Slicing the Onion: Anonymity Without PKI

Sachin Katti

Dina Katabi & Katya Puchala

- Each node only knows its previous hop and next hop
- Bob does not know the identity of Alice either

What's the catch?

Centralized trusted PKI

PKI Showstoppers!

- Key distribution
- Key updates
- Compulsion attacks
- Trust model

Can we have anonymity without PKI?

This talk...

How to do anonymous communication without PKI

What kind of anonymity?

- Message confidentiality
- Source anonymity
- Destination anonymity

Source sends M_1 and M_2 along node disjoint paths

Reconstruct original information from the slices

What about anonymity?

Idea: Build anonymity from confidentiality

What about anonymity?

Idea: Build anonymity from confidentiality

Source tells each relay the ID of its next hop in a confidential message

Challenge

Challenge: Exponential Blowup

Solution: Node Reuse

S

Source has multiple IP addresses

Source picks relays and organizes them in stages

Destination is placed randomly

V needs to know Z and R

R can corning of the discount of the control of the

Node disjoint paths to R

Node disjoint paths to Y

Node V is reused to construct disjoint paths to R and Y

Send slices in the same packet

Small number of nodes

- Parameters
 - No. of stages $\rightarrow L$
 - Splitting factor $\rightarrow d$
- Information for each relay I
 - Next hop IP addresses
 - Receiver flag
 - Symmetric session key (no PKI problems)

- Source picks L*d relays including the receiver
- Relays are organized into L stages of d nodes each
- For each relay source computes /
- Source divides each / into d random slices (I₁,...., I_d)

Relay X has to get the d slices (I_{x1},....., I_{xd})

 For each stage prior to X divide the d slices randomly between the d nodes in that stage

Slices are following node disjoint paths

Slices are following node disjoint paths

- Source organizes L*d relays into L stages of d nodes
- Source divides node information / into d random slices (I₁,...., I_d)
- Relay X gets the d random slices (I_{x1},....., I_{xd})
- If X is in stage k
 - Source goes to stages k-1 to 1
 - Assigns the d slices of node X randomly to the d nodes in that stage

Slicing Protocol - Decoding

 Node uses the d slices from its parents to decode its information

Slicing Protocol – Data Transmission

- Each node in the graph has a symmetric key assigned by the source
- Source uses normal onion routing to transmit data

Why this is exciting?

- No PKI

 Truly distributed P2P anonymous overlays
- Scales to large number of nodes
- Simple matrix multiplications → Efficient anonymity

Practical anonymity

What we are doing...

- Resilience to node churn
- Anonymity similar to Chaum mixes (i.e., onion routing)
- Resilience to traffic analysis attacks
- Implementing it on Planetlab

To conclude...

Fundamentally new way to provide anonymity that does not need PKI