, which hold two columns, are 2 GB, and
J1 and J2 are 1 GB each. This setup puts Grace-PAX in
the two-pass mode and RARE-join in the (1+ ε) pass mode.
Assuming row-ids are 4 bytes, R and I2 each will have 128M
rows and be 2.6 GB and 512 MB, respectively. Assuming
we use 64 KB pages, reading J1 (one column) takes 55.1 s,
reading V1 (two columns) takes 86.5 s, and reading J1 + V1

(three columns) takes 117.8 sec; the transfer times are the
same for J2 and V2. Note, these account for the mini-page
“seek”overheads as measured in Section 3. We estimate that
writing R takes 91.4 s and one pass through I2 takes 18.3 s.
Therefore, Grace-PAX will take 3(117.8× 2) + 91.4 = 798.2
s while RARE-join will take 2(55.1+86.5)+91.4+2∗18.3 =
411.2 s, a savings of 387 s or speedup of 1.94x. The savings
from making only a single pass through the input is 423 s,
and the penalty for reading and writing the join index is
only 36.6 s.

4.3.2 Two-pass RARE-join
Figure 11 shows the pseudocode for RARE-join when J2

and the outgoing buffers do not fit in memory. In this case,



Julie Red
Sarah Blue
Alex Red

Ben Orange
Ben Orange
Lena Orange
Lena Orange

Figure 9: (1 + ε) pass RARE, step 2: partitioned R

Julie Red 1
Sarah Blue 2
Alex Red 1
Ben Orange 9
Ben Orange 3
Lena Orange 9
Lena Orange 3

Figure 10: (1 + ε) pass RARE, end: Result, R

steps 1 and 2 are similar to those in Grace-hash join. RARE-
join hash partitions the join column of both tables so that
each J2 partition can fit in memory. In step 3, it computes
and materializes the join index < id1, id2 > for each par-
tition. Note that within each partition, the join index is
ordered by id1.

In step 4, RARE-join merges the partitions of JI into
T1 order and fetches the needed projection columns V1. It
spools the result and id2 values to partitions of R and I2, as
in the (1 + ε) pass algorithm. Then, step 5 is the same as
step 3 of the (1 + ε) RARE algorithm. Note, the join index
is exactly twice the size of I2, since it contains id1 and id2.
Again, RARE-join fetches only the needed mini-pages of V1

and V2, but makes multiple passes over the join columns.
The total cost is therefore

3|J1|+ σp1|V1|+ 3|J2|+ σp2|V2|+ |R|+ 6|I2|. (8)

Two-pass RARE-join therefore beats two-pass Grace-PAX
when

(3− σp1)|V1|+ (3− σp2)|V2| > 6|I2| (9)

The left hand side is the savings from only accessing the
needed pages of V1 and V2 once instead of thrice. The right
hand side is the penalty for materializing and passing over
the join index multiple times.

We again illustrate the savings from RARE-join with an
example. Suppose T1 and T2 have the same schema as in
the previous example but are four times larger, 32 GB each.
Also, consider the same join query as above with the same
row and page selectivities. In this case, J1 and J2 are 4 GB
each, and V1 and V2 are 8 GB each. These input sizes place
both RARE-join and Grace-PAX in the two-pass mode. The
result has 512M rows, with 5 attributes of 4 bytes each.
Thus, R is 10.2 GB and I2 is 2 GB. Assuming the same
performance as above, reading J1 (one column) takes 220 s,
reading V1 (two columns) takes 346 s, and reading J1 + V1

(three columns) takes 471.2 s. We estimate writing R takes
366 s, and one pass through I2 takes 73.1 s. Therefore,
Grace-PAX will take 3(471.2 × 2) + 366 = 3193 s while
RARE-join will take 3(220×2)+(346×2)+366+(6×73.1) =
2817 s, a savings of 376 s or speedup of 1.12x. The penalty
for I/O on the join index was 439 s, but the savings from
making only one pass through the projected columns was 815
s. A more selective query would only improve the RARE-

1. Read J2 and partition it (hash on join value)
2. Read J1 and partition it (same hash function)
3. Compute JI
foreach partition of J2 do

Read J2 and build hash-table
Read partition of J1 and probe hash-table
foreach row in join result do

Write id1, id2 in JI partition

4. Merge partitions of JI on id1

foreach join result <id1, id2> do
Read projected values of row id1 from V1

/* R and I2 are partitioned by id2 */

Write projected values into partition of R
Write id2 into partition of I2

5. Read I2 and process it.
foreach partition of I2 do

foreach id2 in partition do
Read projected values of row id2 from V2

Write values into partition of R

Figure 11: Two-pass RARE-join: when the hash-
table on J2 and output buffers do not fit in mem-
ory.

join performance relative to Grace-PAX.
Extending RARE-join for more passes is analogous to ex-

tending Grace-hash, so we omit the description here.

4.4 Discussion
Although we believe our cost model is sufficient to high-

light the potential benefits of RARE-join, we still need to
implement and measure its benefits. We need to measure
its true performance and map out the tradeoffs in compari-
son to Grace, Grace-PAX, and more sophisticated variants
of hash-based joins. There are a number of complicating
factors that might affect performance. For example, our
analysis ignores CPU costs, underestimates I/O overheads,
and ignores the fact that sequential writes on flash are slower
than sequential reads.

A disadvantage of RARE-join, similar to jive-join, is that
the join results must be materialized. For some data analysis
functions, such as computing materialized views, this is not
an issue. However, when used in a pipelined query plan, the
above comparison is unfair. In that case, we need to penalize
RARE-join with the cost for reading and writing R. Even
so, RARE-join can be more efficient if the join result size or
selectivity is sufficiently small.

Nonetheless, there are still opportunities to improve RARE-
join. The hash-table on the join column could use compres-
sion for duplicate values. We could modify the algorithm to
pipeline results better at the cost of additional I/Os. As Hy-
brid hash join does, we could potentially use available mem-
ory more effectively on the first pass through the data. We
would also like to consider adapting other join algorithms,
such as index-nested loops join and sort-merge join, for PAX
layouts on flash.

5. RELATED WORK
We briefly review recent work on using flash in databases.

Graefe [4] revisits the five-minute rule in the context of flash
and suggests that flash serve as the middle level of a 3-level



memory hierarchy. Given current technology, this analysis
shows that 32KB is too small for pages stored on a SATA
disk and fairly large for pages stored on NAND flash. He
lists several potential uses for flash, some which treat flash
as an extension of memory and others that treat it as a faster
disk. Graefe [5] also considers sorting over flash, although
that paper is primarily concerned with improving memory
utilization and robustness rather than with improving sort
performance. In contrast, we focus solely on query process-
ing over flash. For the future, we should consider adapting
our methods to a 3-level hierarchy.

Lee and Moon [9] also present new variants of standard
database algorithms that are adapted for the characteris-
tics of flash. They consider techniques for updating rows in
pages on flash. To avoid random writes, their approach logs
updates to database pages in a clean“log” section at the end
of each flash erase block rather than applying the updates in
place. Once the log section is exhausted, they relocate the
entire erase block and apply the updates. This approach
amortizes the cost of the erase over multiple updates.

Next, we outline previous ideas that we adapted for query
processing on flash drives. Ailamaki et al. [2] proposed the
PAX database page design to improve the cache performance
of TPC-H queries rather than to save on disk I/O. Read-
ing only the relevant columns for each query is the central
theme of column-oriented DBMSs such as C-Store and Mon-
etDB [3, 14]. These systems reportedly perform well on
certain types of queries [1, 6], using traditional disk drives.
For example, Harizopoulos et al. [6] show that a carefully
designed column store can out-perform a row-store for read-
mostly workloads. Further, Abadi et al. [1] look at join pro-
cessing over column layouts. As mentioned earlier, we can
easily apply our algorithms to column stores on flash and
provide similar benefits as with PAX. We, however, focus
on a PAX layout since it imposes less disruptive changes to
traditional database architectures. Moving to a flash stor-
age and using the PAX page layout blurs the line between
column-stores and row-stores. Like us, Zhou and Ross [15]
use a scheme similar to PAX, called MBSM, that co-locates
column values in blocks within larger “super-blocks” to re-
duce I/O. They optimize their methods, however, for tradi-
tional disks rather than flash.

Li and Ross [10] present efficient join algorithms, jive-join
and slam-join, that leverage a join index and stores the re-
sults in a column-oriented format. We modify the jive-join
by streamlining it with join index creation and by avoid-
ing the unnecessary steps used to optimize disk accesses.
To make disk I/Os sequential, jive-join sorts the join in-
dex before fetching the matching pages from the inner table
and re-orders the returned tuples to match the order of the
outer. Although this difference does not affect total data
transferred, it introduces additional CPU overheads which
can be important.

Some have also explored the energy-efficiency benefits of
flash. Rivoire et al. [11, 12] show that using flash can im-
prove the energy-efficiency of database operations like sort.
Kgil and Mudge [7] employ flash for a buffer cache for web-
servers to reduce their energy use.

6. CONCLUSION
In this paper, we present techniques for making core query

processing operations, i.e. scans and joins, faster when using
flash. Our techniques rely on using a PAX-based page lay-

out, which allows scans to avoid reading columns not needed
for the query. A PAX layout works well for flash drives since
they offer much shorter seek times than traditional disks.
We then present a join algorithm, RARE-join, that lever-
ages the PAX structure to read only the columns needed
to compute the join result. Roughly speaking, RARE-join
first computes a join index by retrieving the join-columns
and then fetches the remaining columns for the result. We
show that RARE-join using a PAX layout beats traditional
hash-based joins when few columns are returned and the
selectivity is low.

Several directions suggest themselves for future work. Ob-
viously, additional measurements on new hardware is an on-
going task. We also plan on studying scan and join per-
formance on flash for generalized vertical partitioning, e.g.,
storing first name and last name together rather than sep-
arately. In addition, we plan on investigating merits and
issues of RARE-join in complex query execution plans, e.g.,
pipelining and scheduling in bushy plans, memory manage-
ment, and materialization of intermediate results. Finally, in
addition to strict performance metrics, we plan on reviewing
the new techniques with respect to energy efficiency as well
as robustness of performance under adverse run-time condi-
tions, e.g., errors in cardinality estimation, distribution and
duplicate skew, and memory contention. We expect that
steps in these directions will speed the eventual adoption of
flash in enterprise systems.
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