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ABSTRACT
Solid state drives perform random reads more than 100x
faster than traditional magnetic hard disks, while offering
comparable sequential read and write bandwidth. Because
of their potential to speed up applications, as well as their
reduced power consumption, these new drives are expected
to gradually replace hard disks as the primary permanent
storage media in large data centers. However, although they
may benefit applications that stress random reads immedi-
ately, they may not improve database applications, espe-
cially those running long data analysis queries. Database
query processing engines have been designed around the
speed mismatch between random and sequential I/O on hard
disks and their algorithms currently emphasize sequential
accesses for disk-resident data.

In this paper, we investigate data structures and algo-
rithms that leverage fast random reads to speed up selection,
projection, and join operations in relational query process-
ing. We first demonstrate how a column-based layout within
each page reduces the amount of data read during selections
and projections. We then introduce FlashJoin, a general
pipelined join algorithm that minimizes accesses to base and
intermediate relational data. FlashJoin’s binary join kernel
accesses only the join attributes, producing partial results
in the form of a join index. Subsequently, its fetch kernel
retrieves the attributes for later nodes in the query plan
as they are needed. FlashJoin significantly reduces mem-
ory and I/O requirements for each join in the query. We
implemented these techniques inside Postgres and experi-
mented with an enterprise SSD drive. Our techniques im-
proved query runtimes by up to 6x for queries ranging from
simple relational scans and joins to full TPC-H queries.

Categories and Subject Descriptors
H.2.4, H.2.2 [Database Management]: Systems – query
processing, Physical Design – access methods.
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1. INTRODUCTION
Solid state drives (SSDs) are quickly penetrating the mar-

ketplace with promises of improved performance and energy
efficiency for both desktop and enterprise applications. SSDs
perform random reads more than 100x faster than tradi-
tional magnetic hard disks, while offering comparable se-
quential read and write bandwidth. Although current of-
ferings are more expensive than magnetic hard disk drives
(HDDs), a 2007 IDC study [13] showed that SSD prices
are dropping much faster than HDD prices and predicted
an annual decline of 50% for SSDs (in $/GB) through at
least 2012. Due to their improved performance, low power
consumption, small footprint, and predictable wearing, we
expect SSDs to gradually replace HDDs as the primary per-
manent storage media in large data centers.

Such a shift in enterprise computing infrastructure has the
potential to affect all storage-intensive applications. Database
workloads may not benefit immediately from SSDs, however,
since several DBMS architectural decisions, including data
structures, algorithms and tuning parameters, were made
based on the fundamental performance characteristics of
HDDs. The common wisdom behind these decisions is to
avoid random I/O as much as possible and instead empha-
size sequential accesses, which are orders of magnitude faster
on HDDs. SSDs, in contrast, perform random reads nearly
as fast as sequential reads. The transition from HDDs to
SSDs thus forces us to reexamine database design decisions.

1.1 Query Processing Techniques for SSDs
Previous work has mainly focused on quantifying instant

benefits from the fast random reads of SSDs [16, 20] and ad-
dressing their slow random writes [15, 17, 21, 23]. Our focus
instead is on investigating query processing techniques that
improve the performance of complex data analysis queries,
which are typical in business intelligence (BI) and data ware-
housing workloads. Towards this goal, we evaluate data
structures and algorithms that leverage fast random reads
to speed up selection, projection, and join operations. Along
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Figure 1: Scans on SSDs: FlashScan is much faster
than a traditional scan when either few attributes
(small projectivity) or few rows (small selectivity
– SEL) are selected. Data analysis queries contain
many scans on large relations that project few at-
tributes and select few rows.

with sort (which can benefit from SSDs without algorithmic
changes [16]) and aggregation (which typically applies to in-
memory data or to the output of scan or join operators and
therefore cannot benefit from SSDs), these operations are
the most common in complex query plans.

We consider an “SSD-only” DBMS in which all data (ta-
bles, metadata, logs, etc.) are stored in SSDs. Our intention
is to first evaluate which query processing techniques best
exploit the characteristics of SSDs and then build on these
new techniques for hybrid SSD/HDD configurations.

We advocate using a column-based layout within each
database page, such as PAX [3]. While PAX was originally
proposed to improve CPU cache performance, we show it can
reduce the amount of data read from SSDs. In Section 3.3,
we discuss the similarities between PAX layout on SSDs and
column-store layout [4, 27] on both HDDs and SSDs. Us-
ing a PAX-based page layout, we implemented FlashScan, a
scan operator that reads from the SSD only those attributes
that participate in a query. FlashScan proactively evaluates
predicates before fetching additional attributes from a given
row, thus further reducing the amount of data read when
few tuples are selected.

Building on FlashScan’s ability to efficiently extract needed
attributes, we introduce FlashJoin, a general pipelined join
algorithm that minimizes accesses to relation pages by re-
trieving only required attributes, as late as possible. Flash-
Join consists of a binary join kernel and a separate fetch
kernel. Multiway joins are implemented as a series of two-
way pipelined joins. The join kernel accesses only the join
attributes, producing partial results in the form of a join
index for each join node. Our current implementation uses
a hash-based join kernel that employs the hybrid-hash join
algorithm [25]; any other join algorithm may be used in-
stead. Subsequently, FlashJoin’s fetch kernel retrieves the
attributes for later nodes in the query plan as they are
needed, using different fetching algorithms depending on the
join selectivity and available memory. We show that Flash-
Join significantly reduces the amount of memory and I/O
needed for each join in the query.

1.2 Evaluation inside PostgreSQL
We implemented the proposed techniques inside PostgreSQL.
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Figure 2: Multi-way joins on SSDs: FlashJoin is
at least 2x faster than hybrid hash join over either
traditional row-based (HNSM) or PAX layouts.

In addition to incorporating a new scan and join opera-
tor, we modified the buffer manager and the bulk loader
to support both the original and PAX layouts. We ex-
perimented with an enterprise SSD drive using synthetic
datasets and TPC-H queries. Figure 1 compares the per-
formance of FlashScan to Postgres’ original scan operator
(NSMScan) as we vary the percentage of tuple length pro-
jected from 4% to 100% (experimentation details are in Sec-
tion 3). FlashScan (100% selectivity, middle line) is up to 3X
faster than the traditional scan for few projected attributes
as it exploits fast random accesses to skip non-projected at-
tributes. For low percentages of selectivity (0.01%, bottom
line), FlashScan consistently outperforms the traditional scan
by 3-4x, as it avoids reading projected attributes that be-
long to non-qualifying tuples. The original scan reads all
pages regardless of selectivity. As we discuss in Section 3.3,
column-store systems already enjoy similar performance ben-
efits when scanning large relations on HDDs. Our tech-
niques, however, are easier to integrate in existing row-based
database systems than building a column-store from scratch.

Figure 2 shows the performance improvements when run-
ning multiway joins in Postgres using our FlashJoin algo-
rithm. FlashJoin uses the drive more efficiently than hybrid-
hash join over both traditional row-based (NSM) and column-
based (PAX) layouts, by reading the minimum set of at-
tributes needed to compute the join, and then fetching only
those attributes that participate in the join result. By ac-
cessing only the join attributes needed by each join, Flash-
Join also reduces memory requirements, which is beneficial
in two ways: it decreases the number of passes needed in
multi-pass joins (hence speeding up the join computation),
and it frees up memory space to be used by other operators
(hence leading in improved overall performance and stability
in the system).

1.3 Contributions and Paper Outline
The introduction of a new, fast primary storage technol-

ogy in enterprise computing warrants a thorough reexamin-
ination of database design choices. Towards this goal, we
make the following contributions.

• We demonstrate the suitability of a column-based page
layout for accelerating database scan projections and
selections on SSDs, through a prototype implementa-
tion of FlashScan, a scan operator that leverages the
columnar layout to improve read efficiency, inside Post-



greSQL.

• We present FlashJoin, a general pipelined join algo-
rithm that minimizes memory requirements and I/Os
needed by each join in a query plan. FlashJoin is faster
than a variety of existing binary joins, mainly due to
its novel combination of three well-known ideas that
in the past were only evaluated for hard drives: using
a column-based layout when possible, creating a tem-
porary join index, and using late materialization to re-
trieve the non-join attributes from the fewest possible
rows.

• We incorporate the proposed techniques inside Post-
greSQL. Using an enterprise SSD, we were able to
speed up queries, ranging from simple scans to mul-
tiway joins and full TPC-H queries, by up to 6x.

The rest of the paper is organized as follows. SSD char-
acteristics and trends, along with related query processing
techniques are presented in Section 2. In Section 3 we de-
scribe and experiment with FlashScan and also discuss how
column stores are related to our work. Section 4 describes
in detail the join kernel and fetch kernel of FlashJoin. We
present experiments with multi-way joins and full TPC-H
queries in Section 5 and conclude in Section 6.

2. SSD TRENDS AND RELATED WORK

2.1 SSD Characteristics, Costs, and Trends
Most current commercial SSDs use NAND Flash for bulk

data storage. NAND flash is a purely electronic, non-volatile
store whose performance and price characteristics put it be-
tween DRAM and traditional disks. Table 1 summarizes the
relevant characteristics of current Flash SSDs compared to
traditional magnetic hard disks. All of the SSDs provide or-
ders of magnitude (10-100x) faster random read IO/s than
traditional drives and comparable sequential read and write
bandwidth. Their random write performance, however, is
much worse than read, especially on the consumer-grade
drives. Finally, SSDs well outperform traditional drives on
the price-performance metric IO/s/$ (random IO rate per
dollar) and the energy-efficiency metric IO/s/W (random
IO rate per Watt consumed).

The asymmetry between read and write performance is
due to the underlying technology. NAND flash is organized
into large 128K erase blocks while read and write IOs are
to 4K pages. However, a 4K page write succeeds only if
the page has been previously erased. Erasing is expensive
in terms of both time and power consumed. Thus, a naive
random write requires an expensive 128K read, erase, and
rewrite operation. Further, most NAND flash is limited to
about 100,000 erase-write cycles per block.

Fortunately, SSDs embed logic to hide these details. All
SSDs include wear-leveling logic that remaps writes to evenly
update all blocks. With wear leveling, writing continuously
to a 32GB drive at 40 MB/s would cause the drive to wear-
out after 2.5 years, which implies an acceptable lifespan of
5-10 years with average utilization. Moreover, as Table 1
shows, enterprise SSD vendors are improving random write
performance by overprovisioning the underlying flash capac-
ity and embedding additional logic in the drive. Enterprise
SSDs have so far been much more expensive than consumer

SSDs, but these cost differences are shrinking as enterprise
SSD volumes increase.

Overall, flash SSDs are seeing an annual $/GB decline of
50% per year [13], which is a faster drop rate than for hard
disks. We expect flash SSDs to eventually be competitive
with hard disks in terms of $/GB and continue to outper-
form them by orders of magnitude in read and write IO/s/$
and IO/s/W. Thus, we expect that for many data analysis
applications, SSDs will replace hard disks in the future.

SATA SATA FC ioD
Disk Flash Flash Flash

GB 500 32 146 320
$/GB $0.12 $15.62 $85 $30
Watts (W) 13 2 8.4 6
seq. read (MB/s) 60 80 92 700
seq. write (MB/s) 55 100 108 500
ran. read (IO/s) 120 11,200 54,000 79,000
ran. write (IO/s) 120 9,600 15,000 60,000
IO/s/$ 2.0 11.2 4.4 8.3
IO/s/W 9.2 5,600 6,430 13,166

Table 1: Disk and Flash characteristics from manu-
facturer specs or as measured where possible. Prices
from online retailers as of Nov 25, 2008. SATA-disk:
Seagate Barracuda; SATA-Flash: Mtron; FC-Flash:
STech’s ZeusIOps 3.5” FibreChannel; ioD: FusionIO
ioDrive.

2.2 Databases and SSDs
Several recent studies have measured the read and write

performance of flash SSDs [5, 20, 22]. uFLIP [5] defines a
benchmark for measuring sequential and random read and
write performance and presents results for 11 different de-
vices. Of particular note, they identify a “startup” phase
where random writes may be cheaper on a clean SSD (since
no blocks need to be erased) but quickly degrade as the disk
fills. Polte et al. perform a similar study using less sophisti-
cated benchmarks, but focus on the behavior of filesystems
running on top of SSDs. They show the degraded mode is
3-7X worse than the “startup” phase but still an order of
magnitude faster than any current HDD [22].

Graefe [9] reconsiders the trade-off between keeping data
in RAM and retrieving it as needed from non-volative stor-
age in the context of a three-level memory hierarchy in which
flash memory is positioned between RAM and disk. The
cited paper recommends disk pages of 256KB and flash pages
of 4KB to maximize B-tree utility per I/O time. Interest-
ingly, these page sizes derive retention times of about 5 min-
utes, reinforcing the various forms of the “five-minute rule”.

Both Myers [20] and Lee et al. [16] measure the perfor-
mance of unmodified database algorithms when the under-
lying storage is a flash SSD. Myers considers B-tree search,
hash join, index-nested-loops join, and sort-merge join, while
Lee et al. focus on using the flash SSD for logging, sorting,
and joins. Both conclude that using flash SSDs provides
better performance than using hard disks. For example, fast
random reads allow a larger fan-in during the merge phase
of sorting, thus increasing the maximum size relation that
can be sorted in two passes.

Then, there are a set of papers that propose new database
algorithms designed especially for flash characteristics: these



algorithms generally emphasize random reads and avoid ran-
dom writes (where traditional algorithms stress sequential
reads and writes and try to avoid any random I/O). Lee et
al. [15] modify database page layout to make writing and
logging more efficient. Ross [23] proposes new algorithms
for counting, linked lists, and B-trees that minimize writes.
Shah et al. [24] present a new hash-based join algorithm that,
in combination with a new page layout, uses random reads to
retrieve less data than hybrid hash join. However, their algo-
rithm focuses on binary joins and there is no implementation
of the proposed join algorithm. Nath and Gibbons [21] de-
fine a new data structure, the B-file, for maintaining large
samples of tables dynamically. Their algorithm writes only
completely new pages to the flash and they observe that
writes of pages to different blocks may be interleaved effi-
ciently on flash SSDs. Li et al. [17] propose a new index
structure: it uses a B-tree in memory to absorb writes and
then several levels of sorted runs of the data underneath the
tree. This structure uses only sequential writes to periodi-
cally merge the runs and random reads to traverse the levels
during a search.

Finally, Koltsidas and Viglas [14] consider hybrid SSD/HDD
configurations of databases systems and design a buffer man-
ager that dynamically decides whether to store each page
on a flash SSD or a hard disk, based on its read and write
access patterns. However, their approach assumes that all
page accesses are random.

2.3 Related Query Processing Techniques
Our aim is to modify traditional query processing tech-

niques to leverage the fast random reads of flash SSDs. Our
modifications have three goals: (1) avoid reading unneces-
sary attributes during scan selections and projections, (2)
reduce I/O requirements during join computations by min-
imizing passes over participating tables, and (3) minimize
the I/O needed to fetch attributes for the query result (or
any intermediate node in the query plan) by performing the
fetching operation as late as possible. We discuss related
techniques here and revisit some of those techniques in later
sections.

Traditionally, database systems use the N-ary storage model
(NSM), a page-based storage layout in which tuples (or
rows) are stored contiguously in pages. NSM may waste
disk and memory bandwidth if only a small fraction of each
row is needed. In contrast, the decomposition storage model
(DSM) [6], proposed in the 80s, decomposes relations ver-
tically, allocating one sub-relation per attribute. DSM had
its own disadvantages, including storage overhead for stor-
ing tuple IDs and expensive tuple reconstruction costs. With
changing market needs and more favorable technology trends,
newer DSM-like (column-store) commercial products and
academic prototypes have recently appeared (such as Syba-
seIQ, Vertica, C-store [27], and MonetDB/X100 [4]). These
systems eliminate storage overhead through virtual IDs and
offer fast scans of few attributes [10] at the cost of additional
disk seeks to fetch non-contiguous attributes.

PAX [3] (Partition Attribute Across) is a hybrid approach,
essentially a DSM-like organization within an NSM page.
While the disk access pattern of PAX is indistinguishable
from that of NSM, it improves on the memory bandwidth
requirements. On SSDs, as we show in the next section,
PAX, in combination with the much faster seek time, allows
reading only those columns needed by the query, essentially

enjoying the read efficiency of DSM while retaining existing
NSM functionality.

The ability of column-stores to read only part of a tu-
ple led to an examination of different tuple materialization
strategies [2]. A late materialization policy is particularly
effective in reducing the amount of data passed through the
query operators and we discuss its use in FlashJoin in Sec-
tion 4.3. Late materialization was originally implemented
by Semijoin reducers [26] which first computed a semi-join
(using an index, if one was available) and then revisited base
relations to obtain remaining attributes, without needing to
redo predicate evaluation. Late materialization was also the
essence behind TID hash joins [19], which compute a join in-
dex first and then construct the final join result. Although
TID hash joins waste disk bandwidth when reading the in-
put relations and rely on an inefficient fetching strategy for
constructing the final result, they were shown to outperform
traditional hash joins for highly selective joins on large in-
puts. A more efficient fetching strategy, given a pre-existing
join index, was described for Jive/Slam-joins [18]. How-
ever, these algorithms were limited to two-way non-pipelined
joins.

Our work builds on these ideas, re-examining fundamental
tradeoffs in light of the different performance characteristics
of SSDs.

3. SCAN SELECTIONS & PROJECTIONS
In this section, we demonstrate that a PAX-like page orga-

nization is a natural choice for database systems over SSDs.
We first describe our implementation of FlashScan, a scan
operator that leverages the PAX layout to improve selections
and projections on flash SSDs. We evaluate the implemen-
tation of FlashScan inside Postgres in Section 3.2. Then,
in Section 3.3 we discuss the similarities and differences be-
tween PAX layout and DSM or column layout and describe
how FlashScan applies to column-stores.

3.1 FlashScan Operator
Figure 3 shows the page organization of both NSM and

PAX for a relation with four attributes. In general, for an
n-attribute relation, PAX divides each page into n mini-
pages, where each minipage stores the values of a column
contiguously. The size of each minipage is computed based
on the average sizes of the attribute values. In our im-
plementation, we do not handle overflowing of minipages
caused by variable-length attributes; Ailamaki et al. de-
scribe how PAX can support variable-length attributes in
[3]. The column-based layout of PAX offers a physical sep-
aration of values from different columns, within the same
page, thus allowing an operator to access only the attributes
that are needed in a query. Because regular scanners access
a full page from disk, PAX does not have an impact on
disk bandwidth. Once a page is brought into main memory
though, PAX allows the CPU to access only the minipages
needed by the query, thus reducing memory bandwidth re-
quirements [3]. Data transfer units in main memory can be
as small as 32 to 128 bytes (the size of a cacheline), whereas
a database page is typically 8K to 128K. With SSDs, the
minimum transfer unit is 512 to 2K bytes, which allows us
to selectively read only parts of a regular page.

FlashScan takes advantage of the small transfer unit of
SSDs to read only the minipages of the attributes that it
needs. Consider a scan without selection predicates that
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Figure 3: Disk pages in NSM (left) and PAX (right)
storage layout of a relation with four attributes.

projects the first and third column of the relation in Fig-
ure 3. For each page, FlashScan initially reads the mini-
page of the first attribute and then “seeks” to the start of
the third minipage and reads it. Then it “seeks” again to
the first minipage of the next page. This procedure contin-
ues over the entire relation, resulting in a random (albeit
strided) access pattern.

In general, every “seek” results in a random read. The
only exception is when the scan query requests contiguous
minipages; in that case, FlashScan coalesces the reads and
performs one random access for each set of contiguous mini-
pages. Using random instead of sequential reads is beneficial
only if the storage medium supports fast random access and
the reduction in the amount of data read compensates for
the overhead induced by the random I/O. As we demon-
strate in the next section, this is indeed the case for flash
SSDs.

Note that we cannot expect the minipages to be exact
multiples of the SSD minimum transfer unit. We also did
not want to align minipages to OS page boundaries since
that approach could result in severe fragmentation and poor
space utilization. Instead, in our implementation of PAX
and FlashScan, we decouple minipage size from SSD trans-
fer units and compute the size of each minipage solely as a
function of the page size and the average sizes of attribute
values. Inside Postgres, we implemented PAX by dividing
every database page into tightly packed minipages. There-
fore, some unneeded data may be transferred when reading
a single minipage.

We modified the Postgres buffer manager and bulk loader
to work with the new page layout. The buffer manager allo-
cates space and performs replacements at the granularity of
a database page. However, a page in the buffer pool may be
partially full containing only the minipages transferred by
FlashScan. Although this design wastes space in the buffer
pool, it simplifies our implementation and ensures that the
invocation of the buffer manager does not influence our re-
sults in the experimental evaluation. It also allows us to
reuse existing Postgres functionality and utilities.

We added FlashScan to Postgres as a new scan opera-
tor that produces tuples in row-format, after having read
in the buffer pool all minipages containing the projected
attributes. One of the features of Postgres that adds a con-
siderable per-tuple overhead, is multi-version concurrency
control (MVCC). Currently, our implementation does not
support in-place updates (and therefore we have no use of

 

0

20

40

60

80

100

120

140

160

0.01% 0.10% 1.00% 10.00%

T
im

e
 (

se
c)

Selectivity

Projectivity 25%

100.00%

NSMScan FlashScan
FlashScanOPT (U) FlashScanOPT (S)

Figure 4: FlashScan avoids reading attributes
that are not projected; FlashScanOpt additionally
avoids reads of minipages without selected tuples.
When run over sorted predicate attributes, Flash-
ScanOpt(S) is able to skip many minipages of pro-
jected attributes.

MVCC), as our goal was to evaluate read-only queries. While
certain database systems and several data warehousing ap-
plications typically operate under alternating periods of read-
only queries and bulk-loading data, adding support for up-
dates in PAX, if needed, could be performed without any
penalty, as shown in [3]. To ensure a fair comparison with
Postgres’ default page layout (NSM) that includes MVCC
information, we added the same overhead to our PAX pages
by reserving an extra minipage inside each page. Addition-
ally, we removed any calls related to MVCC when NSM is
used.

3.1.1 Optimizations for Selection Predicates
For selection predicates, FlashScan can improve perfor-

mance even further by reading only the minipages that con-
tribute to the final result. Consider a scan query that speci-
fies a set of projected attributes P (in the select clause in an
SQL query) as well as a set of attributes S that participate in
selection conditions (in the where clause). Assume for sim-
plicity that S and P are disjoint, hence only the attributes
in P are in the final result. FlashScan reads from each page
only the minipages that correspond to the attributes in S
and evaluates the selection conditions. If, for a given page,
there is at least one tuple that passes the selection condi-
tions, then FlashScan reads its minipages for the attributes
in P . If none of the tuples of that page satisfy the selection
conditions, FlashScan skips to the next page.

As we demonstrate next, this technique is beneficial for
highly selective conditions (with a small number of tuples in
the result) and for selection conditions that are applied to
sorted or partially sorted attributes. In general, the more
clustered the attribute values that satisfy the conditions, the
bigger the performance improvement.

3.2 Scan Experiments
For the experiments in this section we generated a relation
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Figure 5: When more attributes are projected,
FlashScan must read nearly as much data as NSM-
Scan. The contrast between FlashScan and Flash-
ScanOpt is therefore much greater (see Figure 4)
when not all pages contain selected tuples.

with 70 million tuples occupying about 10GB. The relation
consists of 11 columns (eight 4-byte and three 32-byte at-
tributes) for a tuple length of 128 bytes. NSM layout in
Postgres includes a 23-byte header for every tuple. Hence,
in order to ensure that relations stored in NSM and PAX
layouts have the same size, we allocated an extra minipage
to each PAX page for the tuple headers. The page size for
both NSM and PAX was set to 64KB. PAX pages contained
12 minipages and the minimum transfer unit from the SSD
was 4KB. All experiments were performed on a system with
an Intel Core 2 Duo CPU at 2.33GHz and 4GB of RAM,
running Ubuntu 8.04 Linux with kernel 2.6.24-21. We used
an MTron 32GB SSD, the performance characteristics of
which are presented in Table 1, formatted with the Linux
ext2 file-system.

3.2.1 Varying the Number of Projected Attributes
In the first experiment, we compare the performance of

FlashScan to Postgres’ original scan operator (NSMScan)
as we vary the percentage of the tuple projected (its pro-
jectivity) from 4% to 100%. The results are in Figure 1
in Section 1 (top two lines). NSMScan always reads the
whole relation, regardless of projectivity, and exhibits con-
stant performance in scan queries. FlashScan is up to 3X
faster than NSMScan for low projectivity: it exploits fast
random accesses to “seek” efficiently to the required mini-
pages. As projectivity increases, FlashScan reads more data
from every page. At the point where it reads the entire tuple
(100% projectivity), FlashScan performs the same sequen-
tial read of the relation as NSMScan.

3.2.2 Varying Selectivity
In this experiment, we consider a scan query with a sin-

gle equality predicate and vary its selectivity from 0.01% to
100%. We consider two versions of FlashScan. Plain Flash-
Scan first reads all minipages of the projected attributes,
discarding non-qualifying tuples after evaluating the predi-

cate. FlashScanOpt implements the optimization described
in Section 3.1.1: minipages of projected attributes are read
only if there is at least one tuple in the page that satisfies
the predicate. We experiment with an equality predicate on
both sorted and unsorted attributes. When the attribute
is sorted, then all matching tuples are stored contiguously.
The results for 25% and 75% projectivities are in Figures 4
and 5 respectively (we use the letters U and S to distinguish
between the runs of FlashScanOpt on unsorted and sorted
attributes) .

The execution time for NSMScan and plain FlashScan re-
mains flat across different selectivities (the small increase
for FlashScan for large percentages of selectivity is due to
the higher tuple reconstruction cost of PAX). The optimized
version of FlashScan, however, performs significantly better
with lower percentages of selectivity. For predicates on un-
sorted attributes and selectivity below 1%, FlashScanOpt
skips entire minipages that do not contain any qualifying
tuples, thus outperforming plain FlashScan by up to 3x (for
0.01% selectivity and 75% projectivity). For more than
1% selectivity there is at least one tuple that satisfies the
predicate in every page (in our relation there were 400 tu-
ples per page). When applying the predicate on a sorted
attribute, however, FlashScanOpt outperforms plain Flash-
Scan for all selectivities below 100%: only a few pages con-
tain the contiguous matching tuples and all other minipages
can be skipped.

3.3 FlashScan and Column Stores
We discuss next the relation of FlashScan to column ori-

ented storage on both HDDs and SSDs. For scans with
many qualifying tuples, FlashScan’s behavior is in many
ways similar to a column-store scan on a traditional hard
drive. FlashScan needs to “seek” between minipages, and
that seek, although very fast, adds a small overhead (but
is preferable over a full sequential scan). Column-stores on
HDDs read a large portion of a single column at a time
(called chunk in MonetDB/X100), to amortize the real disk
head seek between different columns. For SSDs and HDDs
with comparable bandwidths, these two scans would per-
form similarly. For highly selective scans, however, Flash-
Scan has an advantage: it can skip minipages that do not
contain qualifying tuples. A column-store on HDDs can only
skip entire chunks which are two orders of magnitude larger
than flash SSD transfer units. This means that column-
store scans on HDDs need to be 100 times more selective
than FlashScan to witness similar benefits.

If we were to run a column-store on SSDs, however, we
would find similar behavior to FlashScan regardless of se-
lectivity. In fact, by getting rid of the notion of a chunk,
and instead rely on the transfer unit of SSDs, both Flash-
Scan and column-stores would exhibit the exact same SSD
reading times (since “seeks” on SSDs are constant in time).
While this assertion needs experimental validation, if true, it
would be a step towards converging row-store and column-
store functionality (which, for current HDD systems, has
been a subject of much debate [1, 12]). Several other aspects
of row- and column-stores would need to be reexamined,
however, this is a subject of future (and much promising)
research. Compression, for example, might be implemented
differently on a PAX-based row-store than in a pure column-
store. One important aspect of our work is to demonstrate
that the proposed techniques can be relatively easily inte-



grated inside a full-blown relational DBMS, retaining much
of the existing, rich functionality that otherwise would have
to be re-implemented, if one was to build a column-store
from scratch.

Since in the next section we describe a general join method
which is based on FlashScan for reading data off disk, ex-
isting column-stores on SSDs could potentially adopt the
same method, by plugging a column-scanner in the place
of PAX-based FlashScan. Since the scope of the paper is
limited to traditional, row-based DBMS, we do not revisit
column-store applicability.

4. FLASHJOIN
In this section, we present FlashJoin, a multi-way join

algorithm tailored for solid state drives. We first give an
overview of our algorithm in Section 4.1 and then describe
its main components in the following sections.

4.1 FlashJoin Overview

FlashScan 1 FlashScan 2

FlashScan 3

A D

K

B, C, E, H, F

R1 (A, B, C) R2 (D, E, G, H)

R3 (F, K, L)

select R1.B, R1.C, R2.E, R2.H, R3.F
from R1, R2, R3
where R1.A = R2.D AND R2.G = R3.K;

G
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G

Figure 6: Execution strategy for a three-way join
when FlashJoin is employed.

To take advantage of the fast random reads of SSDs,
FlashJoin uses the same principal techniques as FlashScan.
It avoids reading unneeded attributes and postpones retriev-
ing attributes in the result until absolutely necessary.

FlashJoin is a multi-way equi-join algorithm, implemented
as a pipeline of stylized binary joins. Each binary join in the
pipeline is broken into two separate pieces, a join kernel and
a fetch kernel, each of which is implemented as a separate
operator, as shown in Figure 6. The join kernel computes
the join and outputs a join index. Each join index tuple con-
sists of the join attributes as well as the row-ids (RIDs) of the
participating rows from base relations. The fetch kernel re-
trieves the needed attributes using the RIDs specified in the
join index. FlashJoin uses a late materialization strategy,
in which intermediate fetch kernels only retrieve attributes
needed to compute the next join and the final fetch kernel
retrieves the remaining attributes for the result. This ap-
proach offers some important benefits over traditional joins,

which use an early materialization strategy.
First, FlashJoin reduces the amount of data retrieved from

the input relations to compute the join result. It accesses
the join attributes and accesses other projected attributes
only from rows that participate in the result. Second, since
join kernels process join indices instead of all projected at-
tributes from the input relations, the indices on the build
input are smaller. Thus, the join kernel is more memory-
efficient. Moreover, when multiple passes are needed, the
join kernel incurs lower partitioning costs than traditional
joins.

These benefits come at the cost of additional random
reads for retrieving the join attributes and other projected
attributes separately. Moreover, they come at the cost of
additional passes over data in the fetch kernel. In the ex-
perimental section, we show that this tradeoff is worthwhile
when using SSDs.

4.2 Join Kernel
The join kernel leverages FlashScan to fetch only the join

attributes needed from base relations. The join kernel is im-
plemented as an operator in the iterator model. In general,
it can implement any existing join algorithm: block nested
loops, index nested loops, sort-merge, hybrid hash, etc.

In this paper, we explore the characteristics of a join kernel
that uses the hybrid-hash algorithm [7]. This kernel builds
an index (hash table) on the join attribute and RID from
the inner relation and probes the index in the order of the
outer. Depending on the available memory and the size
of the input, hybrid-hash may make multiple passes over
the input. Compared to a traditional hash join, this join
kernel is more efficient in two important ways because it does
not need to manage all of the projected attributes from the
input. First, the join kernel needs less memory, thus many
practical joins that would otherwise need two passes can
complete in one pass. Second, when the join kernel spills to
disk, materializing the runs is cheaper. Although we only
explore hybrid-hash in this paper, we believe a sort-merge
kernel would offer similar results because of the duality of
hash and sort [8].

4.3 Materialization Strategy
To implement different materialization strategies, the query

plan must also change at a logical level internal to FlashJoin.
Typically in a query plan, associated with each node is a de-
scription of the tuple the node produces. For example, in
Figure 6, a traditional plan would indicate that the first join
(Join 1 ) produces tuples with attributes (B, C, E, G, H). By
adjusting these descriptions, which indicate to the fetch ker-
nel the attributes to retrieve, we can specify any strategy we
like for retrieving projected attributes, as long as it is con-
sistent with the plan.

For any individual binary join, there is a tension between
the cost of retrieving projected attributes from base relations
immediately after the join and the cost of retrieving the
attributes further downstream. The former increases the
cost for partitioning in subsequent join kernels, if those joins
cannot complete in one pass. The latter forces the final fetch
kernel to make additional read and write passes over the
output, which can be expensive if the output cardinality is
large. Choosing the optimal strategy requires estimating the
cost of these options and minimizing the total cost across the
whole multi-way join. The number of possibilities is large



since at every node in the plan, we can choose to materialize
any subset of the remaining needed attributes. To make
matters more complicated, the cost for a particular strategy
may be significant enough to affect the total cost and thereby
affect the optimal join order.

Instead of exploring this optimization space, in this paper,
we use a simple heuristic: late materialization. This heuris-
tic postpones retrieving projected attributes as far down-
stream as possible. Every join produces the minimum set
of attributes needed by the next operator and the final join
produces the output needed by the remaining plan opera-
tors. This heuristic works well as we show in Section 5 be-
cause typical query plans reduce the output cardinality at
each level of the plan. In that case, an extra pass over the
output is usually cheaper than paying the additional mate-
rialization cost through multiple levels of the plan. In order
to perform the late materialization, the join kernel output
carry forward the RIDs for each of the base relations needed
downstream.

Figure 6 shows an example of this strategy. Each tuple
produced by FlashScan 1 in contains only attribute A, which
is one of the join attributes of Join 1, and each tuple pro-
duced by FlashScan 2 contains only attribute D, the second
join attribute of Join 1. Similarly, the tuples produced by
Join 1 contain only attribute G, which is one of the join
attributes of Join 2. Finally, Join 2, the last join node, pro-
duces tuples with all of the attributes needed in the result:
B, C, E, H, F . Moreover, if there was a sort operator after
Join 2 that sorted the results based on attribute L (R3),
then each tuple produced by Join 2 would also contain L.

4.4 Fetch Kernel
The fetch kernel uses the join index, produced by the join

kernel, to materialize the attributes of the join result from
their base relations. For example, in Figure 6, the join ker-
nel of Join 1 outputs pairs of RIDs (id1, id2) from relations
R1 and R2, respectively. A RID specifies the page and offset
within the page for that row. The fetch kernel uses id2 to
locate and retrieve attribute G from relation R2. Similarly,
Join 2 produces a join index containing (id1, id2, id3) point-
ing to rows of R1, R2, and R3. The corresponding fetch
kernel, uses id1 to retrieve attributes B, C, id2 to retrieve
attributes E, H and id3 to retrieve attribute F .

A straightforward strategy for the fetch kernel is to re-
trieve projected attributes in a tuple-at-a-time, non-blocking
fashion. For each join index tuple, the kernel locates the
needed mini-pages in the buffer pool or retrieves them from
the underlying relation, and composes the result tuple. This
approach is reasonable when all of the pages needed to gen-
erate the result can fit in memory because random reads are
cheap. When available memory is insufficient, however, this
approach may result in reading some pages multiple times
because the RIDs in the join index are usually unordered.
The larger the result, the worse is the overhead for re-reading
pages. TID hash joins implemented this approach, and this
overhead was their biggest weakness [19].

To mitigate this overhead, we present a fetching strat-
egy, inspired by Jive-Join [18], that reads each containing
page from each base relation only once at the cost of addi-
tional passes over the join index. Algorithm 1 makes multi-
ple passes over the join index fetching attributes in row order
from one relation at a time. Roughly speaking, in each pass,
it sorts the join index based on the RIDs of the current rela-

Algorithm 1 Fetch Kernel to produce the join result with
multiple passes.

Input: R1, . . . , Rk: base relations, id1, . . . , idk: corre-
sponding RID attributes, A1, . . . , Ak: Ai is the set of
attributes to fetch from relation Ri, |A1| < . . . < |Ak|,
JI: join index

Output: JR: join result
1: T = SortedStream(JI, id1)
2: for i = 1 to k do
3: Z = {}
4: while T is exhausted do
5: for all memory resident tuples t of T do
6: Add GeneratePartialResultTuple(t, idi, Ri,

Ai) to Z
7: end for
8: Produce sorted run of Z on idi+1

9: end while
10: T = SortedStream(Z, idi+1)
11: end for
12: JR = T

tion to be scanned. Then, it retrieves the needed attributes
from that relation for each tuple and augments the join in-
dex with those attributes. If the join index does not fit in
memory, it uses an external merge sort. Sorting ensures
that once a mini-page from a relation has been accessed,
it will not need to be accessed again, thus placing minimal
demands on the buffer pool. Sorting, however, does not en-
sure sequential access to the underlying relation because the
needed pages can be far apart. Hence, this strategy of de-
coupling and postponing materialization is better suited to
SSDs than HDDs.

We explain some important optimizations in Algorithm 1
above. First, the final merge of the sort and attribute re-
trieval are pipelined to avoid the unnecessary final write.
SortedStream sorts the join index but leaves out the last
merge step that creates a final sorted run (line 1). As tuples
are fetched from T (a sorted stream), it merges the under-
lying runs on demand. For each tuple, GeneratePartial-
ResultTuple retrieves the needed attributes and augments
the join index (line 6). We ensure that only enough tuples
are read so that the result Z, the new join index with the
attributes Ai projected, can fit in memory (line 5). Finally,
we sort Z on the RID for the next relation (line 8). The
sorted Z runs are then merged into a single sorted stream
T (line 10) which is then pipelined with attribute retrieval
from the next relation.

A second optimization is that our fetch kernel processes
relations in order of the width of the attributes retrieved,
from smallest to largest. This order reduces the data spilled
to SSD when producing the intermediate runs. Third, if Z
and JI fit in memory, we avoid spilling them to disk. Fourth,
if a fetch kernel (esp. intermediate ones in the plan) already
has its input sorted on the RIDs for one of the relations, it
processes that relation first to avoid the sort. The cost for
this fetch strategy depends on the cardinality of the result,
the width of the attributes, and the number of relations that
need to be accessed.

Although we did not implement it, an analogous fetching
strategy would be to use hashing instead of sorting, as done
in RARE-join [24]. In each pass, we could hash join index
tuples into buckets based on the page id in the RID. This



would ensure that all tuples that need the same page fall
into the same bucket. The buckets could be sized such the
number of distinct pages referenced fit in the available mem-
ory. We could then process each bucket fetching the the ap-
propriate pages from base relations. This strategy requires
less CPU overhead than the sort-based one, but would need
more memory than the sort-based one for the same number
of partitions.

In summary, if the optimizer estimates that all the pages
needed to retrieve projected attributes can fit in memory, we
opt for the naive, tuple-at-a-time strategy. Otherwise, we
resort to our sort-based relation-at-a-time fetching strategy.

5. EXPERIMENTAL EVALUATION
This section presents our experiments with FlashJoin. Our

objective is to demonstrate the effectiveness and efficiency of
FlashJoin during the execution of multi-way joins and com-
plex BI queries. In Section 5.1, we describe the algorithms
evaluated, the datasets and queries used, and implementa-
tion details. The results are presented in the remainder of
the section.

5.1 Experimental Setting
FlashJoin was implemented inside PostgreSQL as a new

join operator. Significant changes had to be performed in
PostgreSQL’s planner component to support the late ma-
terialization strategy. The planner employes a cost-based
optimizer to determine the most efficient way to execute
a query. The output of the planner is a query execution
plan that details which access methods to use and which at-
tributes to access from each base relation. Additionally, it
determines for each operator in the query plan the schema
(attributes) of output tuples. We altered the planner in or-
der to generate query execution plans which comply to the
late materialization strategy. Specifically, we added a recur-
sive function that takes as input the query execution plan
and process it in a top-down fashion (recall that a query
execution plan is a tree of operators). For every operator
(node in the query execution plan) our function alters the
schema of output tuples by removing unnecessary attributes.
Overall, we added approximately 7K new lines of code in
PostgreSQL, half of which was the implementation of Flash-
Join and planner component and the rest divided between
FlashScan, bulk-loading utilities, the buffer manager and the
storage layout.

There are several limitations with respect to our imple-
mentation of FlashJoin and the execution of complex queries.
Currently, we support query execution plans that contain
a pipeline of hash joins followed by other operators, such
as sort and aggregation. Furthermore, the optimizer is not
aware of the late materialization strategy and the cost of
FlashJoin and so it produces the same plan that it would
using the hybrid hash operator. In the future, we plan to
integrate the cost of FlashJoin into the optimizer.

In all of our experiments, we compare the performance of
FlashJoin with the hybrid-hash join algorithm implemented
in PostgreSQL. We consider two variations of the hybrid-
hash join algorithm: one for each storage layout. We re-
fer to the default implementation over the NSM layout as
HNSM. We call our version of hybrid-hash over the PAX lay-
out HPAX. HPAX and HNSM use the same materialization
strategy, but when HPAX is used, the scan nodes use the
FlashScan operator to read only the projected attributes of
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Figure 7: Performance comparison of join algo-
rithms for two-way joins when the join is computed
in one pass.

each relation.
We conducted a series of experiments using synthetically

generated datasets and queries. We also evaluated the per-
formance of FlashJoin using full TPC-H queries. All of the
experiments were conducted with the same page sizes and
relations and on the same system that we described in Sec-
tion 3.2. The sizes of the relations and the amount of mem-
ory allocated are described separately for each experiment.
After the execution of each query, PostgreSQL was restarted
and all cached pages were flushed from memory using the
drop caches utility of the Linux kernel. In all the experi-
ments, the performance metric measured is wall-clock time
to produce the full join result.

5.2 Two-way Join Results
In this section, we assess FlashJoin during the execution of

two-way joins. We consider the equijoin of two relations R, S
on a single join attribute. R contains 70 million tuples with
a total size of approximately 10GB and S contains 7 million
tuples with a total size of 1GB. We consider queries of the
following form: “SELECT R.an, . . . , R.am, S.an, . . . , S.am

FROM R, S WHERE R.ai = S.aj”. We use projectivity
to refer to the percentage of the tuple length projected from
each join relation. When projectivity is 100%, a join result
tuple contains all of the attributes of R and S and has a
total tuple length of 256 bytes.

5.2.1 One-pass Joins
In the first experiment, we vary projectivity from 4% to

100%. The amount of memory allocated to the join is 1GB
to ensure that all algorithms compute the join in one pass.
Figure 7 shows the runtimes of HNSM, HPAX, and Flash-
Join with three different result cardinalities. The percentage
next to each algorithm’s label indicates the cardinality of the
join result, expressed as a percentage of the cardinality of
the larger join relation. In this experiment, join result car-
dinality had a negligible effect on the performance of HPAX
and HNSM, so we only present one set of execution times
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for them.
The performance of HNSM is independent of projectivity.

The input scans of HNSM read relations R and S entirely,
regardless of how many attributes participate in the join re-
sult. HPAX, however, uses the FlashScan operator to read
from flash disk only the attributes that are actually needed
in a query. For low projectivities (4% in our experiment),
HPAX is 3X faster than HNSM. However, as projectivity
increases, more attributes are read and the performance dif-
ference between HPAX and HNSM diminishes.

The performance of FlashJoin depends on both the projec-
tivity and the join result cardinality. When the cardinality
is 1% or greater, FlashJoin and HPAX perform the same
since every disk page of R and S contains at least one tuple
that belongs to the join result and must be read. For car-
dinalities less than 1%, FlashJoin reads all of the minipages
of the join attributes but only a fraction of the minipages
containing projected attributes. Consequently, it reads less
data than HPAX. As projectivity increases, the number of
minipages that FlashJoin does not read increases accord-
ingly and causes a more pronounced performance difference
of up to a factor of 3x.

5.2.2 Two-pass joins
In the second experiment, we compare the performance of

the join algorithms when they require two passes to compute
the join result. The amount of memory allocated to the join
is 100MB and the same query was used as above. Figure 8
shows results for HNSM and HPAX with a join result car-
dinality of 1% and for FlashJoin with cardinalities, varying
from 0.1% to 100%.

The execution times of HNSM and HPAX increase linearly
with projectivity: since projections are performed early in
the query execution plan, more data participate in the par-
titioning phase as projectivity increases. Consequently, the
partitioning cost increases. HPAX is faster than HNSM
for lower projectivities because it reads only the attributes
needed in the query, until at 100% projectivity, both HPAX
and HNSM read all attributes and perform the same.

0

100

200

300

400

500

600

700

800

100 150 200 250 300 350 400 450

T
im

e
 (

se
c)

Memory (MB)

Two-way join

500 550 600

HNSM

HPAX

FLASHJOIN

Figure 9: Performance comparison of two-way join
algorithms as a function of memory size.

FlashJoin, however, is much faster than HNSM and HPAX,
and increasingly so as projectivity increases. FlashJoin ac-
cesses only the join attributes during the expensive parti-
tioning phase, when two passes are required for the com-
putation of the join. Consequently, the partitioning cost of
FlashJoin does not depend on projectivity.

The performance of FlashJoin does depend on the join
result cardinality, however. When the cardinality is low,
FlashJoin reads only a few minipages of projected attributes
in order to construct the join result tuples and performs
up to 7X faster than HPAX and HNSM. As cardinality in-
creases, FlashJoin reads a larger fraction of minipages, thus
increasing the join result construction cost. Furthermore,
when the join index does not fit in memory, FlashJoin pays
the cost of materializing the join index, whose size depends
on the result cardinality. When the result cardinality is
100%, FlashJoin must read as many minipages as HPAX
and is only marginally faster than HPAX.

5.2.3 Memory impact on joins
In the third experiment, we compare the performance of

the join algorithms as we vary the amount of memory allo-
cated. We set the join result cardinality at 1% of the car-
dinality of R (larger relation) and the projectivity at 25%.
We vary the amount of memory from 100MB to 600MB.

Figure 9 shows that FlashJoin is faster than both HPAX
and HNSM for all memory sizes examined. HPAX and
HNSM require at least 500MB to compute the join in one
pass. The hash table on the join attribute of the build re-
lation requires 270MB and the projected attributes of the
build relation require 230MB. When memory is less than
500MB, HPAX and HNSM compute the join in two passes.
Since they both use the hybrid hash join algorithm, they
exploit any memory available to avoid writing all of the par-
titions. When the allocated memory is between 250MB and
500MB, one partition fits in memory and only the second
partition gets written.

By reading only the join attributes, FlashJoin has a smaller
memory footprint and increases the range of memory sizes
at which a two-way join is executed in one pass. Flash-
Join requires only 270MB of memory (for the hash table)
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to compute the join in one pass. Consequently, FlashJoin
is 2X faster than the other algorithms when memory size is
between 270MB and 500MB. When memory is larger than
500MB, FlashJoin is 1.2X faster. When memory is less than
270MB, FlashJoin computes the join in two passes; it is 3X
faster than HPAX and HNSM due to the reduced partition-
ing cost.

5.3 Multi-way Joins
Next, we assess FlashJoin during the execution of multi-

way joins. We consider three-way joins first, then look at
star joins of up to six relations. Finally, we examine the im-
pact of changing the join algorithm on more complex queries
such as those in TPC-H.

5.3.1 Three-way Joins
For this experiment, we executed queries of the form:

“SELECT R.an, . . . , R.am, S.an, . . . , S.am, T.an, . . . , T.am

FROM R, S, T WHERE R.ai = S.aj AND R.ak = T.al”.
R contains 50 million tuples, S contains 20 million tuples and
T contains 7 million tuples; their sizes are 7.5GB, 3GB and
1GB, respectively. The join between R and S is a primary-
foreign key join returning 50 million tuples (R contains the
foreign-key). We control the cardinality of the join result by
varying the selectivity of the join between R and T . The
join order is determined by the optimizer and is the same
for all queries executed. The amount of memory allocated
to each join is 100MB. All of the joins are executed in two
passes.

Figures 10 and 11 show the results for two different pro-
jectivities: 25% and 75%, respectively. For each projectivity,
we vary the cardinality of the join result from 0.01% (5000
rows) to 100% (50 million rows) of the larger relation’s car-
dinality.

FlashJoin is up to 3X faster than HPAX when projectivity
is 25% and up to 5X faster than HPAX when projectivity
is 75%. For a given projectivity, increasing the cardinality
of the join result increases the execution time of all algo-
rithms: higher cardinalities causes more rows in the inter-
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rithms during three-way joins, as a function of mem-
ory size allocated per join.

mediate results and hence higher partitioning costs. How-
ever, FlashJoin suffers the least since it only partitions the
join attributes. It benefits more at higher projectivity since
there are more attributes that it avoids partitioning.

5.3.2 Memory impact on joins
In the next experiment, we compare the algorithms’ per-

formance for three-way joins as a function of the amount
of memory allocated per join. We consider the same three-
way join queries as in the previous experiment. We set the
join result cardinality at 1% of the cardinality of relation R
and the projectivity of each relation at 25%. We vary the
amount of memory allocated per join from 100MB to 1GB.
Figure 12 presents our results.

Both HPAX and HNSM require 500MB to execute the join
between R and T in one pass and 1600MB to execute the



join between R and S in one pass. By accessing only the join
attributes, FlashJoin only requires 270MB to compute the
join between R and T in one pass and 900MB to compute
the join between R and S in one pass. FlashJoin is therefore
1.3X to 2.5X faster than HNSM and 1.1X to 2.3X faster
than HPAX. We also conducted experiments with larger join
result cardinalities and got consistent results.

5.3.3 Star joins
Next, we assess FlashJoin during the execution of N -way

STAR joins for different values of N , ranging from 3 to 6.
The relations and their sizes are presented in Table 2. R0 is
the fact table and R1, . . . , R5 are dimension tables. In this
experiment, an N -way join involves the first N relations
(R0, . . . , RN−1) of Table 2. The join between R0 and RN−1

returns 5 million tuples (10% of R0’s cardinality). Every
other join between R0 and Ri, where i = 1, . . . , N − 2, is
a primary-foreign key join. We set the projectivity of each
relation at 25%. Hence, for the 6-way join, the size of each
result tuple produced is 192 bytes.

Relation R0 R1 R2 R3 R4 R5

Cardinality (M tuples) 50 20 14 7 3.5 2
Size (GB) 7.5 3 2 1 0.5 0.3

Table 2: Relations participating in N-way STAR
joins.

Figure 2 in Section 1 presents our results. FlashJoin out-
performs both HPAX and HNSM by at least a factor of 2X
for all of the values of N examined.

5.3.4 TPC-H Queries
Finally, we evaluate FlashJoin in the context of more

complex queries. We chose queries Q3 and Q10 from the
TPC-H benchmark. Q3 retrieves unshipped orders. It in-
volves a three-way join among tables CUSTOMER, OR-
DERS and LINEITEM. There is a GROUP BY clause, ap-
plied on two attributes of ORDERS and one attribute of
LINEITEM. Q3 also sorts orders by decreasing revenue. Q10
identifies customers having problems with shipped parts. In
involves a four-way join among tables CUSTOMER, OR-
DERS, LINEITEM and NATION. A GROUP BY clause is
applied on six attributes of CUSTOMER and one attribute
of NATION. Customers are sorted in decreasing order of
lost revenue. We generated data using a scale factor (SF) of
10. In all tables, we replaced variable length attributes with
fixed length attributes. In both queries, we set the memory
allocated per operator at 100MB.

Figure 13 presents results for both queries. For Q3, Flash-
Join is 1.6X faster than HNSM and 1.4X faster than HNSM.
For the amount of memory allocated, all join algorithms re-
quire two passes to execute one of the joins in Q3. Hence,
FlashJoin performs better than HPAX and HNSM due to
its reduced partitioning cost.

For Q10, FlashJoin is 1.8X faster than HNSM and 1.5X
faster than HPAX. As in Q3, there is one join in Q10 that
is executed in two passes by all join algorithms. However,
Q10 exhibits higher projectivity than Q3, producing larger
tuples. Consequently, the partitioning cost of HNSM and
HPAX is even higher for Q10 and their performance differ-
ence with FlashJoin increases.

Figure 13: Performance comparison of join algo-
rithms during the execution of TPC-H queries.

6. CONCLUSIONS
SSDs constitute a significant shift in hardware character-

istics, comparable to large CPU caches and many-core pro-
cessors. In database systems, SSDs change not only power
efficiency but also query execution efficiency. In this pa-
per we demonstrate that SSDs can improve database per-
formance for business intelligence and other data analysis
queries. We first show that a column-based page data layout
is a natural choice for speeding up selections and projections
on SSDs. By combining a column-based storage layout with
temporary join indexes and late materialization, we produce
a new pipelined join algorithm that is much more efficient
on SSDs than previous algorithms such as hybrid-hash join.

Our results show performance improvements of up to a
factor of six for scans, multiway joins, and complex queries
from the TPC-H benchmark. These improvements stem
from three factors: First, FlashJoin only reads attributes
as they are required by each operator, which reduces the
amount of data read as compared to hybrid-hash join. Sec-
ond, FlashJoin has a reduced memory footprint and there-
fore increases the range of memory sizes for which each join
can be computed in one pass; one-pass joins require much
less I/O than two-pass joins. Third, it employs a late mate-
rialization strategy to access the minimum set of attributes
needed at any point in the query execution plan, thus reduc-
ing the amount of data accessed from base relations and the
partitioning cost when the joins are executed in two passes.

Our work has focused so far on storage formats and query
execution algorithms that can take advantage of the per-
formance characteristics of SSDs. One new consideration
for query optimization is that many query execution plans
that were not appropriate for HDDs become appropriate for
SSDs. In addition to the algorithms presented here and in
related work, query optimization may need to reconsider
when to use index navigation, including index-nested-loops
join and other forms of nested iteration. We expect SSDs to
expand the cases in which index-based query execution plans
are competitive with set-oriented query execution plans us-
ing hash join, hash aggregation, and sorting. In addition,
the new efficiency trade-offs of late versus early materializa-
tion greatly expand the set of interesting join permutations
for a given query. We expect that query optimization for



databases on SSDs — and databases with both HDDs and
SSDs — will be an interesting area of future research.

Although we focus mainly on performance in this paper,
an important optimization criteria for many systems is price-
performance. To improve this metric, we must optimize not
only for purchase price but also for energy-related costs [11].
In doing so, we expect that a hybrid disk, SSD, and DRAM
system will be typical. As SSD prices fall, SSDs will claim
a larger role in system — trading away disk for better per-
formance and trading away DRAM for lower purchase cost
and power dissipation. The best ratios will depend on the
workload as well as prevailing technology costs and trends.
Determining these ratios with total cost in mind as well as
devising methods for seamlessly spanning across all three
memory technologies are promising areas of future research.
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