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ABSTRACT
Thousands of competing autonomous systems (ASes) must
cooperate with each other to provide global Internet con-
nectivity. These ASes encode various economic, business,
and performance decisions in their routing policies. The cur-
rent interdomain routing system enables ASes to express pol-
icy using rankings that determine how each router in an AS
orders the different routes to a destination, and filters that
determine which routes are hidden from each neighboring
AS. Since the Internet is composed of many independent,
competing networks, the interdomain routing system should
allow providers to set their rankings independently, and to
have no constraints on allowed filters. This paper studies
routing protocol stability under these constraints. We first
demonstrate that certain rankings that are commonly used
in practice may not ensure routing stability. We then prove
that, with ranking independence and unrestricted filtering,
guaranteeing that the routing system will converge to a sta-
ble path assignment essentially requires ASes to rank routes
based on AS-path lengths. Finally, we discuss the implica-
tions of these results for the future of interdomain routing.

1. Introduction
The Internet’s routing infrastructure is made up of thou-

sands of independently operated networks that cooperate to
exchange global reachability information using an interdo-
main routing protocol, the Border Gateway Protocol, Ver-
sion 4 (BGP) [14]. This cooperation occurs in a landscape
where these independent networks, or Autonomous Systems
(ASes), compete to provide Internet service. BGP facilitates
this “competitive cooperation” by enabling network opera-
tors to express routing policies that are consistent with de-
sired economic, business, and performance goals.

Ranking and filtering are two orthogonal mechanisms that
network operators use to implement their policies. Rank-
ing determines the route to a destination that should be used,
given several available routes. It allows an AS the freedom
to specify preferences over multiple candidate paths to a des-
tination (e.g., specifying a primary and a backup path). ASes
should be able to operate autonomously, retaining ranking
independence; i.e., the ability to specify rankings indepen-
dently of the rankings of other ASes. Ranking independence
enables ASes to specify rankings without coordinating with
one another or revealing their rankings to other ASes.

Filtering allows an operator to selectively advertise (or ex-
port) routes to some ASes, and hide routes from other ASes.
Filtering allows an AS to control which neighboring ASes
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Figure 1: Instability can arise when ASes independently specify rank-
ings [10, 16]. Each circle represents an AS. AS 0 is the destination. The
listing of paths beside each node denotes a ranking over paths.

can send traffic over its infrastructure, because advertising
routes to a neighboring AS is an implicit agreement to carry
traffic for that AS. To empower flexible business contracts,
an AS should always retain autonomy over its decision to
advertise routes to its neighbors; i.e., the routing protocol
should not mandate any filtering restrictions.

The combination of ranking independence and unre-
stricted filtering forms the cornerstone of interdomain rout-
ing, and has, in large part, been the reason for the success of
BGP over the past decade. However, the ability to specify
highly expressive policies comes at considerable cost to sys-
tem robustness: as has been observed by Varadhan et al.and
Griffin et al., among others, if ASes are not subject to any
constraints on the rankings that they can specify, BGP may
oscillate forever [10, 16].

Example 1 Consider Figure 1 [10, 16]. ASes 1, 2, and 3 each
prefer the indirect path through their neighboring AS in the
clockwise direction over the direct path to the destination, 0.
All other paths are filtered. This configuration has no stable
path assignment (i.e., a path assignment from which no node
would deviate). For example, consider the path assignment
(10, 210, 30); in this case, AS 1 has a better path available
to it, 130, so it switches paths. This switch causes the path
(210) to break, causing AS 2 to switch to its second choice,
path (20). The resulting path assignment, (130, 20, 30), is a
permutation of the original path assignment: this time, AS
3 has the path 320 available, so it switches. This oscillation
continues forever. �

In light of this discovery, a natural question to ask is:
“What are the necessary and sufficient conditions that guar-
antee global routing stability?” This question is rather broad,
because these conditions depend on various modeling deci-
sions: the details of the routing protocol, restrictions on fil-
tering, and whether ASes retain policy independence. This
paper studies how the rankings allowed by a routing pro-
tocol must be restricted to guarantee global routing stabil-
ity, assuming that ASes (1) retain ranking independence and
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(2) face no restrictions on filtering. This question is impor-
tant for two reasons. First, both ranking independence and
unrestricted filtering reflect realities of how ASes specify
policies today. Second, answering this question will deepen
our understanding of stability of policy-based routing proto-
cols, complementing earlier results by Varadhan et al. [16],
Griffin et al. [10], and Gao and Rexford [6] (Section 2).

This paper makes three main contributions. First, in Sec-
tion 4.1, we show that rankings based solely on the immedi-
ate next-hop AS en route to the destination may never reach
a stable path assignment from an arbitrary initial state; i.e.,
next-hop rankings, which are common in practice, are not
safe. Moreover, under unrestricted filtering, a routing system
with next-hop rankings may have no stable path assignment.
In addition to their operational implications, these results are
also somewhat surprising, because next-hop rankings with
no route filtering always have one stable path assignment [4].
We also observe that although rankings based on a globally
consistent weighting of paths are safe under filtering, even
minor generalizations of the weighting function compromise
safety (Section 4.2).

Second, we define a dispute ring, a special case of the
“dispute wheel” (a group of nodes whose rankings have a
particular form) of Griffin et al. [10], and show that any
routing system that has a dispute ring is not safe under filter-
ing (Section 5). Using the dispute wheel concept, Griffin et
al. showed a sufficient condition for safety, proving that if a
routing system is unsafe then it must have a dispute wheel.
In contrast, to our knowledge, our result is the first known
necessary condition for safety under filtering.

Third, we show that under ranking independence and un-
restricted filtering, the set of allowable rankings that guaran-
tee safety is effectively ranking based on (weighted) shortest
paths. In Section 6, we prove that any routing system that
permits paths of length n+2 to be ranked over paths of length
n can have a dispute ring, and is thus unsafe under filtering.
We also prove that any routing system that permits paths of
length n + 1 to be ranked over paths of length n can have
a dispute wheel. In summary, our results indicate that sta-
ble policy routing with provider independence (i.e., ranking
independence and unrestricted filtering) requires tight con-
straints on rankings.

Our findings may be interpreted in several ways. The opti-
mist will note that checking a set of rankings to ensure safety
is trivial, because all it requires is that BGP routers mod-
ify the decision process to consult a route’s “local prefer-
ence” attribute only after considering its AS path length. The
pessimist, however, will note that guaranteeing safe routing,
preserving ranking independence, and allowing unrestricted
filtering, requires constraints that may be too strong to per-
mit sufficient ranking expressiveness, since it effectively pre-
cludes an AS from ranking longer paths over shorter ones. In
either case, our results suggest that stable interdomain rout-
ing protocols face a fundamental tradeoff between the ex-
pressiveness and independence of an AS’s policies.

2. Background and Related Work
A seminal paper by Varadhan et al. observed that policy-

based interdomain routing protocols could oscillate and de-
fined the concept of safety [16]. Varadhan et al. also con-
jectured that routing systems that allow rankings other than
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Figure 2: Constraints on filtering and topology are not enforceable.

those based on next-hop rankings or shortest path routing
may be unsafe [16].

Griffin et al. asked how expressive an autonomous, robust
routing system can be; this paper addresses this question [9].
Varadhan et al. showed that a routing system with an acyclic
topology will have at least one stable path assignment if par-
ticipants can only express next-hop preferences [16]. Feigen-
baum et al. also observed this fact for general topologies [4].
In this paper, we show that when BGP’s protocol dynamics
are taken into account, restricting each AS to only next-hop
rankings does not guarantee that the routing system will be
safe (even though the routing system always has at least one
stable path assignment).

Gao and Rexford derived sufficient constraints on rank-
ings, filtering, and network topology to guarantee routing
stability; they also observe that these constraints reflect to-
day’s common practice [5, 6]. They showed that if every
AS considers each of its neighbors as either a customer, a
provider, or a peer, and obeys certain local constraints on
rankings and filtering, and if the routing system satisfies cer-
tain topology constraints, then BGP is stable. However, their
model does not incorporate ranking independence, as their
proposed topological constraints are global. Furthermore,
their model restricts filtering; the example below illustrates
why these restrictions may sometimes be too strict.

Example 2 Figure 2 shows a situation that occurred in the
Internet in 2001 [2]. When PSINet terminated its peering
with AboveNet, AboveNet lost connectivity to PSINet’s cus-
tomers, d1. To restore connectivity, AboveNet bought “tran-
sit” service from Verio (already a peer of PSINet), but only
for routes to PSINet and its customers.

Verio does not filter d1 (or any of PSINet’s prefixes) from
AboveNet, which is only possible if Verio treats AboveNet
as a customer. The constraints imposed by Gao and Rexford
state that an AS must prefer customer routes over peering
routes.1 This constraint requires Verio to rank AboveNet’s
route to d2 over any other available routes to d2 in order to
guarantee stability, which restricts Verio’s flexibility in how
it can select routes. Establishing a new business relationship
(and, hence, altering its filtering policies) requires Verio to
change its rankings as well. �

Various previous work has studied global conditions to
guarantee the safety of routing systems; global conditions
presume that the routing system does not preserve local
choice of rankings (i.e., ranking independence). Griffin et
al. showed that, if the rankings of the ASes in a routing sys-
tems do not form a dispute wheel (a concept that describes
1Gao and Rexford present a weaker constraint that allows an AS to rank
routes learned from customers and peers over those from providers, but does
not require customer routes to be strictly preferred over routes from peers.
This relaxed condition requires that there are no instances where an AS’s
customer is also a peer of another one of the AS’s peers. Of course, Exam-
ple 2 could also violate this constraint on the topology: PSINet is Verio’s
customer for d1, but it would be reasonable for PSINet to peer with another
of Verio’s peers, since all are “tier-1” ISPs.
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global relationship between the rankings of a set of ASes),
then the routing system is safe [10]. Griffin et al. also
showed how to modify a BGP-like path vector protocol to
detect the existence of a dispute wheel but left unspecified
how the ASes should resolve the dispute wheel [11]. Machi-
raju and Katz defined a new global invariant for determining
safety when at most one AS deviates from the conditions of
Gao and Rexford [13]. Govindan et al. proposed a routing
architecture where ASes coordinate their policies [7, 8] us-
ing a standardized policy specification language [1]. Jaggard
and Ramachandran presented global conditions that guar-
antee safety of routing systems that allow ASes to express
only next-hop preferences over routes, and designed central-
ized and distributed algorithms to check these global con-
ditions [12]. Sobrinho defined new concepts that describe
global relationships between preferences and incorporated
several previous results (including those of both Griffin et
al. [10] and Gao and Rexford [6]) into a single algebraic
framework [15]. In contrast to these studies of global condi-
tions for safety, this paper studies the conditions under which
a policy-based interdomain routing protocol can be stable if
it preserves ranking independence.

3. Routing Model and Definitions
We now define our routing model. After introducing some

basic terminology, we formally define two notions of good
behavior for routing protocols: stability and safety. Finally,
we extend each of these two definitions to deal with the case
where ASes may arbitrarily filter paths from each other.

3.1 Preliminaries
We consider a model consisting of N ASes (nodes)2, la-

beled 1, . . . , N . Each of these nodes wishes to establish a
path to a single destination, labeled node 0. We precisely
define a path next.

Definition 1 (Path) A path from i to j is a sequence of nodes
P = ii1i2 . . . imj with no repeats,; i.e., such that iu �= iv if
u �= v, and iu �= i, j for all u.

We denote the number of hops in a path P as length(P );
note that a path with n nodes has n − 1 hops. In addition,
given an AS k, we will write k ∈ P if node k appears in P .
For clarity, given a path P from i to j, we will often denote
P by iP j; furthermore, if P is a path from i to j, and Q is a
path from j to k, then we will denote the concatenation of P
and Q by iP jQk.

We denote the set of all paths from i to 0 (i.e., all paths on
the complete graph) using the nodes 1, . . . , N by P N

i . Given
the set of nodes {1, . . . , N}, each AS i will choose a ranking
≺i over the set of all paths PN

i , defined as follows.

Definition 2 (Ranking) GivenN , a ranking≺i for node i is
a total ordering over the set of all paths PN

i ; thus, given any
two paths P,Q ∈ PN

i , either P ≺i Q (i prefers Q to P ) or
P �i Q (i prefers P to Q).

An AS may always choose the empty path, ε, which is
equivalent to total disconnection from the destination node
0. Thus, we have ε ∈ PN

i for all i and N . Furthermore, we
2In this paper, we use the terms “AS” and “node” interchangeably.

assume that every AS strictly prefers connectivity to discon-
nectivity, so that P �i ε for all P ∈ PN

i .
Note that all paths may not be available to node i, due

to both topological constraints and filtering by other nodes.
Throughout the paper, we will use Fi ⊆ PN

i to denote the
set of paths actually available for use by node i. The empty
path is always available; i.e., ε ∈ Fi.

A routing system is specified by the rankings of the indi-
vidual nodes, together with the paths available to the individ-
ual nodes. Observe that we have decoupled the “routing pol-
icy” of each AS i into two components: the rankings ≺ i of
AS i over route advertisements received (i.e., a “ranking”);
and a determination of which paths are filtered from other
ASes (i.e., “filtering”). The filtering decisions of all nodes,
together with physical constraints on the network, yield the
sets F1, . . . ,FN . We thus have the following formal defini-
tion of a routing system.

Definition 3 (Routing system) A routing system is a tuple
(N,≺1, . . . ,≺N ,F1, . . . ,FN ), where node i has ranking≺i

over the set PN
i , and Fi is the set of paths available to node

i.

A routing system specifies the input to any interdomain
routing protocol we might consider. Given this input, the
protocol should converge to a “routing tree”: that is, an as-
signment of a path to each AS, such that the routes taken to-
gether form a spanning tree rooted at 0. To formalize this no-
tion, we must define path assignments and consistent paths.

Definition 4 (Path assignment) A path assignment for the
routing system (N,≺1, . . . ,≺N ,F1, . . . ,FN ) is a vector of
paths P = (P1, . . . , PN ) such that, for all i, Pi ∈ Fi.

Thus, a path assignment is an assignment of a feasible path
to each AS i, where feasibility is determined by the set of
paths Fi. Even though each node has a path assigned, these
paths may not be consistent: node i may be assigned a path
Pi = ijP̂j0, where j is the first node traversed on Pi, and
where P̂j is a path from j to 0. However, the path P̂j may
not be the same as the path Pj assigned to j in the path as-
signment P ; in fact, P̂j may not even be in the set of feasible
paths Fj . For example, a node or link along the path P̂j may
experience a failure, causing the routing protocol to with-
draw the path; if j has heard such a withdrawal but i has not,
then it is possible that Pi = ijP̂j0 until node i learns that
P̂j no longer exists. To formally capture such situations, we
now define consistent paths and consistent path assignments.

Definition 5 (Consistent path) Given a path assignment P ,
a path P̂i for node i is consistent with P if one of the follow-
ing holds:

1. P̂i = ε; or

2. P̂i = i0; or

3. P̂i = ijPj0, for some j �= i.

It is clear that a routing protocol where packets are routed
solely on destination should ultimately assign paths that are
consistent with each other. We now formally define a consis-
tent path assignment.
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Definition 6 (Consistent path assignment) A con-
sistent path assignment for the routing system
(N,≺1, . . . ,≺N ,F1, . . . ,FN ) is a path assignment
vector P = (P1, . . . , PN ) such that for all i, Pi is consistent
with P .

3.2 Stability and Safety
Informally, a path assignment is stable if it is consistent,

and no node has a more preferred consistent path available.

Definition 7 (Stable path assignment) Given a routing
system (N,≺1, . . . ,≺N ,F1, . . . ,FN), and a consistent
path assignment P , we say that P is stable if for all nodes
i, and all paths P̂i that are consistent with P , P̂i ≺i Pi.

Definition 8 (Stable routing system) The routing system
(N,≺1, . . . ,≺N ,F1, . . . ,FN ) is stable if there exists at
least one stable path assignment P .

The stability of a routing system does not indicate whether
a routing protocol will converge regardless of the initial path
assignment. For this purpose, we introduce safety, which
states that a protocol eventually converges, regardless of the
initial path assignment and ordering of the routing messages.

In defining safety, we will consider a simplified abstrac-
tion of BGP. We model the process by which nodes receive
route advertisements from other nodes and subsequently up-
date their own route decisions. In this paper, we will consider
a protocol dynamic where at each time step only a single AS
is activated; when activated, an AS immediately processes
all pending incoming route advertisements, and then makes
a route decision. Formally, this will translate into a path as-
signment sequence where exactly one node (the “activated”
node) changes its route at any given time step.

A routing system is safe if no oscillation occurs regardless
of the order in which nodes are activated. We start, therefore,
by defining a fair activation sequence.

Definition 9 (Fair activation sequence) The sequence
i1, i2, . . . is a fair activation sequence if each node
i = 1, . . . , N appears infinitely often in the sequence.

This definition of fair activation sequence is similar to that
presented by Gao and Rexford [6], except that in our defini-
tion we only activate one node at a time. This distinction is
not major: we can interpret the Gao and Rexford dynamics
as a model where outstanding routing messages may be in
flight when a particular node is activated.

We now define our simplified model of the routing proto-
col dynamics: that is, starting from an initial path assignment
P 0, and given a fair activation sequence of nodes i1, i2, . . .,
what is the resulting observed sequence of path assignments
P 1,P 2, . . .? To formalize the dynamics of our model, we
consider an abstraction of the BGP decision process de-
scribed in Figure 3. At each time t, a node it is activated,
and chooses its most preferred available path consistent with
the path assignment P t−1. All other nodes’ paths remain
unchanged. It is clear that this decision process yields a se-
quence of path assignments P 1,P 2, . . ..

After any given activation step t, the overall path assign-
ment P t may not be consistent. Inconsistencies reflect the
fact that a node only updates its path assignment in response

Routing protocol dynamics
At time t− 1, the current path assignment is P t−1; i.e., each
node i has currently selected path Pi,t−1 to the destination 0.
At time t:

1. A given node it is activated.

2. Node it updates its path to be the most preferred path
(according to ≺it ) consistent with P t−1. That is,

(a) Pit,t ∈ Fit is consistent with P t−1, and

(b) Pit,t �it P̂it ∀ P̂it ∈ Fit consistent with P t−1.

3. All other nodes leave their paths unchanged.

Figure 3: The routing protocol dynamics, given an activation sequence
i1, i2, . . .. The process starts from an initial path assignment P0.

to the receipt of a route advertisement. If, at time t0, a node
i is using a path that traverses some other node j that has
since changed paths, then node i would obliviously continue
to use (and advertise) that inconsistent path until it receives
a routing update that reflects that the path through j has dis-
appeared or changed. When activated, say, at time t > t0,
node iwould discover that the path it was using was inconsis-
tent with P t and would then instead select its highest-ranked
path that was consistent with P t. The activation of a node at
some time t corresponds to that node receiving all available
routing information in the system up to that time.

With the definition of our protocol dynamics in hand, we
can define protocol safety. Given a routing system and an
activation sequence, we say that the system has converged if,
after some finite time, the path assignment remains invariant
for all future time. A protocol is safe if it converges to a sta-
ble path assignment, regardless of the initial path assignment
and fair activation sequence.

Definition 10 (Safety) A routing system (N,≺1, . . . ,≺N

,F1, . . . ,FN) is safe if for any initial path assignment P 0

and fair activation sequence i1, i2, . . ., there exists a finite ti
such that P s = P t for all s, t ≥ ti.

We observe that since the activation sequences are fair in
the preceding definition, if a routing system converges to P t,
then the resulting path assignment to which the system con-
verges must be both consistent and stable. If not, at least one
node would change its path assignment eventually.

3.3 Filtering
In this paper, we are interested in the stability and safety

of systems that result when nodes are allowed to filter routes
from other nodes. We thus require conditions stronger than
stability and safety, known as stability under filtering and
safety under filtering. Informally, a routing system is stable
(respectively, safe) under filtering if, under any choices of
export filters made by the ASes, the resulting routing sys-
tem is always stable (respectively, safe). We formalize these
notions as follows.

Definition 11 (Stable under filtering) The routing system
(N,≺1, . . . ,≺N ,F1, . . . ,FN ) is stable under filtering if, for
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all choices of available paths F̂i ⊆ Fi for i = 1, . . . , N , the
routing system (N,≺1, . . . ,≺N , F̂1, . . . , F̂N ) is stable.

Definition 12 (Safe under filtering) The routing system
(N,≺1, . . . ,≺N ,F1, . . . ,FN ) is safe under filtering if, for
all choices of available paths F̂i ⊆ Fi for i = 1, . . . , N , the
routing system (N,≺1, . . . ,≺N , F̂1, . . . , F̂N ) is safe.

We interpret these definitions as follows. The set of avail-
able paths Fi gives the set of paths that are physically possi-
ble for AS i to use, given the current network topology. Once
all ASes have chosen their route filters (which may be arbi-
trarily defined), the set F̂i gives the set of paths that can ever
be used by node i in route advertisements. Since we allow ar-
bitrary choice of filters, the resulting routing system should
be stable and safe regardless of the choices of F̂1, . . . , F̂N

that are made.

4. Ranking Classes and Safety
In this section, we study two natural ranking classes un-

der which ASes retain policy independence in setting rank-
ings over paths. First, in Section 4.1, we study the rank-
ings where each AS is allowed to rank paths solely based on
the immediate next-hop AS, called “next-hop rankings”. We
show that (1) there are routing systems where each node has
only a next-hop ranking that are unsafe; and (2) even though
all routing systems where nodes have next-hop rankings are
stable, there exist some routing systems of this form that are
not stable under filtering.

In Section 4.2, we study the properties of routing systems
where each node is allowed to choose a weight for all its out-
going links, and rankings are derived from a “total” weight
associated to each path. The total weight of a path is de-
fined as the weight of the first link on that path, plus a dis-
counted sum of the weights of all remaining links on that
path. We show that if the discount factor is anything other
than 1 (which corresponds to shortest path routing), then
there exist weight configurations that yield an unsafe rout-
ing system.

4.1 Next-Hop Rankings
One natural set of rankings for a routing system is one

where each AS can express rankings over paths solely based
on the next-hop AS in the path. Such a class of rankings
makes sense because an AS establishes bilateral contracts
with its immediate neighbors and, as such, will most often
wish to configure its rankings based on the immediate next-
hop AS en route to the destination. For example, an AS will
typically prefer sending traffic via routes through its neigh-
boring customer ASes over other ASes, since those customer
ASes are paying based on traffic volume. We formally define
next-hop rankings as follows:

Definition 13 (Next-hop ranking) Given N , ≺i is a next-
hop ranking if, for all nodes j, k with i, j, k distinct, we have:

ijPj0 ≺i ikPk0 ⇒ ijP ′
j0 ≺i ikP

′
k0, (1)

for all Pj , P
′
j ∈ PN

j , and Pk, P
′
k ∈ PN

k . (Here we interpret
PN

0 = {ε}.)
Thus, ≺i ranks paths based only on the first hop of each

path.
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(a) Routing system
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(b) Activation sequence

Figure 4: Next-hop rankings are not safe in this routing system. AS 1
prefers all paths through AS 3 over the direct path to the destination 0
(with ties broken deterministically) and prefers the direct path over all
paths through AS 2. Similarly, AS 3 prefers all paths via AS 2, and so
forth.

Such a restriction on policy would still be sufficiently rich
to achieve most traffic engineering goals, since most policies
are based on the immediate next-hop AS [3]. Additionally,
this set of rankings might appear to be expressive enough for
most policy goals, since most routing policies are dictated
according to the AS’s business relationship with its immedi-
ate neighbor.

Previous work has shown that a routing system where
each node has a next-hop ranking always has at least one
stable path assignment [4]. In this section, we first show
that there exists a routing system where each node has a
next-hop ranking and the system is unsafe, even with no
filtering. Then, we show that there may exist F̂1 . . . F̂N ,
where F̂i ⊆ Fi for all i, such that even though the sys-
tem (N,≺1 . . . ≺N ,F1 . . .FN) is stable, the filtered system
(N,≺1 . . . ≺N , F̂1 . . . F̂N) is unstable. That is, there exist
routing systems with next-hop rankings for which a stable
path assignment exists, but introducing filtering can yield a
system where no stable path assignment exists.

Observation 1 A routing system where each node has only
a next-hop ranking may be unsafe.

Example 3 A routing system where each node has a next-
hop ranking may not be safe. Consider Figure 4. In this
example, each AS ranks every one of its neighboring ASes.
For example, AS 1 prefers all paths that traverse AS 3 as the
immediate next hop over all paths that traverse AS 0 as the
immediate next hop, regardless of the number of ASes each
path traverses; similarly, AS 1 prefers paths that traverse AS
0 as the immediate next hop over paths that traverse AS 2.
Each AS readvertises its best path to the destination to all of
its neighbors (i.e., the system has no filtering). Now consider
the activation sequence in Figure 4(b); if infinitely repeated,
this activation sequence would be fair, and the routing system
would oscillate forever. Thus, the routing system is not safe.

Note that this system is not safe, but it is stable: for ex-
ample, the path assignment (10, 210, 3210) is stable. Nodes
2 and 3 are using paths through their most preferred nodes.
Node 1’s most preferred node, node 3, is using a path that
already goes through node 1, so node 1 is also using its most
preferred consistent path. As every node is using its most
preferred consistent path, no node will change paths when
activated, so the path assignment is stable. �

A routing system where each node has a next-hop ranking
may not be safe, but Feigenbaum et al. showed that there is
always guaranteed to be at least one stable path assignment

5



0

Filter  1* from 3
1,0,3

2

33,0,2 1

Filter 2* from 1 
2,0,1

Filter 3* from 2

Figure 5: This routing system is stable without filtering but unstable
under filtering. The figure shows an unsafe routing system with next-
hop rankings and filtering that is equivalent to the unstable routing
system with the rankings over paths shown in Figure 1.
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Figure 6: Routing system with edge weight-based rankings.

for such routing systems [4]. However, allowing nodes to
filter paths from each other can create routing systems for
which there is no stable path assignment.

Observation 2 There exist routing systems with next-hop
rankings for which a stable path assignment exists, but in-
troducing filtering can yield a system where no stable path
assignment exists.

Example 4 Consider Figure 5. As before, each AS ranks
every one of its neighboring ASes. Additionally, each AS
may also declare arbitrary filtering policies. In this example,
each AS (other than the destination) does not readvertise any
indirect path to the destination. For example, AS 1 does not
advertise the path 130 to AS 2, and thus the path 2130 is
not available to AS 2. Formally, we define F1 = {130, 10},
F2 = {210, 20}, and F3 = {320, 30}.

It is possible to show that the resulting routing system is
actually equivalent to the system in Figure 1, once the fil-
tered paths are removed from each node’s ranking. Thus,
the filtered routing system is unstable by the same reason-
ing as in Example 1: for any path assignment in this routing
system, at least one AS will have a higher ranked consis-
tent path (and, hence, has an incentive to deviate from the
path assignment). For example, consider the path assign-
ment P 1 = (130, 20, 30). AS 3 prefers to switch paths to
320, since 2 is its preferred next hop AS. �

Using a construction similar to that in Example 2, it is
possible to show how this example could arise in practice.
The example demonstrates the complex interaction between
filtering and rankings—a class of rankings that guarantees
stability without filtering can yield unstable routing systems
under certain filtering conditions.

4.2 Edge Weight-Based Rankings
There exists at least one routing model that preserves rank-

ing independence and yet ensures stability: if each provider
is allowed to choose edge weights for its outgoing links, and
each provider ranks paths based on the sum of edge weights,
the resulting “shortest paths” routing system is guaranteed

to be safe [10]. Since this result holds for any F1, . . . ,FN ,
any routing system built in this way is guaranteed to be safe
under filtering. In this section, we will formulate a general-
ized model of such edge weight-based rankings, with both
next-hop rankings and shortest path routing as special cases.
Such rankings do not allow providers to directly specify their
ranking; rather, the rankings of each provider are derived
from the strategic choices made by all providers, namely,
the choices of outgoing link weights that each provider sets.
This notion of “derived” rankings is a potentially useful
method for ensuring policy independence in interdomain
routing protocols.

Definition 14 (Edge weight-based rankings)
(N,≺1, . . . ,≺N ,F1, . . . ,FN ) is a routing system with
edge weight-based rankings if there exists an assignment
of edge weights wij to each ordered pair of ASes i, j,
together with a parameter α ∈ [0, 1], such that for each
AS i and paths Pi, P̂i ∈ PN

i with Pi = ii1 . . . in0 and
P̂i = ij1 . . . jm0, there holds:

Pi ≺i P̂i if and only if wii1 + α

(
n−1∑
k=1

wikik+1 + win0

)

> wij1 +

(
m−1∑
�=1

wj�j�+1 + wjm0

)
.

The interpretation of this definition is as follows. Each
node chooses edge weights for all possible outgoing links;
i.e., node i chooses a weight wij for each node j. Next,
node i determines its rankings by ordering all paths P i =
ii1 . . . in0 in increasing order according to their weight
wii1 + α(

∑n−1
k=1 wikik+1 + win0), where α is a global pa-

rameter used to weight the tail of the path. The parameter
α allows us to compare two extreme points: α = 1, corre-
sponds to shortest path routing based on the matrix of edge
weights w, while α = 0 corresponds to next-hop rankings.
A natural question to ask is whether a routing system us-
ing edge weight-based rankings can be safe for intermediate
values of α. It turns out that the only edge weight-based
ranking class that can guarantee safety (and safety under fil-
tering), regardless of the weights chosen by each provider, is
the scheme defined by α = 1; i.e., shortest path routing.

Observation 3 A routing system with edge weight-based
rankings may be unstable for any α where 0 < α < 1.

Example 5 Consider the routing system shown in Figure 6.
If the system is such that each node prefers the two-hop
path to the destination, followed by the one-hop (i.e., di-
rect) path, followed by the three-hop path, then the system
will be unstable because its behavior will match Example 1.
The routing system will be unstable if the following condi-
tions are satisfied, for all i = 1, 2, 3: wi,i+1 + αwi+1,0 <
wi,0 < wi,i+1 +α(wi+1,i+2 +wi+2,0) (for addition modulo
3). If α = 1, these inequalities cannot be simultaneously
satisfied for any nonnegative choice of the edge weight vec-
tor w; this is to be expected, since α = 1 corresponds to
shortest path routing. On the other hand, if 0 < α < 1,
then many vectors w exist satisfying the inequalities above.
For example, we can choose w10 = w20 = w30 = 1,
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No Dispute Ring

Safe under Filtering
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Figure 7: Relationships between safety and dispute rings and wheels.
Previous work showed that a routing system with no dispute wheel is
safe [10]. Section 5 presents all other relationships shown in this figure.

and let w12 = w23 = w31 = x, for any x such that
(1 − α)/(1 + α) < x < 1 − α. For this definition of w, all
three inequalities above will be satisfied, and thus the rank-
ings of each node will lead to the same oscillation described
in Example 1. �

5. Dispute Wheels and Dispute Rings
Our goal is to study the classes of rankings for which

the routing system is guaranteed to be safe under filtering.
Safety is a dynamic concept, and Griffin et al. have shown
that checking whether a particular routing system is safe is
NP-hard [10]. To simplify our study of safety, we introduce
a useful concept developed by Griffin et al. [10], known as a
dispute wheel. Informally, a dispute wheel gives a listing of
nodes, and two path choices per node, such that one path is
always preferred to the other. If a routing system oscillates,
then it is possible to construct a dispute wheel whereby each
node in the wheel selects its more preferred path (via the
node in the clockwise direction) over its less preferred path.
Griffin et al. showed that if a routing system with no filtering
does not have a dispute wheel, then it is safe.

The dispute wheel is a useful concept because it allows
us to analyze dynamic properties such as safety by simply
looking at the rankings of each node in the routing system.
In this section, we formally define a dispute wheel and show
the relationship of Griffin’s routing model, which simulates
messages being passed between nodes, to the model we use
in this paper, which uses fair activation sequences. This re-
lationship allows us to leverage Griffin’s previous results to
study safety in terms of the routing model in this paper. We
then extend the framework of Griffin et al. by defining a
special type of dispute wheel called a dispute ring and show
that, if any routing system has a dispute ring, then it is unsafe
under filtering. Finally, we relate dispute wheels to dispute
rings and show that, although the presence of a dispute ring
guarantees that a routing system is unsafe under filtering, it
does not necessarily imply that a routing system is unsafe
without filtering. Figure 7 summarizes the results of this sec-
tion and how they relate to results from previous work [10].

5.1 Dispute Wheels and Safety
We start by formally defining dispute wheels.

Definition 15 (Dispute wheel) Given a routing system
(N,≺1, . . . ,≺N ,F1, . . . ,FN ), a dispute wheel is a collec-
tion of distinct nodes i1, . . . , im, called pivots, together with
two sets of paths P1, . . . , Pm and Q1, . . . , Qm, such that the
following conditions hold (where we define im+1 = i1 for
notational convenience):

1. Pk ∈ Fik
for all k = 1, . . . ,m;

0

Qk

Pkik

Pk+1

ik+1

Figure 8: Illustration of a dispute wheel. Dotted lines show preferred
(indirect) paths to the destination. The nodes i1, . . . , im are pivots.

2. Qk is a path from ik to ik+1 for all k = 1, . . . ,m;

3. The path P̂k = ikQkik+1Pk+10 is feasible, i.e., P̂k ∈
Fik

, and

4. P̂k �ik
Pk.

Thus, each node ik prefers the path ikQkik+1Pk+10 to the
path ikPk0. Figure 8 shows a graphical representation of a
dispute wheel.

As previously shown by Griffin et al. [10], the most im-
portant feature of dispute wheels for our purposes is that if
a routing system has no dispute wheels, then it is safe. To
use this result for analyzing routing systems as we defined
in Definition 3 (Section 3), we must show that safety in the
Simple Path Vector Protocol (SPVP) defined by Griffin et
al. [10] implies safety in our model.

Proposition 1 Given a routing system, a fair activation se-
quence, and an initial path assignment P 0, let P 1,P 2, . . .
be the resulting sequence of path assignments according to
the dynamics described in Figure 3. Then there exists a
sequence of messages in the Simple Path Vector Protocol
(SPVP) such that the same sequence of path assignments is
observed.

Thus, in particular, if a routing system is safe under SPVP,
then it is safe according to Definition 10.

Proof Sketch. The key difference between SPVP and the dy-
namics we have defined is that SPVP is asynchronous (i.e., at
any time step, messages may be in flight), so different nodes
may have different assumptions about the global path assign-
ment at any time. However, SPVP is nondeterministic with
respect to the timing of messages; the delay between a rout-
ing update at node j and the receipt of the new route adver-
tisement from node j at node i can be arbitrary. We use this
fact to construct, inductively, a sequence of messages such
that at time t, the current set of paths available to node i t in
SPVP corresponds exactly to P t−1. Furthermore, we time
the delivery of routing updates to node i t in SPVP so that
any updates that occurred since the last time it was activated
arrive exactly at the start of time step t. In SPVP, this will ini-
tiate a routing update at node it, which corresponds exactly
to the activation of it in our model (see Figure 3).

Thus, the sequence of path assignments seen in this real-
ization of SPVP matches the sequence of path assignments
seen in our dynamics. We conclude that if SPVP is guaran-
teed to be safe for the given routing system (i.e., if eventu-
ally no further routing updates occur, regardless of the initial
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Figure 9: A routing system that is safe for any choice of filters.

path assignment), then the routing system is safe according
to Definition 10 as well. �

Corollary 1 If a routing system (N,≺1, . . . ,≺N ,
F1, . . . ,FN ) has no dispute wheel, then it is safe.

Corollary 2 If a routing system (N,≺1, . . . ,≺N ,
F1, . . . ,FN ) has no dispute wheel, then it is safe un-
der filtering.

Proof. Choose subsets F̂i ⊆ Fi. Then, any dispute wheel
for the routing system Ŝ = (N,≺1, . . . ,≺N , F̂1, . . . , F̂N )
is also a dispute wheel for the original routing system S =
(N,≺1, . . . ,≺N ,F1, . . . ,FN ). �

We conclude that if no dispute wheel exists, then not only
does this guarantee any resulting routing system is safe, but
it will also ensure safety under filtering. Unfortunately, this
condition is not a necessary condition for safety, and thus
not much can be said about a system that does have a dispute
wheel. Furthermore, there exist routing systems that have a
dispute wheel but which are safe under filtering.

Observation 4 The existence of a dispute wheel does not im-
ply that the routing system is unsafe, nor that the routing sys-
tem is not safe under filtering.

Example 6 See Figure 9. The first two most preferred paths
in each node’s ranking form a dispute wheel, but the sys-
tem is safe: the system converges to P = (10, 20, 30). Fur-
thermore, no combination of filters can create an oscillation.
The two-hop paths are not part of the stable path assign-
ment, so filtering those paths has no effect on the protocol
dynamics. Filtering a three-hop path would simply result in
a node selecting the direct path to the destination, and the
node would never deviate from that path; thus, an oscilla-
tion would not occur. If one direct path is filtered, then the
other two nodes will take direct paths to the destination and
the node whose direct path is filtered will take its most pre-
ferred three-hop path. If two direct paths are filtered, then
P is simply a chain to the destination: the node that has the
direct path takes it, and the other two nodes will take two and
three-hop paths. �
5.2 Dispute Rings and Safety

In this section, we extend the dispute wheel notion to
understand the relationship between ranking expressiveness
and safety under filtering. We define a relationship between
rankings called a dispute ring, a special case of a dispute
wheel where each node appears at most once.

Definition 16 (Dispute ring) A dispute ring is a dis-
pute wheel—a collection of nodes i1, . . . , im and paths
P1, . . . , Pm,Q1, . . . , Qm satisfying Definition 15—such that
m ≥ 3, and no node in the routing system appears more than
once in the wheel.

The dispute ring is a useful concept because it allows us to
prove a necessary condition for safety under filtering.

Proposition 2 If a routing system has a dispute ring, then it
is not safe under filtering.

Proof. Assume that a routing system has a dispute ring,
defined by i1, . . . , im, and paths Q1, . . . , Qm, P1, . . . , Pm.
Then, construct filters such that Fi contains only the paths
in that dispute ring. Specifically, Fi contains the following
paths from PN

i (where we define im+1 = i1). (1) If i is not
in the dispute ring, then Fi = ∅. (2) If i is a pivot node on the
dispute ring, say i = ik, then Fi contains exactly two paths:
Pk , and ikQkik+1Pk+10. (3) If i is not a pivot node, but
i ∈ Qk for some k, then we can write Qk = ikQ

1
kiQ

2
kik+1.

In this case Fi consists of the single path iQ2
kik+1Pk+10. (4)

If i is not a pivot node, but i ∈ Pk for some k, then we can
write Pk = ikP

1
k iP

2
k 0. In this case, Fi consists of the sin-

gle path iP 2
k 0. Since each node appears at most once on the

dispute ring, the preceding definition uniquely defines F i for
all nodes i.

There exists at least one consistent path assignment P t

such that some pivot node ik−1 is using its most preferred
path, ik−1Qk−1ikPk0, every other pivot node ij is using
path ijPj0, and every other non-pivot node i uses its only
available path consistent with this assignment. Then, the fol-
lowing activation sequence will result in an oscillation:

1. Activate node ik. Node ik then switches to its more
preferred path, ikQkik+1Pk+10.

2. Activate nodes along Qk−1 in reverse order, from the
node immediately preceding ik, to ik−1. All nodes
along Qk−1 switch to the empty path, ε.

3. Activate node ik−1. The path ik−1Qk−1ikPk0 is
now inconsistent, so ik−1 must switch to the path
ik−1Pk−10.

4. Return to Step 1 with k replaced by k + 1, and iterate
again.

By the fourth step of the iteration above, the new path as-
signment is “isomorphic” to the initial configuration: now
node ik is using the path ikQkik+1Pk+10, and every other
pivot node ij is using path ijPj0. Thus, as this iteration re-
peats, the dynamics will ultimately reach node ik once again
with the original path assignment. Note that all paths in this
activation sequence are guaranteed to be available and con-
sistent, by the definition of Fi. To make this activation se-
quence fair, we must also activate (1) the nodes that are not
in Pi ∪Qi for any i in the dispute ring; and (2) the non-pivot
nodes in Pi for all i in the dispute ring. The nodes that are
not in Pi ∪ Qi for any i have only the path ε available, and
each non-pivot node in Pi (for all i) has only one path to
the destination available. Therefore, these nodes will never
change paths, and do not affect the oscillation. �

We emphasize that, for simplicity, we reduced the set of
filters, Fi, to include only the set of paths that are involved
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Node Ranking
1 160 � 1240
2 240 � 2350
3 350 � 3160
4 43160 � 40
5 51240 � 50
6 62350 � 60

(a) Routing system

1

3

4
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3

2

6
1

0

(b) Dispute wheel

Figure 10: System that (1) has no dispute ring and (2) is not safe.

Path Assignment
Act. 1 2 3 4 5 6
— (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 0)
5 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)
1 (1 6 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)
3 (1 6 0) (2 4 0) (3 1 6 0) (4 0) (5 1 2 4 0) (6 0)
4 (1 6 0) (2 4 0) (3 1 6 0) (4 3 1 6 0) (5 1 2 4 0) (6 0)
5 (1 6 0) (2 4 0) (3 1 6 0) (4 3 1 6 0) (5 0) (6 0)
3 (1 6 0) (2 4 0) (3 5 0) (4 3 1 6 0) (5 0) (6 0)
2 (1 6 0) (2 3 5 0) (3 5 0) (4 3 1 6 0) (5 0) (6 0)
6 (1 6 0) (2 3 5 0) (3 5 0) (4 3 1 6 0) (5 0) (6 2 3 5 0)
4 (1 6 0) (2 3 5 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
2 (1 6 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
1 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
5 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 2 3 5 0)
6 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)

Figure 11: Activation sequence for unsafe system from Figure 10.

in an oscillation. We note that there will typically be more
permissive sets Fi that will also result in oscillation, since
the dispute ring is present in the underlying set of rankings.
Our intent is to highlight the most basic case of filtering that
can cause an oscillation, given the existence of a dispute ring.

Despite the fact that systems that are safe under filtering
are guaranteed not to have a dispute ring, testing for a dispute
ring is not sufficient to guarantee that the routing system is
safe, as there exist routing systems without dispute rings that
are unsafe. We give an example below.

Observation 5 There exist unsafe routing systems that have
a dispute wheel but do not have a dispute ring.

Example 7 Consider the routing system described by
Figure 10(a) and the corresponding dispute wheel in
Figure 10(b). Suppose that nodes 1, 2, and 3 pre-
fer two-hop paths over three-hop paths, and the only
paths available to nodes are those depicted in the figure.
This system is not safe; for example, suppose P 0 =
(1240, 240, 350, 40, 50, 60). The system then oscillates as
shown in Figure 11. However, the system has no dispute
ring; in particular, the dispute wheel depicted in Figure 10(b)
cannot be reduced to a dispute ring. �

6. Ranking Independence,
Unrestricted Filtering, and Safety

In this section, we determine necessary and sufficient con-
straints on the allowable classes of rankings, such that if each

AS acts independently in setting its ranking while filtering is
unrestricted, the protocol is guaranteed to be safe. We use
the static concepts of dispute rings and dispute wheels to
simplify checking safety, a dynamic property. As a result,
we restrict our attention to characterizing whether a routing
system where rankings are chosen independently by each AS
can induce either a dispute ring or a dispute wheel.

A protocol’s configurable parameters implicitly restrict the
rankings ASes can express. (In BGP, the set of protocol
parameters is rich enough to allow providers to express es-
sentially any possible ranking over paths.) We must ensure
these constraints respect the ability of each AS to set rank-
ings independently. In Section 6.1, we axiomatically formu-
late two properties that should be satisfied by any protocol
that respects ranking independence: permutation invariance
and scale invariance. The first requires the rankings allowed
by the protocol to be independent of node labeling; and the
second requires the allowed rankings to scale gracefully as
nodes are added to the system. We abstract protocols sat-
isfying these two conditions through the notion of a local
verifier; such a verifier takes a single ranking as input, and
accepts it if that ranking is allowed by the protocol.

In Section 6.2, we give two examples of such verifiers:
the shortest hop count verifier (which only accepts rankings
where shorter paths are preferred to longer paths), and the
next hop verifier (which only accepts next hop rankings). We
then determine the class of local verifiers such that, as long
as each provider independently chooses an acceptable rank-
ing, the resulting global routing system is guaranteed to be
safe under filtering.3 In Section 6.3, we show that the only
verifiers that are safe under filtering are nearly equivalent to
the shortest hop count verifier.

6.1 Local Verifiers
In this section, we define a local verifier, which serves as

an abstraction of the protocol’s constraints on allowed rank-
ings over routes. We start by defining a (local) verifier, which
takes as input the ranking of a single AS i, ≺N

i and deter-
mines whether that set of rankings is allowable.

Definition 17 (Local verifier) Given N nodes, a verifier
π(≺i) takes as input the ranking of a single AS i over all
paths in PN

i , and returns “accept” if ≺i is allowed by π,
and returns “reject” otherwise. If π(≺i) = “accept”, we
will say that ≺i is π-accepted. If we are given a routing
system (N,≺1, . . . ,≺N ,F1, . . . ,FN) where each ≺i is π-
accepted, we will say the routing system is π-accepted.

A local verifier applies some set of conditions or tests to
the rankings; these conditions determine whether it should
accept or reject the ranking ≺i for any AS i. We call such
verifiers “local” because it takes as input a ranking for a sin-
gle AS only.

We now define two natural conditions any verifier that pre-
serves ranking independence should satisfy. First, the veri-
fier’s conditions on rankings should provide consistent an-
swers to different ASes, regardless of the labeling of the
ASes. That is, for the verifier to preserve ranking indepen-
dence, each AS should be subject to the same constraints on
routing policies, and those constraints should not depend on
3We focus on safety since it is a more practically useful concept than stabil-
ity.
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the particular assignment of AS numbers to ASes. For exam-
ple, suppose the routing system consists of three ASes, and
AS 1 has an accepted ranking where it prefers 1230 over 120,
and 120 over 10. Then we expect the same ranking should
be accepted, even if the labels of nodes are permuted. For
example, suppose we permute the node labels that 1 → 2,
2 → 3, and 3 → 1. Then node 2 should also have an ac-
cepted ranking where it prefers 2310 over 230, and 230 over
20 (since 2310, 230, and 20 are the new paths that result
after applying the permutation to 1230, 120, and 10, respec-
tively). If this property were not satisfied, then the verifier’s
decision to accept or reject a set of rankings would depend
on the global assignment of AS numbers to nodes, not on
the characteristics of the individual rankings themselves. We
call this notion permutation invariance; to define it precisely,
we must proceed through a sequence of definitions, starting
with path permutation.

Definition 18 (Path permutation) Given N nodes, let σ be
a permutation of the nodes 1, . . . , N . Then σ induces a path
permutation on any path P = ii1i2 . . . imj from i to j, yield-
ing a new path σ(P ) = σ(i)σ(i1)σ(i2) . . . σ(im)σ(j) from
σ(i) to σ(j). We always define σ(0) = 0.

Definition 19 (Ranking permutation) Given N nodes, let
σ be a permutation of the nodes 1, . . . , N . Then σ induces
a ranking permutation on a ranking ≺ i for node i over the
paths in PN

i , yielding a new ranking σ(≺i) over the paths
in PN

σ(i), as follows: If P1, P2 ∈ PN
i , and P1 ≺i P2, then

σ(P1)σ(≺i)σ(P2) (where σ(Pi) is the path permutation of
path Pi under σ).

Note that a permutation does not modify the routing sys-
tem any substantive way, except to relabel the nodes, and to
relabel the paths and rankings and in a way that is consistent
with the relabeling of nodes.

Definition 20 (Permutation invariance) A verifier π is per-
mutation invariant if, given N and a ranking ≺ i for an AS
i over all paths in PN

i , the relation ≺i is π-accepted if
and only if σ(≺i) is π-accepted, for any permutation σ of
1, . . . , N .

Second, a verifier should specify conditions for acceptance
or rejection of rankings that “scale” appropriately with the
number of nodes in the system; we call this property scale
invariance. Suppose, for example, that a verifier accepts a
ranking ≺i over PN

i , when N nodes are in the system. Now
suppose that we add nodes to the system, so the total num-
ber of nodes is N̂ > N . As additional nodes are added to
the system, additional paths become available as well, and
each node i must specify its rankings over the larger set
PN̂

i . Informally, scale invariance of the verifier requires that
i should be able to “extend” the ranking ≺ i to an accepted
ranking overP N̂

i , without having to modify its existing rank-
ing over PN

i ; otherwise, the properties of allowed rankings
would depend on the number of nodes in the global system.

To formalize this concept, we first define a subranking.

Definition 21 (Subranking) Given N nodes, let ≺i be a
ranking for AS i over all paths in PN

i . Given N̂ > N , let

≺̂i be a ranking for AS i over all paths in P N̂
i . Note that

PN
i ⊂ PN̂

i . We say that ≺i is a subranking of ≺̂i if P1 ≺i P2

implies P1≺̂iP2, for all P1, P2 ∈ PN
i .

We now define scale invariance.

Definition 22 (Scale invariance) A verifier π is scale invari-
ant if the following condition holds: given any π-accepted
ranking ≺i for AS i over PN

i , and given any N̂ > N , there

exists at least one π-accepted ranking ≺̂i over PN̂
i that has

≺i as a subranking.

Permutation invariance guarantees that relabeling nodes
does not affect allowed rankings; scale invariance ensures
that even as the set of nodes in the network increases, the
rankings over previously existing paths should remain valid.
Verifiers that satisfy both permutation invariance and scale
invariance correspond to protocols that ensure ranking inde-
pendence; we call such verifiers local verifiers.

Definition 23 (Local verifier) A verifier is a local verifier if
it is both permutation invariant and scale invariant.

We want to find protocols that are guaranteed to be safe
under filtering. Given that we use a local verifier as an ab-
straction of the constraints placed by a protocol on rankings,
we would thus like to characterize local verifiers that can
ensure safety under filtering of the entire routing system (a
global property). For this reason, we extend the definition of
“safety under filtering” to cover local verifiers.

Definition 24 Let π be a local verifier. We say that π is safe
under filtering if all π-accepted routing systems are safe un-
der filtering.

6.2 Examples of Local Verifiers
We now present two straightforward examples of local ver-

ifiers: the shortest hop count verifier, which is guaranteed to
be safe, but is not expressive; and the next hop verifier, which
is expressive, but not safe.

Example 8 Our first example is the shortest hop count rank-
ing verifier, denoted πshc. Given the number of nodesN , the
verifier πshc accepts a ranking ≺i for node i if and only if
the relation ≺i strictly prefers shorter paths (in terms of hop
count) over longer ones. Formally, it accepts ≺ i, if, for any
two paths Pi, P̂i ∈ PN

i such that length(Pi) < length(P̂i),
Pi �i P̂i. (Ties may be broken arbitrarily.)

It is not hard to verify that πshc is a local verifier. To check
permutation invariance, note that if ≺ i is allowed for node
i, then of course for any permutation σ, the ranking σ(≺ i)
will also be allowed for node σ(i), as σ(≺i) will also pre-
fer shorter paths to longer paths. Scale invariance is natu-
ral: given any shortest hop count ranking ≺ i over PN

i , and
given N̂ > N , there obviously exists at least one shortest
hop count ranking over P N̂

i that has ≺i as a subranking.
Thus πshc is scale invariant as well. However, other than
tie breaking, πshc does not allow very much freedom to the
providers in specifying routing policies. �
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πshc forces all providers to use shortest AS path length,
effectively precluding each AS from having any policy ex-
pressiveness in choosing rankings. A more flexible set of
rankings is allowed by the next hop ranking verifier of the
next example.

Example 9 The next hop ranking verifier, denoted πnh, ac-
cepts a ranking ≺i for node i if and only if ≺i satisfies Equa-
tion (1) in Section 4.1; that is, if ≺i is a next hop ranking.

It is easy to see that πnh is permutation invariant: if ≺i

is a next hop ranking for node i, then clearly σ(≺ i) is a
next hop ranking for node σ(i). Furthermore, note that any
next hop ranking ≺i is determined entirely by the rankings
of node i over each possible next hop, together with tiebreak-
ing choices among routes with the same next hop. Thus, for
N̂ > N , ≺i can be extended to a next hop ranking over P N̂

i ,
by extending node i’s rankings over each possible next hop,
and determining tiebreaking rules for any routes with next
hop N + 1, . . . , N̂ . We conclude that πnh is scale invariant
as well, and thus it is a local verifier.

The next hop verifier πnh grants providers greater flexi-
bility in choosing their routing policies than under the short-
est hop count verifier πshc. However, consider the conse-
quences of using the local verifier πnh. In this case, each AS
i will choose a next hop ranking ≺i, without any global con-
straints placed on the composite vector of next hop rankings
(≺1, . . . ,≺N ) chosen by the ASes. We have shown earlier in
Section 4.1 that there exist configurations of next hop rank-
ings that may not be stable or safe under filtering; thus, the
local verifier πnh can lead to globally undesirable behavior.

�

Next, we use dispute rings and dispute wheels to charac-
terize the class of local verifiers that are safe under filtering.
We will prove that this class is closely related to the shortest
hop count verifier πshc.

6.3 Impossibility Results
We prove two main results in this section. Informally, the

first result can be stated as follows: suppose we are given a
local verifier and an accepted ranking such that some n hop
path is less preferred (i.e., ranked lower) than another path
of length at least n + 2 hops. (Note that this is a reversal
of shortest hop count rankings.) Then, we can construct an
accepted routing system with a dispute ring; i.e., one that is
unsafe under filtering. The second result states that if some
n hop path is less preferred than another path of length at
least n + 1 hops, then there exists a routing system with a
dispute wheel (though not necessarily a dispute ring). Note
that this result is weaker than our first result, since a dispute
wheel does not necessarily imply that the system is unsafe
under filtering.

We interpret these results as follows: if we are searching
for local verifiers that are safe under filtering, we are very
nearly restricted to considering only the shortest hop count
verifier, since all paths of n hops must be more preferred than
paths of at least n+2 hops to guarantee safety under filtering;
and all paths of n hops must be more preferred than paths of
at least n + 1 hops to prevent dispute wheels.

Our first lemma, which is crucial to proving both of our
results, uses permutation invariance to construct a dispute
wheel from a single node’s rankings. We use a permuta-

. . .

. . .

0

i1 = i

i2 = σ(i)

P1 = P̂i

Q1 = Q̂i

P2 = σ(P̂i)
Pk = σk−1(P̂i)

Pk+1 = σk(P̂i)

ik = σk−1(i)

ik+1 = σk(i)

Qk = σk−1(Q̂i)

Figure 12: Dispute wheel construction for Lemma 1.

tion to “replicate” pieces of the dispute wheel until the entire
wheel is completed.

To state the lemma, we will require the definition of pe-
riod of a node with respect to a permutation, as well as the
period of a permutation. Given a permutation σ on the nodes
1, . . . , N , let σk denote the permutation that results when σ
is applied k times; e.g., σ2(j) = σ(σ(j)), where σ0 is de-
fined to be σ.

Definition 25 (Period) Given a permutation σ on the nodes
1, . . . , N , we define the period of i under σ as periodi(σ) =
min{k ≥ 1 : σk(i) = i}.

Thus, the period of i is the minimum number of applica-
tions of σ required to return to i.

Definition 26 (Permutation period) Given a permutation
σ on the nodes 1, . . . , N , we define the period of the permu-
tation σ as period(σ) = min{k ≥ 1 : σk(i) = i for all i}.

Thus, period(σ) is the minimum number of applications
of σ required to recover the original node labeling, and can
be computed as the least common multiple of periodi(σ), for
1 ≤ i ≤ N .

The following result establishes the conditions under
which we can apply a permutation to a π-accepted ranking to
obtain a dispute wheel. We will use this lemma as a building
block for both of the theorems in this section.

Lemma 1 Let π be a local verifier. Suppose there exists a
node i with a ranking ≺i over PN

i , two paths Ri, P̂i ∈ PN
i ,

and a permutation σ on 1, . . . , N such that:

1. ≺i is π-accepted;

2. Ri �i P̂i;
3. periodi(σ) = period(σ); and

4. There exists a path Q̂i from i to σ(i) such that:

Ri = iQ̂iσ(i)σ(P̂i)0. (2)

Then there exists a π-accepted routing system for which there
exists a dispute wheel.

This dispute wheel is defined by pivot nodes i1, . . . , im,
and paths P1, . . . , Pm and Q1, . . . , Qm, where m =
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period(σ), and where for k = 1, . . . ,m, we have ik =
σk−1(i), Pk = σk−1(P̂i), and Qk = σk−1(Q̂i).

Proof of Lemma. Refer to Figure 12. The key idea of the
proof is that, since periodi(σ) = period(σ), we can repeat-
edly apply σ to the paths Q̂i and P̂i and apply permutation
invariance to construct a π-accepted routing system with a
dispute wheel.

Let m = period(σ). Define the sequence i1, i2, . . . , im
by ik = σk−1(i) for k = 1, . . . ,m. Since period(σ) =
periodi(σ), the nodes i1, . . . , im are all distinct. For k =
1, . . . ,m, define≺ik

= σk−1(≺i); since the nodes i1, . . . , im
are all distinct, this assignment of rankings to nodes is well
defined (i.e., no node is assigned two different rankings). By
permutation invariance, since ≺i is π-accepted, we conclude
≺ik

is π-accepted for all k. For all other nodes j, choose any
π-accepted ranking ≺j . Let Fj = PN

j for all nodes j.
This permutation defines a π-accepted routing system

(N,≺1, . . . ,≺N ,F1, . . . ,FN ). We now construct a dis-
pute wheel for this system. Define Qk = σk−1(Q̂i), and
Pk = σk−1(P̂i), for k = 1, . . . ,m. We claim that these
definitions yield a dispute wheel.

Since Fj = PN
j for all j, all paths are feasible. Next, since

Q̂i is a path from i1 = i to i2 = σ(i), we conclude thatQk is
a path from ik to ik+1 for all k (where we define im+1 = i1).
We now observe that:

σk−1(Ri) = σk−1(i)σk−1(Q̂i)σk(i)σk(P̂i)0
= ikQkik+1Pk+10.

Finally, since ≺ik
= σk−1(≺i) and Ri �i P̂i, we have

σk−1(Ri) �ik
σk−1(P̂i). Using the preceding deriva-

tion and the fact that Pk = σk−1(P̂i), we conclude that
ikQkik+1Pk+10 �ik

ikPk0, as required.
Thus, we have established that i1, . . . , im, together with

Q1, . . . , Qm and P1, . . . , Pm, constitute a dispute wheel. �

The preceding lemma reduces the search for a dispute
wheel to a search for a permutation and a π-accepted ranking
with the stated properties. Observe from (2) that the permu-
tation σ maps the path P̂i into the “tail” of the path Ri; in
applying Lemma 1, we will construct a partial permutation
by mapping a path P̂i into the “tail” of Ri as in (2), and
then we will complete the permutation by adding nodes to
the system if necessary so that periodi(σ) = period(σ). We
use this approach to prove two theorems; the first states that
if a local verifier accepts at least one ranking that prefers an
n hop path less than a path of at least n + 2 hops, then the
verifier is not safe under filtering.

Theorem 1 Let π be a local verifier. Suppose there exists a
node i with π-accepted ranking ≺i, and two paths Ri, P̂i ∈
PN

i such that length(Ri) > length(P̂i) + 1 and Ri �i P̂i.
Then π is not safe under filtering.

Proof. The proof relies on Lemma 1 to build a dispute
wheel. First, using scale invariance of the local verifier,
we show that the stated conditions of the theorem ensure
that there exist two paths R′

i, P̂
′
i such that: length(R′

i) ≥

length(P̂ ′
i ) + 1; R′

i is more preferred than P̂ ′
i for some π-

accepted ranking; and R ′
i and P̂ ′

i have no nodes in common,
other than i and 0. Lemma 2 then completes the proof of
the theorem through two steps: first, once we have found the
paths R′

i and P̂ ′
i , we use them to build a permutation σ such

that the conditions of Lemma 1 are satisfied; and second, we
show that the dispute wheel given by Lemma 1 is in fact a
dispute ring, by checking that no nodes are repeated around
the wheel.

We first construct the paths R′
i and P̂ ′

i as described in the
previous paragraph. Let i, ≺i, Ri, and P̂i be given as in the
theorem. Let � = length(P̂i); i.e., P̂i = iu1u2 . . . u�−10.
We add � new nodes to the routing system, and label them
v1, . . . , v�; let N ′ = N + �. By scale invariance, there exists
a π-accepted ranking≺N ′

i on the set of paths PN ′
i with ≺i as

a subranking. For such a ranking ≺N ′
i we have Ri �N ′

i P̂i.
But now consider the path Ti = iv1 . . . v�0; note that

length(Ti) = � + 1. Since Ri �N ′
i P̂i, either Ti �N ′

i P̂i,
or Ri �N ′

i Ti. In the former case, let R′
i = Ti, P̂ ′

i = P̂i;
and in the latter case, let R′

i = Ri, and P̂ ′
i = Ti. Then

length(R′
i) ≥ length(P̂ ′

i ) + 1, R′
i �N ′

i P̂ ′
i , and R′

i and P̂ ′
i

have no nodes in common other than i and 0.
The following lemma uses Lemma 1 to construct a dispute

wheel.

Lemma 2 Let π be a local verifier. Suppose there exists a
node i with π-accepted ranking ≺i over PN

i , and two paths
Ri, P̂i ∈ PN

i such that:

1. length(Ri) ≥ length(P̂i) + 1;

2. Ri �i P̂i; and

3. Ri and P̂i have no nodes in common other than i and
0.

Then there exists a π-accepted routing system for which there
exists a dispute ring.

Proof of Lemma. The proof of this lemma proceeds by
using scale invariance: we add enough new nodes to the sys-
tem to allow us to build a permutation such that the condi-
tions of Lemma 1 are satisfied. The key insight is that we
initially construct the permutation σ by mapping the path
P̂i into the “tail” of the path Ri. We then add enough
nodes so that when we complete the definition of σ, we have
periodi(σ) = period(σ).

Let length(P̂i) = n, and let h = length(Ri) − n; note
that, by Condition 1 in the statement of the lemma, we know
h ≥ 1. Define i1 = i. We label the nodes so that P̂i =
i1i2 . . . in0, and Ri = i1x1x2 . . . xh−1î1î2 . . . în0. We want
to define a permutation σ that will map the path i1 . . . in0
to the tail of Ri, i.e., to the path î1 . . . în0. However, this
does not completely define a permutation, so we must add
additional nodes to ensure that periodi(σ) = period(σ).

We add 2(h−1)+n additional nodes to the system, labeled
x̂1, . . . , x̂h−1, and i′1, . . . , i′n, x′1, . . . , x′h−1. By scale invari-
ance, we know there exists at least one π-accepted ranking
≺̂i over all paths using this larger set of nodes, such that ≺̂i
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Figure 13: Dispute ring construction for Lemma 2.

has≺i as a subranking. In particular, sinceRi �i P̂i, we
haveRi�̂iP̂i. We now define a permutationσ according to
the following maps:

ik → îk → i′k → ik, k = 1, . . . , n;
xk → x̂k → x′k → xk, k = 1, . . . , h− 1.

That is,σ(ik) = îk, σ(îk) = i′k, etc. For all nodesj not
listed, we defineσ(j) = j. Note that the period ofσ is
period(σ) = 3, and of courseperiodi(σ) = periodi1(σ) =
3 = period(σ). Finally, note that by definition ofσ, we have
Ri = iQ̂iσ(i)σ(P̂i)0, whereQ̂i = ix1 . . . xh−1î1.

Thus, the conditions of Lemma 1 have been satisfied
by the ranking≺̂i, the pathsRi and P̂i, and the permu-
tation σ; so we know there exists aπ-accepted routing
system for which there exists a dispute wheel. To com-
plete the proof, we need only check that the dispute
wheel is a dispute ring. Note that the wheel has three
pivot nodes. Furthermore, to check that no nodes are
repeated around the wheel, we simply enumerate the
elements of our dispute wheel:̂Qi = i1x1 . . . xm−1î1;
σ(Q̂i) = î1x̂1 . . . x̂m−1i

′
1; σ2(Q̂i) = i′1x

′
1 . . . x

′
m−1i1 ;

P̂i = i1 . . . in0; σ(P̂i) = î1 . . . în0; andσ2(P̂i) = i′1 . . . i′n0.
It is straightforward to check that these paths constitute
a dispute ring: in Figure 13, note that the dispute wheel
constructed from these paths has no repeated nodes.�

Lemma 2 completes the proof of the theorem: we have
shown that if someπ-accepted ranking exists satisfying
the conditions of the theorem, then using only permutation
invariance and scale invariance we can build aπ-accepted
routing system with a dispute ring. This routing system is
then unsafe under filtering, by Proposition 2. �

The preceding theorem suggests that local verifiers that are
safe under filtering are very closely related to the shortest
hop count verifier, since no rankings can be accepted where
n hop paths are less preferred thann + k hop paths, fork ≥
2. The next theorem draws this relationship even closer, by
proving that there exists a dispute wheel if a local verifier
accepts any ranking where ann hop path is less preferred
than ann+ 1 hop path.

Theorem 2 Let π be a local verifier. Suppose there exists a
node i with π-accepted ranking ≺i, and two paths Ri, P̂i ∈
PN

i such that length(Ri) = length(P̂i) + 1 and Ri �i P̂i.
Then there exists a π-accepted routing system with a dispute
wheel.

Proof. As in the proof of Lemma 2, our basic approach is
to map the patĥPi into the “tail” of the pathRi. This par-
tially defines a permutationσ. Using a graphical approach,
we show how to add nodes to the system and complete the
permutationσ so thatperiodi(σ) = period(σ). We then ap-
ply Lemma 1 to conclude there exists aπ-accepted routing
system with a dispute wheel.

To begin, writeRi = ii1 . . . in0, andP̂i = iv1 . . . vn−10.
We will partially define a permutationσ, and then add
nodes and “complete” the permutation so thatσ satisfies
the conditions of Lemma 1. For all nodesj �∈ R i

⋃
P̂i,

we defineσ(j) = j. Let V = Ri

⋃
P̂i \ {0} =

{i, i1, . . . , in, v1, . . . , vn−1}; i.e., V is the set of the nonzero
nodes inRi

⋃
P̂i. We define adirected graph on the ver-

tex setV , by defining the set of arcsA as follows: A =
{(i, i1)}

⋃{(vk, ik+1) : k = 1, . . . , n−1}. Define the graph
G = (V,A).

We can immediately make the following observations
aboutG: (1) each node inV has either exactly one outgo-
ing link and no incoming links; or exactly one incoming link
and no outgoing links; or exactly one incoming link and ex-
actly one outgoing link; and (2) from the definition ofA,
nodei has exactly one outgoing link and no incoming links.
We interpret the graphG as a partial representation of the
permutationσ, by definingσ(j) = k if (j, k) ∈ A.

Of course, this only partially definesσ, and we now con-
sider how we should complete the definition ofσ. Let
T1, . . . Tm be the disjoint connected components ofG; we
write Tk = (Vk, Ak). By the definition of “connected com-
ponent”, we knowVk ∩ Vk′ = Ak ∩Ak′ = ∅ for k �= k′. We
assume without loss of generality thati ∈ V1.

Our approach is to first defineσ for all the nodes in each
connected componentTk, for k = 2, . . . ,m. From the
observations above, we can enumerate the nodes inVk as
Vk = {u1, u2, . . . , u�}, such that eachur has a link tour+1,
for r = 1, . . . , �− 1; and eitheru� has no outgoing links (in
which caseTk is just a “segment”) oru� has a link tou1 (in
which caseTk is a “cycle”). We defineσ(ur) = ur+1, where
we interpretu�+1 asu1. Thus, in a segment or cycle, each
node is mapped to its successor; in addition, in a segment,
the last node is mapped to the first node. This defines the
permutationσ for all nodes, except those inV1.

To complete the proof, we will add enough nodes and ex-
tend the definition ofσ so thatperiodi(σ) = period(σ);
we can then apply Lemma 1. Note that for all nodesj ∈
V2 ∪ · · · ∪ Vm, we can computeperiodj(σ) based on the
preceding definition. LetK be the least common multiple
of periodj(σ), over all j ∈ V2 ∪ · · · ∪ Vm. We thenadd
nodes to the system, and in particular to the setV1, until
|V1| (i.e., the number of nodes inV1) is a multiple of K.
Let the nodes added bez1, . . . , zs; these nodes will eventu-
ally become the pivots of the dispute wheel. We know that
A1 must be of the form{(i, i1), (i1, u1), . . . , (u�−1, u�)}
for some nodesu1, . . . , u� ∈ V . We defineσ as follows:
σ(i) = i1; σ(i1) = u1; σ(ur) = ur+1, for r = 1, . . . , �− 1;
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σ(u�) = z1; σ(zr) = zr+1, for 1 ≤ r ≤ s − 1; and
σ(zs) = i. Thus, it is as if we added the nodesz1, . . . , zs,
and turned the segmentT1 into a cycle. Since the length of
this cycle is a multiple ofK, it is clear thatperiod(σ) is a
multiple ofK, andperiodi(σ) = period(σ).

By scale invariance, even though we have added nodes
to the system, we can extend≺i to a π-accepted ranking
over the resulting larger set of paths, while maintaining
the preference ofRi over P̂i for node i. Furthermore,
recalling our initial definition of the arc setA, it is clear
that we haveRi = ii1 . . . in0 = iσ(i)σ(v1) . . . σ(vn−1)0 =
iσ(i)σ(P̂i)0. Thus, we can apply Lemma 1, witĥQi = ∅,
to conclude there exists aπ-accepted routing system with a
dispute wheel. �

The preceding results should not be interpreted as suggest-
ing that we cannot find a routing system that is safe under
filtering, where nodes prefern + k hop paths overn hop
paths. Indeed, as we know from Example 6, there exist rout-
ing systems where nodes prefer3 hop paths over1 hop paths,
and yet the system is safe under filtering. However, checking
whether such systems are safe under filtering requires global
verification; the theorems we have presented suggest safety
under filtering cannot be guaranteed through local verifica-
tion alone, if some nodes are allowed to prefern + k hop
paths overn hop paths.

Furthermore, the preceding two results highlight the im-
portance of dispute rings in our discussion. Theorem 1 gives
the strong result that a verifier that allows somen + k hop
path to be more preferred than ann hop path cannot guar-
antee safety under filtering, ifk ≥ 2. However, Theorem 2
only guarantees existence of a dispute wheel if a verifier that
allows somen + 1 hop path to be more preferred than ann
hop path; and we cannot draw conclusions regarding the sta-
bility or safety of our system on the basis of a dispute wheel,
again as pointed out by Example 6.

7. Conclusion
This paper has explored the fundamental tradeoff between

the expressiveness of rankings and routing safety, presum-
ing that each AS: (1) specifies its rankings independently of
other ASes and (2) retains complete freedom over filtering.
We characterize the interactions between filtering and rank-
ings and present the first systematic study of howfiltering
can introduce instability into a routing system. We show that,
with ranking independence and unrestricted filtering, guar-
anteeing the safety of the routing system essentially requires
each AS to rank routes based on AS path length.

This paper makes three main contributions. First, we show
that next-hop rankings are not safe; we also observe that al-
though rankings based on a globally consistent weighting of
paths are safe under filtering, even minor generalizations of
the weighting function compromise safety. Second, we de-
fine adispute ring and show that any routing system that has
a dispute ring is not safe under filtering. Third, we show
that under ranking independence and unrestricted filtering,
the set of allowable rankings that guarantee safety is effec-
tively ranking based on (weighted) shortest paths.

In light of the results we present, a natural question to ask
is whether they are positive or negative. In one sense, our
results are grim, because they suggest that if BGP remains

in its current form and each AS establishes filters arbitrar-
ily and specifies rankings autonomously, then the routing
system will generally be unsafe unless each AS constrains
its rankings over available paths to those that are consistent
with shortest hop count (or, alternatively, preferences that are
based on consistent edge weights).

On the other hand, our results are positive, because they
suggest a clear direction forward: BGPmust be modified if
ASes are to filter without restriction and retain ranking in-
dependence, without compromising routing safety. Our re-
sults in Section 4.2, which show that routing using prefer-
ences derived from edge weights is guaranteed to be stable,
suggest one possibility for modification. Suppose each AS
ranks paths based on the sum of edge weights to the desti-
nation and adjusts weights on its incident outgoing edges to
neighboring ASes. Rankings would then be derived from the
total path cost, but an AS might still retain enough flexibil-
ity to control the next-hop AS en route to the destination.
Such an approach could ensure that the protocol is safe on
short timescales, while allowing “policy disputes” to occur
on longer timescales, out-of-band from the routing protocol.
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