Slicing the Onion: Anonymity Without PKI

Sachin Katti

Dina Katabi & Katya Puchala
State of the art: Onion Routing over P2P
State of the art: Onion Routing over P2P
State of the art: Onion Routing over P2P

Encrypt packets in layers
State of the art: **Onion Routing over P2P**
Each node only knows its previous hop and next hop.
Bob does not know the identity of Alice either.
What's the catch?

Centralized trusted PKI
PKI Showstoppers!

- Key distribution
- Key updates
- Compulsion attacks
- Trust model

Can we have anonymity without PKI?
This talk...

How to do anonymous communication without PKI
What kind of anonymity?

• Message confidentiality
• Source anonymity
• Destination anonymity
Confidentiality without PKI

Source splits message M into two parts

Source sends M_1 and M_2 along node disjoint paths

Source sends M_1 and M_2 along node disjoint paths
Confidentiality without PKI

“Lets meet at 5 pm” → Message

“Lets meet”
“at 5 pm”

[a₁ a₂]

A

“Lets meet”
“at 5 pm”

[“aaspdgfqw”
“asdlfrwe”]

Split into two

Randomize them!

Random slices
Confidentiality without PKI

Reconstruct original information from the slices
Confidentiality without PKI

\[
\begin{bmatrix} A_1 & aaspdgfwq \\ A_2 & asdlfrew \end{bmatrix}
\]
\[
\begin{bmatrix} A_1 & A_2 \\ \end{bmatrix}^{-1}
\begin{bmatrix} aaspdgfwq \\ asdlfrew \end{bmatrix}
\]

\[
\begin{bmatrix} \text{“Lets meet”} \\ \text{“at 5 pm”} \end{bmatrix}
\]

\[
\text{“Lets meet at 5 pm”}
\]

Received random slices → Matrix inversion → Original pieces of message → Original message
What about anonymity?

Idea: Build anonymity from confidentiality
What about anonymity?

Idea: Build anonymity from confidentiality

Source tells each relay the ID of its next hop in a confidential message
Challenge

Exponential blowup!
Challenge : Exponential Blowup

Solution : Node Reuse
Illustrative Example

Source has multiple IP addresses
Source picks relays and organizes them in stages
Illustrative Example

Destination is placed randomly
Illustrative Example

V needs to know Z and R
Illustrative Example

V combines the two slices to get its next hops Z and R
Illustrative Example
Illustrative Example

R needs to know X and Y.

R can combine incoming slices to get X and Y.
Illustrative Example

Node disjoint paths to R
Illustrative Example

Node disjoint paths to Y
Illustrative Example

Node V is reused to construct disjoint paths to R and Y
Illustrative Example

Send slices in the same packet
Illustrative Example

Small number of nodes
Slicing Protocol

• Parameters
 – No. of stages $\rightarrow L$
 – Splitting factor $\rightarrow d$

• Information for each relay I
 – Next hop IP addresses
 – Receiver flag
 – Symmetric session key (no PKI problems)
Slicing Protocol

- Source picks $L \times d$ relays including the receiver
- Relays are organized into L stages of d nodes each
- For each relay source computes I
- Source divides each I into d random slices (I_1, \ldots, I_d)
Slicing Protocol

• Relay X has to get the d slices (I_{x1}, \ldots, I_{xd})
Slicing Protocol

• For each stage prior to X divide the d slices randomly between the d nodes in that stage

S \hspace{1cm} V \hspace{1cm} Z \hspace{1cm} X

(I_{x1}) \hspace{1cm} (I_{x1}) \hspace{1cm} (I_{x2}) \hspace{1cm} (I_{x1}, I_{x2})

S' \hspace{1cm} W \hspace{1cm} R \hspace{1cm} Y
Slicing Protocol

- Slices are following node disjoint paths

\[(I_{X_1}) \]
\[(I_{X_2}) \]
Slicing Protocol

- Slices are following node disjoint paths

\[
(I_{x1}, I_{y1}) \quad (I_{x2}, I_{y1}) \quad (I_{x1}, I_{y2}) \quad (I_{y1}, I_{y2})
\]
Slicing Protocol

- Source organizes $L \times d$ relays into L stages of d nodes.
- Source divides node information I into d random slices (I_1, \ldots, I_d)
- Relay X gets the d random slices (I_{x1}, \ldots, I_{xd})
- If X is in stage k
 - Source goes to stages $k-1$ to 1
 - Assigns the d slices of node X randomly to the d nodes in that stage
Slicing Protocol - Decoding

- Node uses the d slices from its parents to decode its information.

![Diagram](image)

- IP addresses of next hops
- Receiver Flag
- Symmetric Key
Slicing Protocol – Data Transmission

- Each node in the graph has a symmetric key assigned by the source
- Source uses normal *onion routing* to transmit data
Why this is exciting?

- No PKI → Truly distributed P2P anonymous overlays
- Scales to large number of nodes
- Simple matrix multiplications → Efficient anonymity
What we are doing...

- Resilience to node churn
- Anonymity similar to Chaum mixes (i.e., onion routing)
- Resilience to traffic analysis attacks
- Implementing it on Planetlab
To conclude...

Fundamentally new way to provide anonymity that does not need PKI