
Hardware Support for a Hash-Based IP Traceback1

Luis A. Sanchez,2 Walter C. Milliken, Alex C. Snoeren, Fabrice Tchakountio, Christine
E. Jones, Stephen T. Kent, Craig Partridge, and W. Timothy Strayer

BBN Technologies

10 Moulton St.
Cambridge, MA 02138

lsanchez@megisto.com

{milliken,snoeren,ftchakou,cej,kent,craig,strayer}@bbn.com

1 This work was performed under DARPA contract N66001-00-C-8038
2 At the time the work described in this paper was completed, Mr. Sanchez was an employee of BBN Technologies.

Abstract

The Source Path Isolation Engine (SPIE) is a system
capable of tracing a single IP packet to its point of origin
or point of ingress into a network. SPIE supports tracing
by storing a few bits of unique information about each
packet for a period of time as the packets traverse the
network. Software implementations of SPIE can trace
packets through networks comprised of slow to medium
speed routers (up to OC-12), but higher speed routers
(OC-48 and faster) require hardware support. In this
paper, we discuss these hardware design aspects of SPIE.
Most of the hardware resides in a self-contained SPIE
processing unit, which may be implemented in a line card
form factor for insertion into the router itself, or as a
stand-alone unit that connects to the router through an
external interface.

1. Introduction

Today’s Internet infrastructure is vulnerable to
motivated and well-equipped attackers. Much work is
being done to safeguard resources, detect an attack, and,
if possible, attempt to thwart the attack.

A more difficult problem is determining the origins of
an attack. Accurate and reliable identification of attackers
is currently extremely difficult because the network
routing infrastructure is stateless and based largely on
destination addressesno records are kept in the routers,
and the source address is not trustworthy. The attacker
can generate offending IP packets masquerading as
having originated almost anywhere, including from IP

addresses that are not globally unique, such as those used
to create private networks [1]. In general, attacks against
sites or even the network infrastructure can be waged
from the safety of complete anonymity.

One method to expose the true origin of a packet is to
support after-the-fact single packet traceback. Locating
the point of attack is a first step towards both blocking the
attack and identifying the party who launched the attack.

There are several approaches to determining the route
of attack packets. Burch and Cheswick proposed inferring
the route by using a controlled flooding scheme and
watching for variations in the received packet flow [2].
Bellovin has proposed using ICMP messages to provide
authenticated marking of packets [3]. Savage et al.
proposed a probabilistic marking approach where routers
mark packets with partial path information during packet
forwarding [4]. After a victim has received a substantial
number of packets, it can reconstruct the entire path by
combining the pieces of path information embedded in
each packet. Song and Perrig point out that this scheme
gives a large number of false positives when the attack
comes from multiple sources, and suggest improved and
authenticated marking schemes with less packet overhead
and higher precision [5].

In general, these schemes are targeted at the typical
denial-of-service attack that Internet sites experience
today [6] and require a large number of the attacking
packets be sent during the detection phase. Attacks that
require only a few packets are generally not traceable by
these techniques. Yet, it is known that a single packet
attack can render a host inoperable for hours. WinNuke,
Teardrop, and NewTear [7] are examples of single-packet
attacks that exploit vulnerabilities in packet processing of
popular TCP/IP stack implementations.

The obvious approach to single packet traceback is
simply to log packets at various points throughout the
network, and then use appropriate extraction techniques
to discover the packet’s path. Logging requires no
computation on the router’s fast path, and hence can be
implemented efficiently in today’s router architecture.
However, the effectiveness of the logs is limited by the
amount of space available to store them and the internal
data bandwidth available to copy the packets as they pass
through the router. Given today’s link speeds, packet logs
quickly grow to intractable sizes, even over relatively
short time frames. An OC-192 link is capable of
transferring 1.25GB per second. If one allows 60 seconds
to discover an attack and conduct a query, a router with
16 links would require 1.2TB of high-speed storage.

Sampling techniques can lessen these requirements but
also reduces the probability of detecting small flows.
Alternatively, routers can be tasked to perform more
sophisticated auditing in real time, extracting a smaller
amount of information as packets are forwarded. Many
currently available routers support input debugging, a
feature that identifies on which incoming port a particular
outgoing packet (or set of packets) of interest arrived.
Since no history is stored, however, this process must be
activated while the flow of interest is currently passing
through the router. Furthermore, due to the high overhead
of this operation on many popular router architectures,
activating it may have adverse effects on the traffic
currently being serviced by the router.

Both Sager [8] and Stone [9] have proposed
sophisticated logging of router events for attack analysis,
but both schemes introduce significant processing and
storage overhead in the routers. Schnackenberg et al.
propose a special Intruder Detection and Isolation
Protocol (IDIP) to facilitate interaction between routers
involved in a traceback effort [10]. IDIP does not specify
how participating entities should track packet traffic; it
simply requires that they be able to determine whether or
not they have seen a component of an attack matching a
certain description.

SPIE, the Source Path Isolation Engine, is a system
that provides traceback capability on a per-packet basis.
SPIE-enabled routers record tiny digests of each packet as
it passes. These digests are kept for a period of time long
enough to allow after-the-fact traces of the packet. At
medium to high speeds, however, calculating and storing
the packet digests requires hardware assistance. SPIE’s
design allows this support to be provided through a
combination of simple modifications to current router line
cards and a limited amount of additional hardware.

A full description of SPIE and an analysis of its
effectiveness are given in [11]. In this paper, we present
in detail the hardware components of the SPIE system
which provides hash-based single packet traceback.

2. SPIE System Overview

SPIE is a system of components that records packets
passing through routers and provides the ability to
reconstruct a particular packet’s path given the packet,
where the packet was destined, and an approximate time
the packet was received. Figure 1 shows the relationship
between the SPIE components.

A SPIE-enabled router contains a special process
called a Data Generation Agent (DGA). A DGA logs each
packet as it passes through the router by calculating a 32-
bit digest of the packet. The digest is constructed by
applying a collision-resistant hash over selected fields in
the packet, and is stored in a digest table as a bitmap of
Bloom filters [12] to conserve memory. The digest table,
therefore, is a compact representation of all of the traffic
served by the router over a given time period. The amount
of memory dedicated to the DGA dictates the size of the
digest table and how long it is used before a new digest
table is constructed. Old digest tables are timestamped
and kept as long as the router’s resources allow.

A SPIE Collection and Reduction Agent (SCAR) is
responsible for several routers in a region of the network.
The SCAR asks the routers to dump all of their digest
tables when a request for traceback is made. Once on the
SCAR, analysis is no longer time constrained. The SCAR
examines each router’s cache to construct a subgraph of
the trace. The trace requests come from a central
controller called the SPIE Traceback Manager (STM).
This controller is responsible for authenticating all
requests, querying the appropriate SCARs, and
constructing the complete attack graph from the SCARs’
subgraphs.

When an intrusion detection system discovers a
suspicious packet, it contacts the STM with the packet,
the destination node, and the time at which the packet was
received (we assume clock synchronization among
participating nodes to correctly correlate packet arrivals,
such as NTP [13]). The STM authenticates the request for
traceback and directs all DGAs to dump their digest tables
to their SCARs. Then, beginning at the SCAR responsible
for the victim’s region of the network, the STM sends a
query message consisting of the packet information
provided by the IDS. The SCAR responds with a partial
attack graph. The attack graph either terminates within the
region managed by the SCAR, in which case a source has
been identified, or it contains nodes at the edge of the
SCARs network region, in which case the STM sends a
query to the SCARs abutting those edge nodes. This
process continues until all branches of the attack graph
terminate either at a source within the network or at the
edge of the SPIE system. The STM then constructs a
composite attack graph, which it returns to the IDS.

Router

Router

DGA

Router
Router

Router

DGA

SCAR
Router

Router

Router

DGA

STM

ISP's Network

Figure 1: SPIE network infrastructure.

SPIE requires very little data to be kept per packet:
only a few bits. One consequence of storing so little
information is that packet identification is based on
probability. Due to the probabilistic nature of Bloom
filters, a SCAR or DGA cannot be sure that the actual
packet P was seen at a particular router. Rather, it can
determine either that, with very high probability, P was
seen, or with certainty that P was not seen. As a result,
SPIE will always provide a trace path to the packet’s
origin, but may also generate additional spurious false
paths. By varying the hash functions across routers and
time periods, SPIE attempts to limit the effect of spurious
matches at any particular router.

The hash functions used by the Bloom filters may be
quite lightweight. Intuitively, one might expect that an
attacker might try to cause hash function collisions,
concealing attack traffic. However, causing hash
collisions yields no advantage. If the attacker seeks to
make the attacking packets from different sources look
alike (e.g., hash to the same value), the resulting SPIE
trace will simply be a tree-shaped path (from one
destination back to multiple sources) revealing all the
entry points from which the hacker can attack. And
making each packet look different simply means that each
packet can be uniquely traced to its origin.

3. Hardware Design

Data Generation Agents are the primary hardware
components of the SPIE system. The entire system
depends on their functionality and feasibility. One
particular concern is the ability to implement DGAs for
very high data rate interfaces. Here we present the issues
of implementing DGAs in hardware, with a particular
focus on high performance implementations.

Figure 2 illustrates the key components of the SPIE
hardware. Most of the hardware exists in a self-contained
SPIE processing unit, which may be implemented in a
line card form factor for insertion into the router itself, or

as a stand-alone unit that connects to the router through
an external interface. In either case, all interfaces on the
router must be extended to support data collection
through the implementation of signature taps.

The signature tap is a relatively simple piece of
hardware that computes n independent 32-bit digests (S32
in the diagram) of each packet that arrives on a SPIE-
capable interface. These digests are then passed to the
SPIE processing unit on a separate signature bus. The
signature aggregation stage of the SPIE card produces a
periodic digest table of size 2k bits (where k is at most 32),
covering a time interval R, which is then stored in a large
bulk history memory organized as a time-slotted ring
buffer containing the past digest tables.

Entire digest tables in the history memory, indexed by
collection interval, can be transferred to the control
processor on demand for transmission to a SCAR.
Generally, due to network latencies and timing
uncertainties in the arrival time of a packet of interest at a
given router, several tables will need to be fetched
surrounding the estimated time of packet arrival.

Note that different systems can choose different values
of n, k, and R, as long as they report how each of the n
digests are computed, which k bits of the 32 digest bits
are used, and the time span covered by each digest table
sent in response to a query. Selection of appropriate
values of n, k, and R is discussed after a more detailed
description of each individual stage of the hardware
design.

3.1. Signature Taps

The signature taps produce digests of each IP packet
seen by the interface. In order to eliminate false positives
during SPIE traceback, the digesting functions are
different at each router. While our analysis presumes
independently random digesting functions at each router,
we propose to use a salted CRC-32 for high-speed
implementations. Previous studies have shown that CRC-
32 performs quite well on typical input streams [14], and
is significantly cheaper to implement in hardware than
traditional hash functions.

A salted CRC is one in which the CRC function begins
its computation with a random 32-bit initial value. In the
DGA, a different initial value is chosen for each of the n
digests. Furthermore, the initial value may be changed
each time the digest tables are saved into the history
memory. This approach ensures that packets are
represented by n distinct digests at each router, every
packet received at the router during a specific time
interval is associated with the same set of digest
functions, and, further, that digest table collisions are
(empirically, at least) independent.

Each packet digest is determined by computing a
salted CRC-32 of the IP packet header and the first 64 bits
of the packet payload. However, the IP options, TTL,

checksum, and TOS header fields are zeroed out since
they change frequently in transit.

Router line cards can be easily modified to include
signature taps; in some routers, the IP forwarding engine
may be able to compute signatures during the forwarding
process. In other architectures, it may make more sense to
place the signature tap on the output of the ingress layer-2
packet framer. In any event, the amount of logic required
to compute a CRC-32 digest is small, and easily added to
most line cards.

Signature taps can be connected to the SPIE
processing unit in several ways. For lower-speed routers,
a simple serial interface with specialized framing will
suffice. Depending on the form factor, the serial link
could be routed over the back plane to an in-chassis SPIE
card, or run to an auxiliary external connector on the line
card bulkhead for connection to a separate SPIE box. (For
OC-192 line cards, a Gigabit Ethernet interface may be a
relatively simple way to transmit digests, since the
signature bit rate is about 10% of the link rate.)

With an external SPIE implementation, it is also
possible to put the signature taps in the SPIE box itself,
with a set of “feed-through” connectors passing the input
signals on to the actual router input ports. This requires
the taps to include sufficient logic to extract IP packets
from the link. This may be a viable approach for Ethernet
interfaces and lower-speed single-channel packet over
SONET (POS) interfaces, for which one-chip framers are
available.

3.2. Transforms

Signature taps do not encompass all packet recording
at the router. IP packets may undergo valid transformation
(e.g., fragmentation, IPsec tunneling, network address
translation) while traversing the network, in which case,
packet digests do not sufficiently enable traceback of a
packet. Packet transforms must be recorded such that the
original packet is able to be reconstructed during the
traceback process. Therefore, DGAs record within a
transform lookup table (TLT) the hash of a transformed
packet, the type of transformation, and sufficient packet
data to enable packet reconstruction.

Transform information is provided to the DGA by the
control processor because packets that undergo
transformation are generally routed through the control
path of the router. DGAs record and store within the
history memory a corresponding TLT for every packet
digest table. Accordingly, digest table/TLT pairs are read
out of the history memory to service a SPIE traceback
query. For a more in-depth discussion of SPIE’s handling
of packet transformation, refer to [11].

...

S32

S32

S32

S32

S32

Sk

2k-bit RAM
t

t-P s

+

FIFO RAM
MUX

Readout
by

Control
Processor

...
...

Ring Buffer DRAM

Time
=t

readout
every
R ms

Signature Taps Signature Aggregation History Memory

Line Cards SPIE Card (or Box)

Figure 2: An example SPIE DGA hardware
implementation for high-speed routers.

3.3. Signature Aggregation

Once the digests arrive at the processing unit, they are
aggregated into digest tables representing the traffic
serviced by the router over a small time interval (the
parameter R in the diagram). The particular aggregation
implementation shown in the diagram is designed to be
scalable to very high-speed routers, with relatively low
implementation cost. Much simpler designs are possible
for lower-speed routers.

The aggregation interface may need to be multi-ported
for routers with high-speed interface links. Arriving
digests on each port are placed into a small FIFO, which
feeds a simple arbitrating multiplexer that controls access
to an aggregation memory for several input ports. A
specified set of k bits from each 32-bit packet digest is
considered a table index, and the appropriate bit in the
aggregation memory is set accordingly. Every R
milliseconds, the memory contents are copied out and
ORed with the contents of other signature memories on
the card, producing a global digest table of size 2k for the
entire router, which is passed on to the history memory
for archival. This record represents the traffic set for the
prior R millisecond interval, and is labeled appropriately.

Each memory location is cleared while being read out.
The aggregation memory may use a ping-pong double-
buffering scheme to avoid race conditions, but this
doubles the memory size. It may also be acceptable to
only lock the location that is being read out until it is
cleared, since this only adds additional R latency to the
timing uncertainty of a packet being traced.

For low-speed routers, in which the total packet arrival
rate is about 10 Mpkts/sec or less, the aggregation stage
may be eliminated in favor of setting digest bits directly
in the current slot of the history memory. Low-speed
routers also need much less history memory, of course,
since the signature memory fills up more slowly.

3.4. Aggregation Rationale

SPIE must scale to very high speeds while still
allowing the individual packet histories to be queried for
many seconds. The main purpose of the intermediate
aggregation stage is to fulfill this requirement through the
use of two disparate memory types, SRAM and DRAM.
Recall that SRAM maintains high access rates (e.g., 10
ns/access), at the expense of cost and heat dissipation.
DRAM, on the other hand, is much denser, requires less
power, and is considerably less costly for equivalent
amounts of memory, but suffers from diminished access
rates (e.g., 50 ns/access), although high throughput rates
of 3.3 ns are common. The signature aggregation phase
allows SPIE to take advantage of both SRAM and DRAM
to enhance scalability.

In a high-end router with 32 OC-192 interfaces, the
combined packet arrival rate is about 640 Mpkts/sec,
requiring about 3.125 Gbits of memory per second of
history kept (for a typical Bloom filter configuration of n=
3 [11]). An intrusion detection system may take a few
minutes to report an intrusion and request a traceback,
requiring a few 100s of Gbits of memory at the router.
While not totally unreasonable for current generations of
DRAMs, it is well out of the feasible cost and power
range for an SRAM-based history memory. So a staging
mechanism is required to transfer the digests from the
high-speed portion of the interface (where SRAM is
required) to an area running at DRAM speeds.

In addition to the overall capacity of the memory
banks, technology limitations on access time are also an
important design consideration. The signature collection
process requires four memory accesses per packet: a
random read-write pair to set a single bit in the typical N-
bit-wide memory device, and a sequential read-write pair
during the periodic readout/clearing process. Assuming a
single DRAM is used for aggregation, and the sequential
readout process takes negligible time (due to its
sequential nature, which can benefit from both the DRAM
word width and single-row burst transfers), the SPIE
collection process is limited to at most 20
Msignatures/sec (assuming a rather optimistic DRAM
cycle time of 50ns for a random-address read-modify-
write cycle).

Thus DRAM performance is far too low for most core
routers, as a rate of 20 Msignatures/sec is only enough to
support the typical peak packet rate on a single OC-192
link, or four OC-48 interfaces. A solution that can handle
on the order of 32 OC-192 interfaces on a core router is
desired, preferably without requiring large amounts of
expensive, fast memory. A router of this capacity requires
SPIE to process approximately 1.92 Gsignatures per
second.

A design based on a single SRAM is plausible, but
both read and write accesses would then require a full
memory access time. Assuming a 16-bit wide device, the

readout process can again be assumed to be negligible.
Assuming somewhat optimistic 5ns cycle times per read
or write, up to 100 Msignatures/sec can be
accommodated. This is still well below the rate required
for the next-generation core routers described above, but
might suffice for routers from the current OC-48
generation.

Therefore, the requirements of high-end routers lead to
the design of Figure 2, using multiple signatures SRAMs
and additional aggregation at the digest table level. Each
aggregation SRAM is shared by as many SPIE ports as
will comfortably fit within its performance limit. If we
choose to use relatively cheap and dense SRAMs, a 10ns
access time is reasonable, supporting about 50
Msignatures/sec. This is sufficient for one OC-192 link,
using a simple time-multiplexing scheme.

It may also be feasible to use DRAMs for the first-
level signature memory for a single OC-192 link, but this
requires the highest speed grades available, and an SRAM
solution may actually be more cost-effective. A 1.92
Gsignature/sec SPIE unit supporting a 32-port OC-192
router requires about 12 to 16 of the SRAM-based first-
level aggregation memories. All of these memories are
then read out in parallel, with the outputs ORed together,
to produce a single global digest table to pass to the
history memory.

3.5. History Memory

The history memory, rather than being a single digest
table for increasingly long intervals, is instead a ring
buffer of many short-interval digest tables. The size can
be easily tailored to meet detection and reporting latency
requirements of up to a minute or so, even for high-end
core routers, for a relatively low cost.

At each time interval, R, the current digest table from
the aggregation stage is written starting at the current
point in the ring (overwriting the oldest entry), and the
write address is advanced by one table length. The control
processor may sporadically read out the history memory
slot for a specific time in order to service a query request,
as long as that time is not older than the oldest entry in the
ring. Generally, it will need to request more than one
digest table for a given trace attempt, since boundary
effects at the ends of the collection interval and timing
uncertainties in the overall system will widen the time
interval to be examined. Since the history memory is
always read and written in large blocks, DRAM memory
is well suited, being both sufficiently dense and relatively
inexpensive.

The length of the history buffer is constrained by the
tradeoff between the desire for longer storage times
(allowing tracebacks triggered by slower intrusion-
detection systems) and cost and engineering
considerations due to the DRAM technology available.

The history memory cost will likely dominate the cost of
the SPIE board or box.

Assuming the 32-port OC-192 router example, with a
16Mb digest table every 5ms, a single current-generation
256Mb DRAM can store about 80ms of history. (Note
that the input data bandwidth is about 3Gb/s, which is
within the range of feasibility for DRAMs performing
sequential memory accesses.) A buffer of 30 seconds
requires 375 of these devices, which is barely within the
range of feasibility; if new 1Gb DRAMs were used, the
memory array would require a much more reasonable 94
chips. With current DRAM memory prices below
$1/MByte, this is less than $12k worth of memory. This
seems a very reasonable cost to support a 32-port OC-192
router.

3.6. Parameter Selection

The values of n, k, and R are driven primarily by the
tradeoff between reasonable implementation speed, size,
and cost of the first-level signature memory. These values
will also be driven by the desire to minimize the number
of digest tables in the history memory that might contain
a packet of interest, arguing for a larger digest table size
(which takes longer to fill).

Using a 3-way Bloom filter (meaning three
independent digests are stored for each packet), a single
current-generation 16Mb 10ns SRAM shared by two OC-
192 ports (40 Mpkts/sec) fills to useable capacity
(approximately 5 bits per packet [15]) in about 80ms.
However, we need to combine up to 16 of these for a 32-
port OC-192 router, so the actual R value needs to be
1/16th of this, or about 5ms. This may be an acceptable
value for R, since the typical network round-trip delay
(about 100ms) bounds the likely timing uncertainty of a
packet to about 20 tables at worst, and it is significantly
larger than the time synchronization error for NTP-
synchronized systems. As few as two tables may be
needed, if packet timing is known more precisely.

4. Conclusion

It is worth stepping back from the details of the
hardware design presented to look at the larger message.

The architecture of a SPIE DGA requires the
computation of n digest values, each k bits long. Given an
average Internet packet size of between 1K and 2K bits,
an n of 3, and a k of at most 32, the data rate of digests
being produced is between 5% and 10% of the link
bandwidth. When link bandwidths are large (e.g., 10s of
gigabits), those portions become challenging numbers.

Yet, the final amount of data that must be stored is
fairly small. SPIE stores the digest values in a bitmap,
thus reducing the digest cost from k to one or two bits. So,
in the end, the cost of keeping SPIE data is only about 6

bits per packet or between 0.3% and 0.6% of the link
bandwidth. This is a very manageable data rate, even at
high link bandwidths.

The challenge, therefore, in high performance SPIE
systems is to find a method to reduce the volume of SPIE
data being handled from k bits to one or two bits as
swiftly as possible. In this paper we achieved this goal
using the signature aggregation module described in
sections 3.3 and 3.4, along with an efficient
implementation of history memory.

5. Acknowledgment

We thank Charles Lynn for providing great ideas
during the early stages of this work. We also thank John
Lowry for his encouragement and many helpful
discussions.

6. References

[1] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,
and E. Lear, “Address Allocation for Private Internets,” IETF
Network Working Group, RFC 1918, Naval Research
Laboratory, February 1996.

[2] H. Burch, B. Cheswick, “Tracing Anonymous Packets to
Their Approximate Source,” Proc. USENIX LISA ’00,
December 2000.

[3] S. Bellovin, ICMP Traceback, Message to the IETF ICMP
Traceback WG, http://www.research.att.com/~smb

[4] S. Savage, D. Wetherall, A. Karlin, and T. Anderson,
Technical Report UW-CSE-00-02-01, “Practical Network
Support for IP Traceback,” Proc. ACM SIGCOMM ’00, August
2000.

[5] D. Song and A. Perrig, “Advanced and Authenticated
Marking Schemes for IP Traceback,” Proc. IEEE INFOCOM
2001, April 2001.

[6] Computer Emergency Response Team. Cert advisory
ca2000-01 denial of service developments.
http://www.ceet.org/advisories/CA-2000-01.html.2000.

[7] Microsoft Corporation. Stop 0A in Tcpip.sys When
Receiving Out Of Band (OOB) Data,
http://support.microsoft.com/support/kb/articles/Q143/4/78.asp

[8] G. Sager, “Security Fun with ocxmon and cflowd”,
Presentation at the Internet 2 Working Group, November 1998.
http://www.caida.org/projects/NGI/content/security/1198.

[9] R. Stone, “Centertrack: An IP overlay network for tracking
DoS Floods,” Proc. of 9th USENIX Security Symposium, August
2000.

[10] D. Schnackenberg, K., Djahandari, and D. Sterne,
“Infrastructure for Intrusion Detection and Response,” Proc.

DARPA Information Survivability Conference and Exposition,
January 2000.

[11] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, W.
Timothy Strayer, Christine E. Jones, Fabrice Tchakountio, and
Stephen T. Kent, “Hash-Based IP Traceback,” BBN Technical
Memo 1284, February 12, 2001.

[12] B. H. Bloom. “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, Vol. 13, No. 7,
July 1970, pp. 422-426.

[13] D. Mills, “Network Time Protocol Version 3 -
Specification, Implementation and Analysis,” RFC 1305,
UDEL, March 1992.

[14] J. Stone, M. Greenwald, C. Partridge, and J. Hughes,
“Performance of Checksums and CRCs over Real Data,”
IEEE/ACM Trans. on Networking, Vol. 6, No. 5, October 1998,
pp. 529-543.

[15] L. Fan, P. Cao, J. Almeida, and A. Broder. “Summary
cache: a scalable wide-area web cache sharing protocol,”
IEEE/ACM Trans. on Networking, Vol. 8, No. 3, June 2000.

