Collaborating Against Common Enemies

Sachin Katti

Balachander Krishnamurthy and Dina Katabi
AT&T Labs-Research & MIT CSAIL
Current Intrusion Detection

Network 1
Network 2
Network 3
Network 4
Network 5

Uses Rules ➔ Alerts

How about collaborating?
Potential reasons for collaboration:

- Provides global picture of attack
- Detecting low rate distributed attackers
- Detecting stepping stones

But benefit depends on networks/IDSs seeing Correlated Attacks?
Talk Is About Correlated Attacks

Define Correlated Attacks: as attacks from the same sources IP on different IDSs/networks
Talk Is About Correlated Attacks

Define Correlated Attacks: as attacks from the same source IP on different IDSs/networks
This Talk

Logs from 1700 IDSs show:

- 40% of alerts are correlated → Collaboration is useful
- Correlated attacks within 10min → Realtime
- An IDS sees correlated attacks with 8 IDSs (out of 1700), and the group does not change → Collaborate with a few IDSs

Collaboration with correlated IDSs increases detection by 75% and as good as collaborating with all.
Dataset

Full packet headers, unanonymized src/dest addresses

Anonymized dest IP; no packet headers or alert type

Method

- Correlation is based on sharing the same source IP
 - Adding info about attack type and dest port did not matter
- Correlated IDSs: IDSs for which more than 10% of their attacks are correlated
Do IDSs see Correlated Attacks?

YES, Many

- 20% of attacking IPs are common attackers
- 40% of the attacks are correlated
- On average, 1500 correlated attackers/day/IDS
Interarrival of Correlated Attacks

Correlated attacks within a few minutes
→ Need realtime collaboration!

75% of correlated attacks happen within 10 minutes of each other.
Size of Correlation Groups

For each IDS compute the # of IDSs with which it is correlated

- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0

IDS correlate within small groups!

→ Scalable collaboration

90% of IDS are correlated with less than 8 IDS (out of 1700)
Do Correlation Groups Change?

If an IDS is correlated with 4 other IDS and the group changes by one, the percentage change is 25%.

Correlation is persistent!

→ Establish trust out of band
Why IDS correlate?

- Is it proximity in IP space?
Is Proximity in IP Space the Reason?

- Compute cross correlation between proximity in IP space and correlated IDS

Graph:

- Cross correlation with IP space distance hovers around 0
- Complete positive correlation
- No correlation

Statement:

Attack Correlation is independent of proximity in IP space
Why IDS correlate?

- Is it proximity in IP space?

- Is it because attackers target sites with similar software and services (e.g., Santy worm)?

More than 60% of attacks in a correlation group target particular service (e.g. SMTP groups, IBM Tivoli, IIS servers)
Is Similarity in Software the Reason?

Compute cross correlation between similarity in software & attack correlation

- Decreasing similarity → Decreasing correlation

Complete positive correlation
No correlation
Positively correlated
So, what does it mean for Collaborative Intrusion Detection?
Issues for IDS collaboration across networks

• Is it useful?
• How often should IDS exchange information?
• How to make it scale?
• How does an IDS trust its collaborators to protect the privacy of its information and not lie?
Exploiting Correlation for collaboration

- 40% of alerts are correlated
- Correlated attacks within 10min
- An IDS sees correlated attacks with small correlation groups (8 out of 1700 IDS)
- The correlation group does not change

→ Collaboration is useful
→ Realtime
→ Scale by collaborating with IDS in same correlation group
→ Check trust out-of-band
Correlation Based Collaboration (CBC)

- Attack Correlation Detector (ACD) for finding correlation groups (e.g., DShield)
- Since groups persist for months → ACD computation scale
- It is up to each network to decide whether to collaborate or not
Correlation Based Collaboration (CBC)

IDS send logs to ACD

ACD tells each IDS its correlation group
Evaluation of CBC Blacklisting

- Flag an attacking IP address if # alerts cross a threshold
- Compare with
 - Local detection
 - Collaborating with all IDSs
 - Random Collaboration - Collaborating with the same sized random subset as the correlation group
Evaluation Method

- IDS queries its collaborators when # alerts from an IP exceeds Querying Threshold

- IDS blacklists IP if aggregate # alerts exceeds Blacklisting Threshold

- Thresholds picked to minimize false positives (for ISP dataset)
Speed!

- Compute time taken to blacklist a source in each scheme.

- **Speed!**

 Compute time taken to blacklist a source in each scheme

Local detection and random collaboration are almost identical.
Speed!

- Compute time taken to blacklist a source in each scheme

![Graph showing detection time in mins for different IP addresses and schemes](image_url)
Speed!

- Compute time taken to blacklist a source in each scheme

CBC speeds up detection for 75% of the studied sources.

No difference for fast attackers.

CBC performs almost as well as collaborating with all IDS.
Significant Reduction in Alert Volume

<table>
<thead>
<tr>
<th></th>
<th>CBC</th>
<th>Local Detection</th>
<th>Random</th>
<th>All IDSs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert Reduction</td>
<td>73.44%</td>
<td>35.48%</td>
<td>37.77%</td>
<td>80.56%</td>
</tr>
</tbody>
</table>

CBC halves the volume of the alert logs a network administrator has to examine!
Low Overhead

<table>
<thead>
<tr>
<th></th>
<th>CBC</th>
<th>Local Detection</th>
<th>Random</th>
<th>All IDSs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert Reduction</td>
<td>73.44%</td>
<td>35.48%</td>
<td>37.77%</td>
<td>80.56%</td>
</tr>
<tr>
<td>Overhead (query/min)</td>
<td>1.3</td>
<td>-</td>
<td>1.3</td>
<td>454.9</td>
</tr>
</tbody>
</table>

CBC requires orders of magnitude less querying overhead for the same benefits!
Conclusions

- 40% of alerts are correlated
- Correlated attacks within 10min
- An IDS sees correlated attacks with small correlation groups (8 out of 1700 IDS)
- The correlation group does not change

→ Collaboration is useful
→ Realtime
→ Scale by collaborating with IDS in same correlation group
→ Check trust out-of-band

CBC exploits the above; is as good as collaborating with all but with 0.3% of the overhead.