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Abstract 

The Source Path Isolation Engine (SPIE) is a system 
capable of tracing a single IP packet to its point of origin 
or point of ingress into a network. SPIE supports tracing 
by storing a few bits of unique information about each 
packet for a period of time as the packets traverse the 
network. Software implementations of SPIE can trace 
packets through networks comprised of slow to medium 
speed routers (up to OC-12), but higher speed routers 
(OC-48 and faster) require hardware support. In this 
paper, we discuss these hardware design aspects of SPIE. 
Most of the hardware resides in a self-contained SPIE 
processing unit, which may be implemented in a line card 
form factor for insertion into the router itself, or as a 
stand-alone unit that connects to the router through an 
external interface.  

1. Introduction 

Today’s Internet infrastructure is vulnerable to 
motivated and well-equipped attackers. Much work is 
being done to safeguard resources, detect an attack, and, 
if possible, attempt to thwart the attack.  

A more difficult problem is determining the origins of 
an attack. Accurate and reliable identification of attackers 
is currently extremely difficult because the network 
routing infrastructure is stateless and based largely on 
destination addressesno records are kept in the routers, 
and the source address is not trustworthy. The attacker 
can generate offending IP packets masquerading as 
having originated almost anywhere, including from IP 

addresses that are not globally unique, such as those used 
to create private networks [1]. In general, attacks against 
sites or even the network infrastructure can be waged 
from the safety of complete anonymity. 

One method to expose the true origin of a packet is to 
support after-the-fact single packet traceback. Locating 
the point of attack is a first step towards both blocking the 
attack and identifying the party who launched the attack. 

There are several approaches to determining the route 
of attack packets. Burch and Cheswick proposed inferring 
the route by using a controlled flooding scheme and 
watching for variations in the received packet flow [2]. 
Bellovin has proposed using ICMP messages to provide 
authenticated marking of packets [3]. Savage et al. 
proposed a probabilistic marking approach where routers 
mark packets with partial path information during packet 
forwarding [4]. After a victim has received a substantial 
number of packets, it can reconstruct the entire path by 
combining the pieces of path information embedded in 
each packet. Song and Perrig point out that this scheme 
gives a large number of false positives when the attack 
comes from multiple sources, and suggest improved and 
authenticated marking schemes with less packet overhead 
and higher precision [5]. 

In general, these schemes are targeted at the typical 
denial-of-service attack that Internet sites experience 
today [6] and require a large number of the attacking 
packets be sent during the detection phase. Attacks that 
require only a few packets are generally not traceable by 
these techniques. Yet, it is known that a single packet 
attack can render a host inoperable for hours. WinNuke, 
Teardrop, and NewTear [7] are examples of single-packet 
attacks that exploit vulnerabilities in packet processing of 
popular TCP/IP stack implementations. 



The obvious approach to single packet traceback is 
simply to log packets at various points throughout the 
network, and then use appropriate extraction techniques 
to discover the packet’s path. Logging requires no 
computation on the router’s fast path, and hence can be 
implemented efficiently in today’s router architecture. 
However, the effectiveness of the logs is limited by the 
amount of space available to store them and the internal 
data bandwidth available to copy the packets as they pass 
through the router. Given today’s link speeds, packet logs 
quickly grow to intractable sizes, even over relatively 
short time frames. An OC-192 link is capable of 
transferring 1.25GB per second. If one allows 60 seconds 
to discover an attack and conduct a query, a router with 
16 links would require 1.2TB of high-speed storage. 

Sampling techniques can lessen these requirements but 
also reduces the probability of detecting small flows. 
Alternatively, routers can be tasked to perform more 
sophisticated auditing in real time, extracting a smaller 
amount of information as packets are forwarded. Many 
currently available routers support input debugging, a 
feature that identifies on which incoming port a particular 
outgoing packet (or set of packets) of interest arrived. 
Since no history is stored, however, this process must be 
activated while the flow of interest is currently passing 
through the router. Furthermore, due to the high overhead 
of this operation on many popular router architectures, 
activating it may have adverse effects on the traffic 
currently being serviced by the router. 

Both Sager [8] and Stone [9] have proposed 
sophisticated logging of router events for attack analysis, 
but both schemes introduce significant processing and 
storage overhead in the routers. Schnackenberg et al. 
propose a special Intruder Detection and Isolation 
Protocol (IDIP) to facilitate interaction between routers 
involved in a traceback effort [10]. IDIP does not specify 
how participating entities should track packet traffic; it 
simply requires that they be able to determine whether or 
not they have seen a component of an attack matching a 
certain description. 

SPIE, the Source Path Isolation Engine, is a system 
that provides traceback capability on a per-packet basis. 
SPIE-enabled routers record tiny digests of each packet as 
it passes. These digests are kept for a period of time long 
enough to allow after-the-fact traces of the packet. At 
medium to high speeds, however, calculating and storing 
the packet digests requires hardware assistance. SPIE’s 
design allows this support to be provided through a 
combination of simple modifications to current router line 
cards and a limited amount of additional hardware. 

A full description of SPIE and an analysis of its 
effectiveness are given in [11]. In this paper, we present 
in detail the hardware components of the SPIE system 
which provides hash-based single packet traceback. 

2. SPIE System Overview 

SPIE is a system of components that records packets 
passing through routers and provides the ability to 
reconstruct a particular packet’s path given the packet, 
where the packet was destined, and an approximate time 
the packet was received. Figure 1 shows the relationship 
between the SPIE components. 

A SPIE-enabled router contains a special process 
called a Data Generation Agent (DGA). A DGA logs each 
packet as it passes through the router by calculating a 32-
bit digest of the packet. The digest is constructed by 
applying a collision-resistant hash over selected fields in 
the packet, and is stored in a digest table as a bitmap of 
Bloom filters [12] to conserve memory. The digest table, 
therefore, is a compact representation of all of the traffic 
served by the router over a given time period. The amount 
of memory dedicated to the DGA dictates the size of the 
digest table and how long it is used before a new digest 
table is constructed. Old digest tables are timestamped 
and kept as long as the router’s resources allow. 

A SPIE Collection and Reduction Agent (SCAR) is 
responsible for several routers in a region of the network. 
The SCAR asks the routers to dump all of their digest 
tables when a request for traceback is made. Once on the 
SCAR, analysis is no longer time constrained. The SCAR 
examines each router’s cache to construct a subgraph of 
the trace. The trace requests come from a central 
controller called the SPIE Traceback Manager (STM). 
This controller is responsible for authenticating all 
requests, querying the appropriate SCARs, and 
constructing the complete attack graph from the SCARs’ 
subgraphs. 

When an intrusion detection system discovers a 
suspicious packet, it contacts the STM with the packet, 
the destination node, and the time at which the packet was 
received (we assume clock synchronization among 
participating nodes to correctly correlate packet arrivals, 
such as NTP [13]). The STM authenticates the request for 
traceback and directs all DGAs to dump their digest tables 
to their SCARs. Then, beginning at the SCAR responsible 
for the victim’s region of the network, the STM sends a 
query message consisting of the packet information 
provided by the IDS. The SCAR responds with a partial 
attack graph. The attack graph either terminates within the 
region managed by the SCAR, in which case a source has 
been identified, or it contains nodes at the edge of the 
SCARs network region, in which case the STM sends a 
query to the SCARs abutting those edge nodes. This 
process continues until all branches of the attack graph 
terminate either at a source within the network or at the 
edge of the SPIE system. The STM then constructs a 
composite attack graph, which it returns to the IDS. 
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Figure 1: SPIE network infrastructure. 

SPIE requires very little data to be kept per packet: 
only a few bits. One consequence of storing so little 
information is that packet identification is based on 
probability. Due to the probabilistic nature of Bloom 
filters, a SCAR or DGA cannot be sure that the actual 
packet P was seen at a particular router. Rather, it can 
determine either that, with very high probability, P was 
seen, or with certainty that P was not seen. As a result, 
SPIE will always provide a trace path to the packet’s 
origin, but may also generate additional spurious false 
paths. By varying the hash functions across routers and 
time periods, SPIE attempts to limit the effect of spurious 
matches at any particular router. 

The hash functions used by the Bloom filters may be 
quite lightweight. Intuitively, one might expect that an 
attacker might try to cause hash function collisions, 
concealing attack traffic. However, causing hash 
collisions yields no advantage. If the attacker seeks to 
make the attacking packets from different sources look 
alike (e.g., hash to the same value), the resulting SPIE 
trace will simply be a tree-shaped path (from one 
destination back to multiple sources) revealing all the 
entry points from which the hacker can attack. And 
making each packet look different simply means that each 
packet can be uniquely traced to its origin. 

3. Hardware Design 

Data Generation Agents are the primary hardware 
components of the SPIE system. The entire system 
depends on their functionality and feasibility. One 
particular concern is the ability to implement DGAs for 
very high data rate interfaces. Here we present the issues 
of implementing DGAs in hardware, with a particular 
focus on high performance implementations. 

Figure 2 illustrates the key components of the SPIE 
hardware. Most of the hardware exists in a self-contained 
SPIE processing unit, which may be implemented in a 
line card form factor for insertion into the router itself, or 

as a stand-alone unit that connects to the router through 
an external interface. In either case, all interfaces on the 
router must be extended to support data collection 
through the implementation of signature taps. 

The signature tap is a relatively simple piece of 
hardware that computes n independent 32-bit digests (S32 
in the diagram) of each packet that arrives on a SPIE-
capable interface. These digests are then passed to the 
SPIE processing unit on a separate signature bus. The 
signature aggregation stage of the SPIE card produces a 
periodic digest table of size 2k bits (where k is at most 32), 
covering a time interval R, which is then stored in a large 
bulk history memory organized as a time-slotted ring 
buffer containing the past digest tables. 

Entire digest tables in the history memory, indexed by 
collection interval, can be transferred to the control 
processor on demand for transmission to a SCAR. 
Generally, due to network latencies and timing 
uncertainties in the arrival time of a packet of interest at a 
given router, several tables will need to be fetched 
surrounding the estimated time of packet arrival. 

Note that different systems can choose different values 
of n, k, and R, as long as they report how each of the n 
digests are computed, which k bits of the 32 digest bits 
are used, and the time span covered by each digest table 
sent in response to a query. Selection of appropriate 
values of n, k, and R is discussed after a more detailed 
description of each individual stage of the hardware 
design. 

3.1. Signature Taps 

The signature taps produce digests of each IP packet 
seen by the interface. In order to eliminate false positives 
during SPIE traceback, the digesting functions are 
different at each router. While our analysis presumes 
independently random digesting functions at each router, 
we propose to use a salted CRC-32 for high-speed 
implementations. Previous studies have shown that CRC-
32 performs quite well on typical input streams [14], and 
is significantly cheaper to implement in hardware than 
traditional hash functions. 

A salted CRC is one in which the CRC function begins 
its computation with a random 32-bit initial value. In the 
DGA, a different initial value is chosen for each of the n 
digests. Furthermore, the initial value may be changed 
each time the digest tables are saved into the history 
memory. This approach ensures that packets are 
represented by n distinct digests at each router, every 
packet received at the router during a specific time 
interval is associated with the same set of digest 
functions, and, further, that digest table collisions are 
(empirically, at least) independent.  

Each packet digest is determined by computing a 
salted CRC-32 of the IP packet header and the first 64 bits 
of the packet payload. However, the IP options, TTL, 



checksum, and TOS header fields are zeroed out since 
they change frequently in transit.  

Router line cards can be easily modified to include 
signature taps; in some routers, the IP forwarding engine 
may be able to compute signatures during the forwarding 
process. In other architectures, it may make more sense to 
place the signature tap on the output of the ingress layer-2 
packet framer. In any event, the amount of logic required 
to compute a CRC-32 digest is small, and easily added to 
most line cards. 

Signature taps can be connected to the SPIE 
processing unit in several ways. For lower-speed routers, 
a simple serial interface with specialized framing will 
suffice. Depending on the form factor, the serial link 
could be routed over the back plane to an in-chassis SPIE 
card, or run to an auxiliary external connector on the line 
card bulkhead for connection to a separate SPIE box. (For 
OC-192 line cards, a Gigabit Ethernet interface may be a 
relatively simple way to transmit digests, since the 
signature bit rate is about 10% of the link rate.) 

With an external SPIE implementation, it is also 
possible to put the signature taps in the SPIE box itself, 
with a set of “feed-through” connectors passing the input 
signals on to the actual router input ports. This requires 
the taps to include sufficient logic to extract IP packets 
from the link. This may be a viable approach for Ethernet 
interfaces and lower-speed single-channel packet over 
SONET (POS) interfaces, for which one-chip framers are 
available. 

3.2. Transforms 

Signature taps do not encompass all packet recording 
at the router. IP packets may undergo valid transformation 
(e.g., fragmentation, IPsec tunneling, network address 
translation) while traversing the network, in which case, 
packet digests do not sufficiently enable traceback of a 
packet. Packet transforms must be recorded such that the 
original packet is able to be reconstructed during the 
traceback process. Therefore, DGAs record within a 
transform lookup table (TLT) the hash of a transformed 
packet, the type of transformation, and sufficient packet 
data to enable packet reconstruction. 

Transform information is provided to the DGA by the 
control processor because packets that undergo 
transformation are generally routed through the control 
path of the router. DGAs record and store within the 
history memory a corresponding TLT for every packet 
digest table. Accordingly, digest table/TLT pairs are read 
out of the history memory to service a SPIE traceback 
query. For a more in-depth discussion of SPIE’s handling 
of packet transformation, refer to [11]. 
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Figure 2: An example SPIE DGA hardware 
implementation for high-speed routers. 

3.3. Signature Aggregation 

Once the digests arrive at the processing unit, they are 
aggregated into digest tables representing the traffic 
serviced by the router over a small time interval (the 
parameter R in the diagram). The particular aggregation 
implementation shown in the diagram is designed to be 
scalable to very high-speed routers, with relatively low 
implementation cost. Much simpler designs are possible 
for lower-speed routers. 

The aggregation interface may need to be multi-ported 
for routers with high-speed interface links. Arriving 
digests on each port are placed into a small FIFO, which 
feeds a simple arbitrating multiplexer that controls access 
to an aggregation memory for several input ports. A 
specified set of k bits from each 32-bit packet digest is 
considered a table index, and the appropriate bit in the 
aggregation memory is set accordingly. Every R 
milliseconds, the memory contents are copied out and 
ORed with the contents of other signature memories on 
the card, producing a global digest table of size 2k for the 
entire router, which is passed on to the history memory 
for archival. This record represents the traffic set for the 
prior R millisecond interval, and is labeled appropriately. 

Each memory location is cleared while being read out. 
The aggregation memory may use a ping-pong double-
buffering scheme to avoid race conditions, but this 
doubles the memory size. It may also be acceptable to 
only lock the location that is being read out until it is 
cleared, since this only adds additional R latency to the 
timing uncertainty of a packet being traced. 

For low-speed routers, in which the total packet arrival 
rate is about 10 Mpkts/sec or less, the aggregation stage 
may be eliminated in favor of setting digest bits directly 
in the current slot of the history memory. Low-speed 
routers also need much less history memory, of course, 
since the signature memory fills up more slowly. 



3.4. Aggregation Rationale 

SPIE must scale to very high speeds while still 
allowing the individual packet histories to be queried for 
many seconds. The main purpose of the intermediate 
aggregation stage is to fulfill this requirement through the 
use of two disparate memory types, SRAM and DRAM. 
Recall that SRAM maintains high access rates (e.g., 10 
ns/access), at the expense of cost and heat dissipation. 
DRAM, on the other hand, is much denser, requires less 
power, and is considerably less costly for equivalent 
amounts of memory, but suffers from diminished access 
rates (e.g., 50 ns/access), although high throughput rates 
of 3.3 ns are common. The signature aggregation phase 
allows SPIE to take advantage of both SRAM and DRAM 
to enhance scalability. 

In a high-end router with 32 OC-192 interfaces, the 
combined packet arrival rate is about 640 Mpkts/sec, 
requiring about 3.125 Gbits of memory per second of 
history kept (for a typical Bloom filter configuration of n= 
3 [11]). An intrusion detection system may take a few 
minutes to report an intrusion and request a traceback, 
requiring a few 100s of Gbits of memory at the router. 
While not totally unreasonable for current generations of 
DRAMs, it is well out of the feasible cost and power 
range for an SRAM-based history memory. So a staging 
mechanism is required to transfer the digests from the 
high-speed portion of the interface (where SRAM is 
required) to an area running at DRAM speeds. 

In addition to the overall capacity of the memory 
banks, technology limitations on access time are also an 
important design consideration. The signature collection 
process requires four memory accesses per packet: a 
random read-write pair to set a single bit in the typical N-
bit-wide memory device, and a sequential read-write pair 
during the periodic readout/clearing process. Assuming a 
single DRAM is used for aggregation, and the sequential 
readout process takes negligible time (due to its 
sequential nature, which can benefit from both the DRAM 
word width and single-row burst transfers), the SPIE 
collection process is limited to at most 20 
Msignatures/sec (assuming a rather optimistic DRAM 
cycle time of 50ns for a random-address read-modify-
write cycle). 

Thus DRAM performance is far too low for most core 
routers, as a rate of 20 Msignatures/sec is only enough to 
support the typical peak packet rate on a single OC-192 
link, or four OC-48 interfaces. A solution that can handle 
on the order of 32 OC-192 interfaces on a core router is 
desired, preferably without requiring large amounts of 
expensive, fast memory. A router of this capacity requires 
SPIE to process approximately 1.92 Gsignatures per 
second. 

A design based on a single SRAM is plausible, but 
both read and write accesses would then require a full 
memory access time. Assuming a 16-bit wide device, the 

readout process can again be assumed to be negligible. 
Assuming somewhat optimistic 5ns cycle times per read 
or write, up to 100 Msignatures/sec can be 
accommodated. This is still well below the rate required 
for the next-generation core routers described above, but 
might suffice for routers from the current OC-48 
generation. 

Therefore, the requirements of high-end routers lead to 
the design of Figure 2, using multiple signatures SRAMs 
and additional aggregation at the digest table level. Each 
aggregation SRAM is shared by as many SPIE ports as 
will comfortably fit within its performance limit. If we 
choose to use relatively cheap and dense SRAMs, a 10ns 
access time is reasonable, supporting about 50 
Msignatures/sec. This is sufficient for one OC-192 link, 
using a simple time-multiplexing scheme. 

It may also be feasible to use DRAMs for the first-
level signature memory for a single OC-192 link, but this 
requires the highest speed grades available, and an SRAM 
solution may actually be more cost-effective. A 1.92 
Gsignature/sec SPIE unit supporting a 32-port OC-192 
router requires about 12 to 16 of the SRAM-based first-
level aggregation memories. All of these memories are 
then read out in parallel, with the outputs ORed together, 
to produce a single global digest table to pass to the 
history memory. 

3.5. History Memory 

The history memory, rather than being a single digest 
table for increasingly long intervals, is instead a ring 
buffer of many short-interval digest tables. The size can 
be easily tailored to meet detection and reporting latency 
requirements of up to a minute or so, even for high-end 
core routers, for a relatively low cost. 

At each time interval, R, the current digest table from 
the aggregation stage is written starting at the current 
point in the ring (overwriting the oldest entry), and the 
write address is advanced by one table length. The control 
processor may sporadically read out the history memory 
slot for a specific time in order to service a query request, 
as long as that time is not older than the oldest entry in the 
ring. Generally, it will need to request more than one 
digest table for a given trace attempt, since boundary 
effects at the ends of the collection interval and timing 
uncertainties in the overall system will widen the time 
interval to be examined. Since the history memory is 
always read and written in large blocks, DRAM memory 
is well suited, being both sufficiently dense and relatively 
inexpensive. 

The length of the history buffer is constrained by the 
tradeoff between the desire for longer storage times 
(allowing tracebacks triggered by slower intrusion-
detection systems) and cost and engineering 
considerations due to the DRAM technology available. 



The history memory cost will likely dominate the cost of 
the SPIE board or box. 

Assuming the 32-port OC-192 router example, with a 
16Mb digest table every 5ms, a single current-generation 
256Mb DRAM can store about 80ms of history. (Note 
that the input data bandwidth is about 3Gb/s, which is 
within the range of feasibility for DRAMs performing 
sequential memory accesses.) A buffer of 30 seconds 
requires 375 of these devices, which is barely within the 
range of feasibility; if new 1Gb DRAMs were used, the 
memory array would require a much more reasonable 94 
chips. With current DRAM memory prices below 
$1/MByte, this is less than $12k worth of memory. This 
seems a very reasonable cost to support a 32-port OC-192 
router. 

3.6. Parameter Selection 

The values of n, k, and R are driven primarily by the 
tradeoff between reasonable implementation speed, size, 
and cost of the first-level signature memory. These values 
will also be driven by the desire to minimize the number 
of digest tables in the history memory that might contain 
a packet of interest, arguing for a larger digest table size 
(which takes longer to fill). 

Using a 3-way Bloom filter (meaning three 
independent digests are stored for each packet), a single 
current-generation 16Mb 10ns SRAM shared by two OC-
192 ports (40 Mpkts/sec) fills to useable capacity 
(approximately 5 bits per packet [15]) in about 80ms. 
However, we need to combine up to 16 of these for a 32-
port OC-192 router, so the actual R value needs to be 
1/16th of this, or about 5ms. This may be an acceptable 
value for R, since the typical network round-trip delay 
(about 100ms) bounds the likely timing uncertainty of a 
packet to about 20 tables at worst, and it is significantly 
larger than the time synchronization error for NTP-
synchronized systems. As few as two tables may be 
needed, if packet timing is known more precisely. 

4. Conclusion 

It is worth stepping back from the details of the 
hardware design presented to look at the larger message. 

The architecture of a SPIE DGA requires the 
computation of n digest values, each k bits long. Given an 
average Internet packet size of between 1K and 2K bits, 
an n of 3, and a k of at most 32, the data rate of digests 
being produced is between 5% and 10% of the link 
bandwidth. When link bandwidths are large (e.g., 10s of 
gigabits), those portions become challenging numbers. 

Yet, the final amount of data that must be stored is 
fairly small. SPIE stores the digest values in a bitmap, 
thus reducing the digest cost from k to one or two bits. So, 
in the end, the cost of keeping SPIE data is only about 6 

bits per packet or between 0.3% and 0.6% of the link 
bandwidth. This is a very manageable data rate, even at 
high link bandwidths. 

The challenge, therefore, in high performance SPIE 
systems is to find a method to reduce the volume of SPIE 
data being handled from k bits to one or two bits as 
swiftly as possible. In this paper we achieved this goal 
using the signature aggregation module described in 
sections 3.3 and 3.4, along with an efficient 
implementation of history memory. 
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