
Modeling BGP Route Selection within an AS

Nick Feamster Jennifer Rexford
MIT Computer Science & AI Lab AT&T Labs–Research

feamster@csail.mit.edu jrex@research.att.com

Abstract
This paper presents a provably correct model that computes the out-
come of the BGP decision process for each router in a single AS,
without simulating the complex details of BGP message passing.
The model requires only static inputs that can be easily obtained
from the routers: the set of candidate routes to a destination (and
the routers in the AS at which they were learned), import policies
and other session-level parameters, and internal topology. We pro-
pose algorithms for computing route selection under four different
network configurations: with the MED attribute compared across
all routes, and compared only across routes from the same neigh-
boring AS; and with a “full mesh” internal BGP (iBGP) topology
versus an iBGP topology that uses a scalability technique called
“route reflection”. For each scenario, we derive general properties
of the routes that routers ultimately select, present an efficient al-
gorithm for computing the outcome of BGP route selection, and
prove the algorithm’s correctness. Studying the general properties
and computational overhead of modeling the route selection pro-
cess in each of these cases provides insights into the unnecessary
complexity introduced by the MED attribute and route reflection;
we use these insights to propose improvements to BGP that achieve
the same goals as MED and route reflection without introducing the
negative side effects of these features. We have implemented some
of the algorithms from this paper in a prototype and have shown
them to be efficient and accurate enough for many traffic engineer-
ing tasks.

1. Introduction
To control the flow of traffic through their networks, operators

need to know how configuration changes affect the decisions made
by the routers. In large backbone networks, the selection of paths
depends on the routes advertised by neighboring domains and the
internal topology, as well as the interdomain routing policies and
intradomain link weights. To avoid costly debugging time and
catastrophic mistakes, operators must be able to make predictions
quickly based on an accurate, network-wide model of the routing
protocols. In this paper, we present efficient algorithms for comput-
ing the routing decision at each router in an Autonomous System
(AS). In solving the problem, we grapple with two features of the
Border Gateway Protocol (BGP) that leave routers with no con-
sistent ranking of the candidate routes and limit visibility into the
routing options.

1.1 Backbone Network Engineering
To model the selection of routes inside a backbone network, we

must capture the interaction between three routing protocols, as
shown in Figure 1:

• External BGP (eBGP): The AS uses external BGP (eBGP)
to exchange route advertisements with neighboring domains.
For example, the routers W ,X, and Y each have eBGP ses-

4
2

AS B

destination

eBGP
session

AS A

1

1iBGP
session

W YX

Z

Figure 1: Network with three egress routers connecting to two
neighboring ASes: Solid lines correspond to physical links (an-
notated with IGP link weights) and dashed lines correspond to
BGP sessions. Thick lines illustrate the shortest path from one
router to its closest egress point for reaching the destination.

sions with neighboring ASes. The routers may apply an im-
port policy to modify the attributes of the routes learned from
the neighbor, with the goal of influencing the decision pro-
cess in Table 1 that each router applies to select a single best
BGP route for each destination prefix.

• Internal BGP (iBGP): The routers use internal BGP (iBGP)
to disseminate the routes to the rest of the network. In the
simplest case, each pair of routers has an iBGP session, form-
ing an “full mesh.” If two routes are equally good through the
first four steps in Table 1, the router favors an eBGP-learned
route over an iBGP-learned one. In Figure 1, router Z re-
ceives three iBGP routes, from routersX, Y , and Z, forcing
the decision to proceed to the next step in Table 1.

• Interior Gateway Protocol (IGP): The routers inside the
AS run an Interior Gateway Protocol (IGP) to learn how to
reach each other. The two most common IGPs are OSPF and
IS-IS, which compute shortest paths based on configurable
link weights; the routers also use the IGP path costs in the
sixth step in Table 1. In Figure 1, router Z selects the route
with the smallest IGP path cost of 2, learned from routerX1.

After completing the path-selection process, the router combines
the BGP and IGP information to construct a forwarding table that
maps the destination prefix to the outgoing link along the shortest
path. In Figure 1, the forwarding path consists of the thick lines
from the ingress link at router Z to the egress link at routerX.

1If two routes have the same IGP path cost, the router performs an arbitrary
tiebreak in the seventh step in Table 1.

1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Lowest router ID of BGP speaker

Table 1: Steps in the BGP decision process

If the link betweenX and ASB becomes persistently congested,
the network operator may need to adjust the configuration of the
routing protocols to direct some of the traffic to other egress routers.
For example, the operator could modify the import policy at router
X to make the BGP routes for some destinations look less attrac-
tive than the routes learned at other routers [1]. Changing the im-
port policy causes X to advertise a BGP route with a different at-
tribute value (e.g., a smaller local preference) to influence the rout-
ing decisions throughout the network. Ultimately, the change in
the import policy at X has the indirect effect of directing some of
the traffic entering at router Z to egress router Y (the next-closest
egress point, in terms of the IGP path costs), thereby alleviating
the congestion on the link connecting X to AS B. Network opera-
tors make similar kinds of configuration changes for a variety other
reasons, such as exploiting new link capacity, preparing for main-
tenance on part of the network, or reacting to equipment failures.

Operators need to predict the effects of changes to the routing
protocol configuration before modifying the live network. Human
intuition, while powerful, is not sufficient for understanding the
complex interactions between three routing protocols running on a
large, dynamic network. Experimenting on the live network runs
the risk of making disruptive configuration changes that degrade
performance. Instead, we believe that operators should have an
accurate and efficient tool that computes the effects of configura-
tion changes on the flow of traffic through the network. The effi-
ciency of the model is of paramount importance, since a network
operator (or an automated optimization algorithm) may need to ex-
plore numerous candidate configuration changes before identifying
a choice that satisfies the engineering goals. Rather than simulating
the complex message-passing details of the protocols, the model
needs only to compute the outcome—the routing decision for each
router once the protocols have converged.

1.2 Challenges and Contributions
In this paper, we present a model that accurately determines how

the network configuration and the routes learned via eBGP affect
the flow of traffic through an AS. While some existing tools sim-
ulate BGP’s behavior [2], our work is the first to develop a model
that determines the outcome of the BGP path selection process at
each router in an AS without simulating the dynamics of the proto-
col. This problem would be easy to solve if (i) the decision process
in Table 1 allowed each router to form a consistent ranking of the
candidate routes and (ii) the distribution of routes in iBGP allowed
each router to learn every route. However, two features of BGP
conspire to make the problem much more challenging:

• The Multiple Exit Discriminator (MED) attribute breaks
the ranking of routes: An eBGP neighbor can set the MED
attribute of a route advertisement to influence the behavior of
the receiving AS. For example, in Figure 1 ASB might send
a route with a MED of 10 to router Y and a MED of 20 to
router X; as a result, Z would select the route from Y with
the smaller MED, even though the IGP path to X is shorter.
In practice, the MED comparison in step 4 of the decision

process applies only to routes learned from the same next-
hop AS. When MEDs are used, the decision process does
not impose a total ordering on the routes at each router; in
fact, the choice of one route over another may depend on the
presence or absence of a third route [3].

• Route reflectors limit the visibility their clients have of
the iBGP routes: The quadratic scaling of a full-mesh iBGP
configuration forces large networks to distribute routes in a
hierarchical fashion. A router configured as a route reflector
selects a single best route and forwards the route to its clients.
Using route reflectors reduces the number of iBGP sessions,
as well as the number of routes the clients need to receive
and store. However, since a route reflector forwards only its
best route to its iBGP neighbors, the choices available at one
router depend on decisions at other routers. In particular, the
route reflector may make a different choice in the sixth step
of the decision process than its clients would have.

These two features of BGP cannot be ignored because they are
commonly used to provide flexibility and scalability, respectively.

In this paper, we present a model of BGP path selection inside a
single AS, as well as algorithms to compute the routing decision at
each router. Our main contributions are:

• Network-wide model of BGP path selection: Rather than
analyzing BGP dynamics, we model the outcome of the dis-
tributed path-selection process. When a routing system con-
verges, the outcome does not depend on the order and timing
of the messages, allowing our algorithms to model a message
ordering that computes the outcome efficiently.

• Capturing the influence of MED and route reflectors: Af-
ter presenting a simple algorithm for networks that disable
MEDs and have a full-mesh iBGP configuration, we present
algorithms that handle MED and route reflectors in isolation.
Then, we present another algorithm that captures the com-
plex interaction between the two features.

• Proposed improvements to BGP: In addition to complicat-
ing the modeling problem, these two features create difficul-
ties for the operation of BGP itself. We discuss ways to im-
prove the design and operation of BGP to avoid the harmful
effects without sacrificing the policy semantics of MEDs and
the scalability provided by route reflectors.

In Section 2, we present practical constraints that allow us to
compute the outcome of the routing protocols and decompose the
modeling problem. Section 3 presents a model for BGP path se-
lection for the simplified case of a full-mesh iBGP configuration
and no MED attribute2. Section 4 focuses on modeling the MED
attribute, assuming a full-mesh iBGP configuration. In Section 5,
we consider more complex iBGP session configurations. Section 6
presents improvements to BGP. Section 7 provides an overview of
related work, and Section 8 concludes. Appendix A presents a brief
summary of the design, evaluation, and validation of a tool that im-
plements our model [4].

2. Modeling Constraints and Overview
Network operators frequently adjust the configuration of BGP

policies to control the flow of traffic through an AS. In this sec-
tion, we define three constraints that a routing system must obey
2Throughout the paper, we often describe BGP “without MED”. Network
configurations “without MED” could also be viewed as a configuration that
compares the MED attributes across all routes (e.g., in Cisco IOS, this be-
havior can be enabled with always-compare-med setting).

(per session)
router ID

(per prefix & ingress)

import policies

(per prefix)

(per eBGP session)

(per router & prefix)

IGP weights
(router pairs) (per link)

forwarding path

iBGP sessions

eBGP routes

(per prefix)

egress routermodified routes

policy

Compute

path
import

route

Compute
best BGP

Apply
forwarding

Figure 2: Decomposing network-wide BGP route selection into three independent stages

for a model to provide accurate predictions. Next we describe
how these constraints enable us to decompose the modeling prob-
lem into three stages—applying the import policy to eBGP-learned
routes, selecting the best BGP path at each router, and computing
the forwarding path. Since the first and third stages are relatively
simple, the rest of the paper focuses on the second stage of com-
puting the BGP routing decision at each router for each destination
prefix.

2.1 Constraints on Modeling Path Selection
Modeling the effects of a configuration or topology change is

possible when three important conditions hold. First, the inputs to
the model must be relatively stable. In particular,

CONSTRAINT 1. The eBGP-learned routes change slowly with re-
spect to the timescale of network engineering decisions.

If the eBGP-learned routes change frequently, the internal routing
system does not have time to propagate the effects of one eBGP
advertisement before the next one arrives. In practice, most BGP
routes are stable for days or weeks at a time [5], and the vast ma-
jority of traffic is associated with these stable routes [6]. This al-
lows the routing model to operate on a static snapshot of the eBGP
routes. Any eBGP routing change can be treated as a separate prob-
lem instance.

Second, the routers in the network must ultimately reach a stable
outcome. In particular,

CONSTRAINT 2. Given stable eBGP-learned routes and fixed iBGP
and IGP topologies, each router inside the AS converges to a unique
routing decision.

If the routers continually change their routing decisions, no model
could accurately predict how the data traffic would flow. Fortu-
nately, previous work [7] has identified sufficient conditions for an
internal routing configuration to satisfy constraint 2. We describe
these conditions in more detail in Section 5 when we address the
challenges introduced by route reflectors.

Third, the routing decisions at each router should not depend on
time or message ordering:

CONSTRAINT 3. The routing decision at each router must depend
only on the routes received from its neighbors, and not the order or
timing of the messages.

For example, some router vendors have an additional step in the
BGP decision process that favors the “oldest” route before the fi-
nal tie-breaking step of comparing the router IDs. The “age-based
tie-breaking” favors more stable routes, making the outcome of the
BGP decision process dependent on the order the router receives
the advertisements. Disabling age-based tie-breaking forces a de-
terministic selection based on the smallest router ID, as in Figure 1;

other BGP features, such as route flap damping [8], can help reduce
the likelihood of selecting unstable routes.

2.2 Decomposition of the Modeling Problem
The routing decision at each router depends on the eBGP-learned

routes, the BGP routing policies, the iBGP session configuration,
and the IGP topology. When constraints 1, 2, and 3 hold, a model
can compute the effects of changes to these inputs:

OBSERVATION 1. If a routing system is guaranteed to converge
to a unique solution, the solution is independent of the order that
routers exchange routes and apply the decision process.

This observation means that we can consider the evolution of the
routing system under any particular ordering of the steps in the
convergence process, without the risk of arriving at the wrong an-
swer. Following the approach in [9], we express an ordering in
terms of an activation sequence that “activates” one or more routers
in each phase. When activated, a router applies the decision pro-
cess in Table 1 and propagates the best route to its iBGP neighbors.
We construct an activation sequence that allows us to decompose
the problem into three stages as shown in Figure 2:

1. Receiving the eBGP routes and applying import policy:
The first stage activates all of the edge routers at the same time.
This stage assumes that each router receives all of its eBGP-learned
routes and applies the import policies, before exchanging any iBGP
update messages. Each eBGP-learned route has attributes (such as
the destination prefix and the AS path) and is associated with an
eBGP session. The import policy may filter the route or set certain
attributes such as local preference, origin type, and multiple-exit
discriminator (MED), according to attributes in the advertised route
(e.g., based on ASes in the AS path). Because applying the im-
port policy is a local operation for each eBGP-learned route at each
router, the first stage emulates exactly the operations a real router
would perform upon receiving each of the eBGP routes. These
routes, with modified attributes, form the input to the second stage.

2. Computing the best BGP route at each router: Many routes
from the first stage would never be selected by any router as the
best route. For example, an eBGP-learned route with a local pref-
erence of 90 would never be selected over another route with a
local preference of 100. In addition, different routers in the AS
may select different best BGP routes because they have different
IGP path costs to the egress router. Also, a router can only consider
the routes advertised by its iBGP and eBGP neighbors, which may
influence the final decision at that router. The output of this stage
is a single best egress router for each ingress router and destination
prefix. Constructing an efficient activation sequence for this stage
is challenging, and is the focus of the next three sections of the
paper.

3. Computing the forwarding path through the AS: In the
third stage, we model the effects of the IGP link weights on the
construction of the forwarding path through the AS from an ingress

router toward a destination prefix. Given the chosen BGP route, the
ingress router forwards packets along the outgoing link (or links)
along shortest paths to the egress router, and the process repeats
at the next router. Ideally, the traffic flows along the shortest path
(or paths) all the way from the ingress router to the chosen egress
router. However, in practice, routers along the shortest path may
have chosen a different egress router. Such deflections can occur if
the iBGP session configuration limits the BGP routing options at
the routers [7]. By considering one router at a time, the third stage
can compute an accurate view of the forwarding path(s) even when
deflections occur.

Although the diagram in Figure 2 shows only three stages, we envi-
sion that network operators could incorporate other phases for ad-
ditional functionality. For example, another phase could combine
the predicted forwarding paths with traffic data to predict the load
on each link in the network. Using the model for traffic engineering
assumes that traffic volumes are relatively stable, and that they re-
main stable in response to configuration changes. In previous work,
we found that prefixes responsible for large amounts of traffic have
relatively stable traffic volumes over long timescales [1]. Opera-
tors could use the routing model to test configuration changes on
reasonably slow timescales that affect prefixes with stable traffic
volumes. A network operator could also combine measurements
or estimates of the traffic arriving at each ingress router for each
destination prefix [10] with the link-level paths to predict the load
on each link in the network. Another phase might evaluate the op-
timality of the these link-level paths in terms of propagation delay
or link utilization and could search for good configuration changes
before applying them on a live network.

3. BGP with Ordering and Full Visibility
In this section, we present some basic properties of BGP route

selection when a network employs a full mesh iBGP topology and
the MED attribute is compared across all routes. Based on these
properties, we describe an algorithm that models BGP path selec-
tion for this simple case.

3.1 Notation and Basic Properties
To model BGP path selection more precisely, we must first in-

troduce some notation. Table 2 summarizes the notation we use
for the remainder of this paper and summarizes where this nota-
tion is introduced. We assume that the AS has a set of N eBGP-
learned routes, E, for a given destination prefix, which it learns at
R routers. E contains the eBGP-learned routes after import poli-
cies have been applied. For convenience, we define Er ⊆ E as the
set of eBGP-learned routes at router r ∈ R. At any given time, a
router also has zero or more iBGP-learned routes Ir ⊆ E. We also
define two functions that we will use throughout the remainder of
the paper:

• λr , which takes a set of best routes and outputs the best route
according to the BGP decision process in Table 1.

The subscript r on λr provides necessary context because
different routers can apply the BGP decision process to the
same set of routes and obtain different results. For example,
in Figure 1, router X would treat the route learned from AS
B as an eBGP-learned route with the router ID of the eBGP
session with B. On the other hand, Z sees an iBGP-learned
route with IGP path cost of 2 and the router ID associated
with the iBGP session toX.

Symbol Description Section
FUNCTIONS ON ROUTES

λr Takes a set of routes and outputs the best
route, according to the BGP decision process
applied at router r

3.1

γ Takes a set of routes and extracts the subset
whose attributes are equally good up through
the first four steps of the decision process

3.1

σ Takes a set of routes and extracts the subset
whose attributes are equally good up through
the first three steps of the decision process

4.2

SETS OF ROUTES OR ROUTERS (INITIAL INPUTS)
R routers in the AS 3.1
A routers that have been activated 5.2
E eBGP-learned routes 3.1
Er eBGP-learned routes at router r 3.1
N number of eBGP-learned routes (i.e., |E|) 3.1

SETS OF ROUTES (INTERMEDIATE AND FINAL OUTPUTS)
Ir iBGP-learned routes at router r 3.1
Pr All routes learned at router r 3.1
br The best route that router r selects. 3.1
C The set of candidate routes at some interme-

diate activation. A subset of E.
3.2

B The set of best routes computed by the algo-
rithm. A subset of C.

3.2

L The set of routes eliminated at some activa-
tion step.

4.2

IBGP TOPOLOGY

S iBGP sessions. 5.2
G iBGP session graph. G = (R, S). 5.2

Table 2: Description of the notation used in this paper, and the
sections where each piece of notation is introduced.

• γ, which takes a set of BGP routes C, and outputs C′ ⊆ C,
such that routes in C′ are the best routes based on the first
four steps in Table 1.

Unlike λr , the function γ is a function whose context is
global; that is, its context is not router-specific. The function
γ, will be applied to a set of routes to eliminate all routes that
could never be the best route at any router.

Using Observation 1, we devise an activation sequence, which
“activates” one or more routers at any given phase. When activated,
a router r applies the BGP decision process to compute a best route
λr(Er ∪ Ir), which may then be propagated via iBGP. In reality,
routers may be activated in any order and may change their best
route many times before the network converges. In the following
sections, we devise activation sequences that allow us to efficiently
compute the final routing decision.

In this section and in Section 4, we will consider a full mesh
iBGP topology (as described in Section 1). A full mesh iBGP topol-
ogy provides full visibility of BGP routes at each router; that is,
every router learns the complete set of eBGP-learned routes. Fur-
thermore, when the MED attribute is compared across all routes
(as opposed to just those from the same neighboring AS) a router’s
preferences over the set of routes it learns form a total ordering
(i.e., ∀P ′

r ⊆ Pr, if a ∈ P ′
r ⊆ Pr and λr(Pr) = a, then λr(P

′
r) =

a). These properties allow us to make two important observations
about BGP’s steady state path assignment.

First, when MED is compared across all routes, any router that
selects a route from the set of eBGP-learned routes will select its
locally-best route. Formally, call the best route that router r ulti-
mately selects br . Then, br ∈ Er ⇒ br = λr(Er).

LEMMA 1. If the MED attribute is compared across all routes, then
each router ultimately either selects its own best eBGP-learned

§ MED RR Running Time Lem. 1 Lem. 2
3.2 No No O(N + |R|2) • •
4.2 Yes No O(N log N + N |R|) •
5.2 No Yes O(N + |S|) • •
5.3 Yes Yes O(N log N + N |R|+ N |S|)

Table 3: Properties of the BGP path selection models in each of
the four cases (with and without MED, and with and without
route reflection).

route or some iBGP-learned route. Formally, br ∈ Er ⇒ br =
λr(Er).

Proof. By definition, each router r applies the decision process to
the union of the routes it learns via eBGP and iBGP: br = λr(Er∪
Ir). Therefore, either br ∈ Er or br ∈ Ir . Furthermore, since
the MED attribute is comparable across all routes, the router r’s
preferences over routes in Er ∪ Ir form a total ordering, so either
br = λr(Er) or br = λr(Ir). But, if br �= λr(Er), then br =
λr(Ir), so br ∈ Ir and br �∈ Er . ✷

If the iBGP topology forms a full mesh, each BGP-speaking
router ultimately selects a route in γ(E); that is, every router ul-
timately selects a route that has the maximum local preference,
minimum AS path length, lowest origin type, and lowest MED (as-
suming MEDs are compared across all routes).

LEMMA 2. If the iBGP topology forms a full mesh, every router r
will ultimately select a route, br that is in γ(E), where E is the set
of all eBGP-learned routes. Formally, br ∈ γ(E).

Proof. Assume that some router r selects br /∈ γ(E), and de-
fine Pr ⊆ E, the set of routes that router r learns. By defini-
tion, br = λr(Pr), so λr(Pr) �∈ γ(E). This property implies that
Pr ∩ γ(E) = φ; otherwise, br would be better than all routes in
γ(E), which contradicts the definition of γ. But, if Pr∩γ(E) = φ,
then the iBGP topology does not form a full mesh, since at least one
router s ∈ R selects a route from γ(E), and, in a full mesh topol-
ogy, router r would have learned that route from s. ✷

This lemma also holds when the iBGP topology does not form a full
mesh as long as the MED attribute is compared across all routes, as
discussed in more detail later in Section 5. Table 3 summarizes the
roles of Lemmas 1 and 2 in the four scenarios we model; the table
also indicates the computational complexity for each algorithm. In
the following subsection, we present an algorithm that models the
outcome of the BGP decision process in the simple case of a full
mesh iBGP topology where the MED attribute is compared across
all routes, independent of the next-hop AS.

3.2 Algorithm: Full Mesh, No MED
Lemma 1 makes it possible to propagate the effects of route se-

lection at each router only once, since each router will select its
locally best eBGP-learned route or some other router’s best route.
Lemma 2 makes it possible to compute the route that each router r
selects by simply applying λr to the set of all locally best routes,B
(i.e., br = λr(B)). When Lemma 1 holds, selecting the best route
at each eBGP-speaking router is straightforward, because it is pos-
sible to produce a total ordering of routes at each router. In this
case, the algorithm for computing the best route at every eBGP-
speaking router is simple, as shown in Figure 3. The algorithm
takes as input the set of all eBGP-learned routes (E) and the set of
all eBGP-speaking routers (R), and produces the set of best eBGP
routes (B). Er refers to all eBGP-learned routes learned by router

Algorithm: Full Mesh, No MED

SELECTBEST EBGP(E,R)
Build the set of locally best routes at each router.
This set is the set of candidate best eBGP routes.
C ← ∪rλr(Er)
Eliminate all routes from C which
do not have highest local preference, etc.
B ← γ(C)

Figure 3: Algorithm for computing the best route at eBGP
routers, assuming that MED is compared across all routes (i.e.,
that there exists a total ordering of routes at each router).

r, and C represents the set of candidate routes after each router se-
lects the best route from the set of its eBGP-learned routes. The
output of this algorithm is B = γ(C), the set of all best routes to
this destination, such that br = λr(B).

To prove that this algorithm is correct, we must show that this
algorithm accurately emulates one activation sequence; Observa-
tion 1 guarantees that as long as the algorithm correctly emulates a
single activation, it will correctly emulate BGP route selection.

THEOREM 1. When each router can produce a total ordering over
all possible candidate routes, the algorithm in Figure 3 correctly
computes the outcome of the decision process for all routers that
select an eBGP-learned route as their best route.

Proof. We prove this theorem constructively, by showing that the
algorithm correctly emulates an activation sequence and message
ordering that could result in BGP. Consider the following ordering:

1. All routers receive routes to the destination via eBGP. Then,
every router is activated simultaneously.

2. Every router advertises its locally-best route via iBGP. Af-
ter all iBGP messages have been exchanged, every router is
activated simultaneously.

In the first phase, each router r computes λr(Er), resulting in
a set of candidate routes C = ∪rλr(Er), as in the first line of
the algorithm in Figure 3. Then, each router learns these routes,
resulting in Pr = C for all r ∈ R. Note that B ⊆ C by definition,
which means that each router that learns a route to the destination
via eBGP has either zero or one route inB. We consider both cases.
If a router r has a route in C but not in B, then r’s eBGP-learned
route br = λr(Er) must have been worse according to the first four
steps of the decision process than some other route, bs = λs(Es)
in C (otherwise, γ(C) would not have eliminated it). But in a full
mesh iBGP topology, r would learn a route via iBGP that is at least
as good as bs, so br would also be eliminated in phase 2 of the
activation. Of course, if a router has a route in C, then that must be
the route that it would select after phase 2 of activation: it is equally
good as all routes in γ(C) through the first 4 steps of the decision
process (by construction), and it prefers its own best route over any
iBGP-learned route (by step 5 of the decision process). ✷

Computational Complexity. When each router can form a to-
tal ordering over all possible candidate routes, the computational
complexity for route prediction is proportional to the total number
of routes in the system. The first step of the algorithm scans all
N eBGP-learned routes and selects the best eBGP-learned route at
each router, if any; at most |R| routes remain after this step. The
second step selects, for each router r ∈ R, the best route from R.
Thus, the running time will be O(N + |R|2), whereN is the num-
ber of eBGP-learned routes, and |R| is the number of routers in

the system (a full mesh iBGP configuration will have |R|(|R| − 1)
iBGP sessions. When |R| > N , the N term is dominated, so the
running time is O(|R|2). When N > |R|, however, a simpler ap-
proach to the algorithm would simply be to apply λr(E) at each
router, which has O(N |R|) running time.

The algorithm we have presented in this section works as long as
routers compare the MED attribute across all candidate routes and
when the network does not use route reflection. In practice, some
ISPs configure their routers to compare the MED attribute across
all candidate routes (often to avoid problems with oscillation), and
most small networks do not use route reflection.

4. Modeling Path Selection with MED
In this section, we present how to model path selection when

the MED attribute is compared only across routes learned from the
same AS, rather than across all routes for a destination prefix. MED
prevents each router from having a total ordering over all possible
candidate routes, so it is actually possible to have br ∈ Er with-
out br = λr(Er). In Section 4.1, we describe this problem in
more detail and describe why the simple approach presented in Sec-
tion 3.2 fails; then, we present an algorithm that accurately com-
putes the outcome of BGP path selection when MED is compared
only across routes from the same AS.

4.1 Problems Introduced by MED
The algorithm from Section 3.2 assumes that each router’s rank-

ing between two routes is independent of whether other routes are
present (i.e., λr({a, b}) = a ⇒ λr({a, b, c}) �= b, ∀a, b, c).
When MED is only compared across routes from the same AS,
the interaction between MED and router ID prevents the algorithm
from simply selecting the locally best route at each router, because
br ∈ Er �⇒ br = λr(Er). This point has serious implications,
because we can no longer assume that if a router selects an eBGP-
learned route to a destination, that eBGP-learned route will be that
router’s locally best route; rather, the route that the router ultimately
selects may be worse than the “best” route at that router when com-
pared only against routes learned via eBGP at that router. Thus, the
approach from Section 3.2, which computes br by taking the lo-
cally best route at each router from γ(E), may not compute the
correct result. Using the example in Figure 4, we explain why two
seemingly-natural approaches to computing the routes do not work:

• Local route elimination is not correct. The algorithm in Fig-
ure 3 would first apply λr(Er) at each router. Given the
choice between the two eBGP-learned routes a and c, router
X prefers c, since c has a smaller router ID. However, be-
tween routes a, c, and d, router X prefers route a, because
route d eliminates route c due to its lower MED value. Thus,
router X’s preference between routes a and b depends on
which route Y selects. The algorithm in Figure 3 would
compute λX({a, c}) = c and λY ({b, d}) = d (resulting
in C = {c, d}), and ultimately compute B = {d} because d
has a smaller MED value than c. In reality, though, routerX
would select route a over d, because a is an eBGP-learned
route from a different neighboring AS.

• Global route elimination is not correct. It might also seem
reasonable to apply γ globally, followed by applying λr lo-
cally at each router. In a global comparison of the routes
(i.e., when applying γ({a, b, c, d})), a and c are first elimi-
nated based on MED, and then routerX picks route d (since
d is preferred to b based on the router ID comparison applied
at router Y). This conclusion is incorrect, because X would

X Y

AS 1 AS 2

2 1 2 1

a

MED: 2

b

MED: 1

c

MED: 20

d

MED: 10

iBGP

AS 3

Figure 4: Interaction between MED and router ID in the BGP
decision process. Small numbers are router IDs.

Algorithm: Full Mesh, MED

SELECTBEST EBGP MED(E,R)
Build the set of initial locally best routes.
C ← σ(E)
B0 ← φ
do
Bi+1 ← ∪rλr(Cr ∪ Bi)

while Bi+1 �= Bi

Figure 5: Algorithm for computing the best route at eBGP
routers, assuming that MED is only compared across routes
from the same neighboring AS.

always prefer route a over route d, since a is learned via
eBGP (step 5) and a and d are equally good up through step
4 (recall that a router does not compare the MEDs of routes
with different next-hop ASes).

The crux of the problem is that the MED attribute makes it impos-
sible to produce an ordering of the routes atX; the relative ranking
of two routes depends on the presence or absence of a third route.

4.2 Algorithm: Full Mesh, MED
To correctly handle the interaction between the MED and router

ID attributes, the algorithm emulates a message ordering that prop-
agates the effects of MED on each router’s best route. Figure 5
summarizes this algorithm. For this algorithm, we define a new
function, σ, which takes a set of routes and returns all routes equally
good up through the first three steps of the BGP decision process
(i.e., local preference, AS path length, and origin type). When ap-
plied to the network in Figure 4, the algorithm starts with all routes
in σ(E) and proceeds as follows:

1. B1 gets the locally best routes from X and Y : c and d, re-
spectively. That is, B1 = {c, d}.

2. On the second iteration, X compares the routes from C that
it learns via eBGP, a and c, along with route d from B1, so
λX({a, c, d}) = a. Similarly, λY ({b, c, d}) = d. Thus,
B2 = {a, d}.

3. On the third iteration, the process repeats, and B3 = {a, d},
at which point the algorithm terminates.

This algorithm computes the correct routing decision for each router:
a at routerX and d at router Y . At router Y , d is better than a (step
5), b (step 7) and c (step 4). At router X, a is better than d (step
5); a is not better than b, but this does not matter because router Y
does not select b, and a is not better than c, but this does not matter
since c is always worse than d (step 4).

THEOREM 2. When MED is compared only across routes from
the same neighboring AS, the algorithm from Figure 5 accurately

emulates the results of one activation sequence and message order-
ing for all routers that select an eBGP-learned route as their best
route.
Proof. Computing σ(E) removes from C all routes in E that could
never be the best route at any router (i.e., because they have a lower
local preference, higher AS path, or lower origin type). Because the
iBGP topology forms a full mesh, as long as there is a route in E
at any router that is better in the first three steps of the decision
process, no router will select a route that is not in σ(E). The re-
mainder of the algorithm evaluates a routing system with the routes
in E \ σ(E) removed.

The remainder of the algorithm follows an activation sequence
where each phase (or iteration of the loop) activates all of the routers
simultaneously. The proof proceeds by induction. After the first it-
eration of the loop, B0 = φ and br = λr(Cr), where Cr is all of
the routes learned at router r via eBGP with the highest local pref-
erence, shortest AS path length, and lowest origin type. By defi-
nition, λr(Cr) returns each router’s locally best route according to
the BGP decision process, which is the same as that which the BGP
decision process would select for each router after phase 1 of the
activation sequence. In a network with a full mesh iBGP configu-
ration, each router r then sends its locally best route, br, to every
other router.

Suppose the algorithm correctly computes the outcome of the
BGP decision process for the first i iterations of the activation se-
quence. Assume that there is some router r for which the algo-
rithm computes b′r,i+1 �= br,i+1. Then, it must be the case that
br,i+1 �∈ Cr ∪ Bi, otherwise λr would also have selected br,i+1.
Either br,i+1 is an eBGP-learned route or it is an iBGP-learned
route. If it is eBGP-learned, then it must be in Cr, as we previously
established. If it is iBGP-learned, then it must be inBi, since every
iBGP-learned route is the best route of some other router in the AS.
But if either br,i+1 ∈ Cr or br,i+1 ∈ Bi, then br,i+1 ∈ Cr ∪ Bi,
which is a contradiction. ✷

The algorithm in Figure 5 is correct, but it is not efficient: each
iteration of the loop repeatedly considers routes that have been
“eliminated” by other routes. A more computationally efficient al-
gorithm would eliminate routes from consideration at each iteration
if we know that they could never be the best route at any router—
such is the spirit of applying σ(E) across the initial set of routes.
Unfortunately, as we know from Section 4.1, because the MED at-
tribute is not comparable across all routes and comes before the
router ID step in the decision process, it is possible for a route that
is not in the setBi to emerge in the setBj for some j > i. We now
formally define a condition by which routes may be eliminated.

LEMMA 3. Suppose there exist two routes s ∈ Cr at router r
and t ∈ Cr′ at router r′ �= r. If t ∈ Bi and λr(s, t) = t, then
s �∈ Bj ∀j > i.
Proof. First, note that as long as t ∈ Bj , then s �∈ Bj because
route t is preferable to s Also note that because all routes in C are
equally good up the MED comparison and eBGP-learned routes
are preferred over iBGP-learned routes, we know that λr(s, t) = t
because MED(t) < MED(s). Now, suppose there exists some
j > i for which t �∈ Bj . Call the best route at router r′ at step
i, v = λr′(Cr′) �= t; again, we know that MED(v) < MED(t).
But this means that MED(v) < MED(s), λr(s, v) = v, and, thus,
s �∈ Bj . ✷

We can use this result to devise a more efficient route prediction
algorithm that eliminates, at every iteration, a router’s locally best
route if it has a higher MED value (and same next-hop AS) than

Algorithm: Full Mesh, MED (Alternate Algorithm)

SELECTBEST EBGP MED(E,R)

Eliminate all routes from Er (locally at r) which
do not have highest local preference, etc.
C ← σ(E)

Keep track of the best routes at each router.
do
B ← ∪rλr(Cr)
L← B \ γ(B)
C ← C \ L

while L �= φ

Figure 6: Computationally efficient algorithm for computing
the best route at eBGP routers, assuming that MED is only
compared across routes from the same AS (i.e., that there is no
total ordering of routes).

Bi
L L

routersR

Figure 7: Implementation of the route computation algorithm
from Figure 6. Each stack represented one of |R| total routers,
and each stack element represents one of L routes. The bottom
elements of the |R| stacks representBi, the elements marked L
represent routes that are worse than the routes at the bottom
of the remaining stacks according to the first four steps of the
decision process, and the shaded routes represent Bi+1.

any other router’s locally best route. This algorithm is described in
Figure 6 and shown conceptually in Figure 7; it can also be thought
of in terms of an activation sequence: (1) each router learns routes
via eBGP, selects a locally best route, and readvertises via iBGP;
(2) each router compares its locally best route with all other routes
learned via iBGP, and eliminates its own locally-best route from the
system if it is worse than some other locally-best route at another
router; (3) the system is restarted (from phase 1) with the elimi-
nated routes removed. This algorithm is computationally more ef-
ficient than the one in Figure 5; we now analyze its running time
complexity.

Computational Complexity. Understanding the running time
of the algorithm from Figure 6 is easiest when we consider the
implementation of the algorithm shown in Figure 7. In this figure,
the eBGP-learned routes at each router are represented as a stack
and are sorted locally (i.e., compared only to other routes learned at
the same router). The bottom of the stack represents the best route
learned at that router; the route that is second from the bottom is the
second best route, and so forth. Then, the algorithm from Figure 6
can be interpreted as follows:

• B ← ∪rλr(Cr) is the union of all of the elements at the bot-
tom of the stack and does not need to be computed explicitly,
assuming each stack is sorted. The complexity of sorting N
total routes distributed across |R| stacks is O(N logN).

• L ← B \ γ(B) marks a route at the bottom of a stack if
that route is worse than any route at the bottom of another
stack, according to the first four steps of the BGP decision

RR2RR1
over

W X Y Z

updown

Figure 8: Example iBGP signaling graph

process. This process takes at most two scans of the routes at
the bottom of the |R| stacks, so the running time is O(|R|).

• C ← C \ L “pops” the marked routes from the bottom of
the stacks, where appropriate. This process requires a single
scan through |R| stacks and at most |R| pop operations, so
the running time is O(|R|).

• In the worst case, the above three steps repeat until N − 1
routes are popped from the stacks, and each iteration only
pops a single route. Thus, in the worst case, the running time
for the algorithm is O(N logN +N |R|).

5. Route Computation with Route Reflection
A full mesh iBGP topology does not scale to large networks be-

cause a network of |R| routers requires O(|R|2) iBGP sessions.
Network operators use a technique called route reflection, which
improves scalability by introducing hierarchy but makes modeling
BGP path selection more complicated. First, we define an iBGP
signaling topology, expound on problems introduced by route re-
flection, and describe constraints on iBGP configuration that must
hold for modeling to be possible. Next, we propose an algorithm
that efficiently computes the outcome of BGP path selection in a
network with route reflection, and then we present a minor modifi-
cation to the algorithm that is necessary if MED is only compared
across routes from the same neighboring AS.

5.1 Problems Introduced by Route Reflection
A router does not normally forward iBGP-learned routes over

other iBGP sessions, but it can be configured as a route reflector
(RR), which forwards routes learned from one of its route-reflector
clients to its other clients. The routers in an AS form a directed
graph, G = (R,S), of iBGP sessions called a signaling graph.
Each edge a = (u, v) ∈ S where u, v ∈ R corresponds to an iBGP
session between a pair of routers. We then define three classes of
edges: (1) a ∈ down if v is a route reflector client of u; (2) a ∈ up
if u is a route reflector client of v; and (3) a ∈ over if u and v have
a regular iBGP session between them. Figure 8 shows an example
signaling graph. In a full mesh configuration, every pair of routers
has an edge in over, and both the up and down sets are empty.

Previous work has shown that BGP converges to a stable solution
as long as the structure of the signaling graph satisfies certain suf-
ficient conditions [7]. Accordingly, we refine Constraint 2 in terms
of these sufficient conditions to guarantee that an iBGP topology
with route reflection converges:

CONSTRAINT 4. (a) ∀ u, v, w ∈ R, ((u, v) ∈ down and (u,w) �∈
down) ⇒ λu({ρv, ρw}) = ρv , where ρv represents any route
learned from v and ρw is any route from w; and (b) the edges in up
are acyclic.

Part (a) is satisfied when routers do not change the attributes of
iBGP-learned routes and each router has a lower IGP path cost to
its clients than to other routers. The common practices of applying
import policies only on eBGP sessions and placing RRs and their

clients in the same point-of-presence (i.e., “PoP”) ensure that these
conditions hold. Part (b) states that if a is an RR for b, and b is an
RR for c, then c is not an RR for a, consistent with the notion of a
route-reflector hierarchy (rather than an arbitrary signaling graph).

Even a route reflector configuration that converges can wreak
havoc on the algorithms from Sections 3.2 and 4.2. Route reflec-
tors hide information by advertising only a single best route to its
iBGP neighbors. For example, in Figure 8, ifW and Z have eBGP-
learned routes, router Y learns a single route from its route reflector
RR1. Suppose that RR1 selects the eBGP route advertised by Z.
Then, Y would pick Z’s route as well, even if Y would have pre-
ferred W ’s route over Z’s route. Note that Y makes a different
routing decision than it would if it could select its best route from
all the eBGP routes (i.e., from both W and Z). In large networks,
route reflection reduces the number of routing messages and iBGP
sessions, which helps scalability, but it makes modeling BGP route
selection more complicated in the following ways:

1. A router will not typically learn every route that is equally
good up through the first four steps of the decision process.
That is, it is possible (and likely) that some routers will not
learn every route in γ(B). In Section 5.2, we describe an
algorithm that handles this case.

2. If a network uses route reflectors, and MED is only com-
pared across routes from the same AS, the routes that some
routers ultimately select may be worse than some eBGP-
learned routes, according to the first four steps of the deci-
sion process. That is, it may be the case that br �∈ γ(E) for
some router r. In Section 5.3, we make a slight modification
to the algorithm in Section 5.2 to handle this case.

5.2 Algorithm: Route Reflection, No MED
Route reflection obviates the need for routers in an AS to form

a full mesh topology, but it also means that some routers may not
learn all routes in γ(B). This artifact has two implications. First,
the algorithm cannot simply assign non-eBGP-speaking routers the
route from the “closest” eBGP-speaking router, because a router
may not learn the route. In other words, applying br ← λr(B)
may not always be correct. For example, consider the network
shown in Figure 9. W , X, and Y are clients of route reflector
RR, and Z is a regular iBGP peer of Y . X and Y have a short
IGP path between them, but they are not directly connected by an
iBGP session. Routers W , X, and Z have eBGP routes that are
equally good through the first four steps of the decision process,
and have thus selected their own eBGP-learned routes. In this net-
work, Y ’s closest egress point is X, but Y selects W since RR’s
closest egress router is W . Second, often there is no consistent
ranking of possible egress routers from some non-eBGP-speaking
router. For example, in Figure 9, RR prefers egress router W be-
cause its IGP path cost toW is the shortest. Router Y ’s preferences
over possible egress routes depends on the presence or absence of
other routes. If the AS learns routes for some destination via eBGP
sessions at routers X and Z, then router Y prefers using X as an
egress router. On the other hand, if the AS learned routes atW ,X,
and Z, then Y prefers using Z, which implies that Y prefers egress
Z over X and is inconsistent with Y ’s choice when only X and Z
are available egress routers.

To account for the fact that all routes are not visible at all routers,
we design an algorithm that emulates a certain activation sequence,
making route assignments at each router where possible and prop-
agating the effects of these decisions to other routers, without ever
having to revisit any assignment. This algorithm is shown in Fig-
ure 10. The algorithm first activates the routers from the bottom of

eBGP

ZYXW

5

4

2 3

1

RR

Figure 9: When an AS’s iBGP topology uses route reflectors, a
router may not always discover the route corresponding to its
closest egress router.

Algorithm: Route Reflection, No MED

SELECTBEST EBGP RR(E, R)

Proceed up the hierarchy, assigning best routes.
Find a router for which all children are activated.
A← φ
while ∃r ∈ R s.t. r �∈ A and c ∈ A ∀c ∈ DOWN(r)

Ir ← ∪c∈DOWN(r)bc

br ← λr(Ir ∪Er)
A← A ∪ r

Proceed down the hierarchy.
Find a router for which all parents are activated.
A← φ
while ∃r ∈ R s.t. r �∈ A and c ∈ A ∀c ∈ UP(r)

Ir ← ∪c∈UP(r)∪OVER(r)bc

br ← λr(Ir ∪ br)
A← A ∪ r

Figure 10: Efficiently computing the best route at each router
in a network with route reflection but no MED.

the route reflector hierarchy upwards, which guarantees that each
router selects a down route where possible, as required by Con-
straint 4(a). Because the algorithm moves upwards from the bot-
tom of the hierarchy, it performs computations for each router as
all of the routes from its clients become known; computations for
these routers never need to be revisited, since, by Constraint 4, a
router always prefers routes from its children over routes from its
peers or parents. Visiting the routers in the down direction ensures
that the algorithm performs computations for the remaining routers
using all available routes from the up and over sets. Consider-
ing the routers in this particular ordering guarantees that no router
makes a decision that should change later, after some other router
makes a decision. The algorithm defines two partial orderings of
the routers based on the elements of the up and down sets. We can
define these two partial orderings because Constraint 4(b) requires
that the signaling graph does not have any cycles of these edges, so
each partial ordering must have a top and bottom element.

Applying this algorithm to the example in Figure 9, the shaded
routers select best routes in the first step, since each of those routers
is at the bottom of the hierarchy and, thus, all of their neighbors in
down have been activated (since they have none). Y is activated,
but it does not select a route at this point because it has no neighbors
in down. Since these four routers are at the same level in the hierar-
chy, they can be activated in any order. ThenRR is activated, since
all of its children are activated; it applies λRR({rW , rX}) and se-
lects rW because it has the smallest IGP path cost. The routers are
all activated again in the downward direction; Y receives rW from
RR and compares it with rZ , which is its best route to the desti-

eBGP−learned routesN

sl sessions

Figure 11: Running time analysis of an iBGP graph walk.

nation. X and Z also receive rW but continue to select their own
route, since λr prefers eBGP routes over iBGP routes.

THEOREM 3. If each router can form a total ordering over the
set of all candidate routes, then the algorithm in Figure 10 cor-
rectly computes the outcome of the BGP decision process, br , for
all routers r ∈ R.

Proof. Assume some router r that selects a route, br , that is differ-
ent than the route assigned by the algorithm in Figure 10, b′r. Then,
the mismatch can occur in one of two cases: (1) when br is learned
from a session in down, or (2) when br is learned from a session
not in down (i.e., in either up or over).

Consider the case where br is learned from a session in down.
Call b′r the first case of an incorrect computation (i.e., the algorithm
has correctly computed the best route for all routers below r in the
hierarchy); since we examine the first such mismatch, Ir is correct.
If b′r is also in down, then b′r = λr(Ir ∪ Er) when the algorithm
traverses up the hierarchy, which implies that b′r is better than br
according to the BGP decision process, and r would have actually
selected b′r. If b′r is in up or over, then it must have been the case
that it was better, according to the BGP decision process, than the
displaced route br in down. But then, by definition of λr , router r
would have also selected b′r in BGP. Thus, the algorithm correctly
computes br for all routers r that select a best route from down.

Assume br is learned from a session in up or over. From the first
half of the proof, we know that the algorithm correctly computes
br for all routers that select a route from down, so call b′r the first
instance of a mismatch for some router that selects a best route from
up or over (i.e., the algorithm correctly assigns br for all routers
higher in the hierarchy than r). Again, because we consider the
first such mismatch, we know that Ir is correct. If the route that
the algorithm selects, b′r , is in down, then, by Constraint 4(a), BGP
could not have selected br , so we have a contradiction. If both br
and b′r are learned from sessions in up and over, then both are in
Ir, and, according to the λr(Ir ∪ br) step in the algorithm and by
definition of λr , both the algorithm and the BGP decision process
would select the same route. ✷

This theorem relates to one from earlier work [11] on sufficient
conditions for stable BGP routing at the AS level; this work pro-
vides a constructive proof showing that the sufficient conditions
guarantee stability. In subsequent work, Griffin et al. discovered
that the sufficient conditions for stable eBGP routing were analo-
gous to those for stable iBGP routing with route reflection [7]. The
algorithm from this section applies the iBGP analog of the con-
structive proof from the work on stable interdomain routing to de-
velop an algorithm for computing that stable path assignment.

Computational Complexity. This route computation involves
traversing the route reflector hierarchy exactly twice. The running
time of this algorithm is O(N + |S|), where N is the number of

X Z

RR

a cb
MED:20 MED:10

Y

2 14

Figure 12: When an AS’s iBGP topology uses route reflectors
and MED, a router may not always select a route inγ(E).

eBGP-learned routes, and |S| is the number of iBGP sessions. To
see why this is the case, consider the l-level route reflector hier-
archy pictured in Figure 11. Starting from the bottom of the hier-
archy, the algorithm must perform comparisons over N routes to
determine the routes that the M routers at the bottom of the hier-
archy select (the number of routers at the bottom of the hierarchy
is inconsequential: these comparisons can be performed by con-
structing a subset of M routes from the original N routes, which
can be performed in a single scan of the N routes). The algorithm
them propagates the selection of theseM routes to the next level of
the hierarchy, where sl comparisons must be performed across the
routers at the next highest level, where sl is the number of iBGP
sessions at level l. Repeating this process up the hierarchy yields a
total running time of O(N + |S|).

Recall from Section 3.2 that the running time for route computa-
tion in the case of full-mesh iBGP, was O(N + |R|2), or O(N +
|S|). Note that the algorithm for the case with route reflection has
the same running time complexity as before; the running time for
computing the outcome of BGP route selection is no more com-
plex, even though the process for computing the outcome is more
involved. In an iBGP topology with route reflection, the number of
sessions, |S|, will actually be less than |R|2; the running time of the
algorithm in this section benefits from the fact that route reflectors
reduce the number of sessions in the iBGP topology.

5.3 Algorithm: Route Reflection, MED
When a network uses both route reflection and MED, the graph

walk algorithm in Figure 10 no longer works, because it relies on
the fact that the routers that all routers will ultimately select a route
in γ(E). In a network with route reflection and MED, this is not
always true, because when a router selects a locally best route, a
route with a lower MED value might not be visible to that router. As
a result, some router in the AS might select an eBGP-learned route
that is worse, according to the first four steps of the BGP decision
process, than eBGP-learned routes selected by other routers!

Consider the example shown in Figure 12. The network learns
routes to some destination at routers X, Y , and Z that are equally
good up to MED comparison. All three routers are clients of the
route reflector RR. The routes at X and Y are learned from the
same next-hop AS, and rY has a lower MED value. One might
think that router X would never select route a, since, after all, it
has a higher MED value than route b, but that is not the case in this
figure: RR learns routes a, b, and c, and selects route c as its best
route, because c has the shortest IGP path cost. Therefore,X never
learns route b!

Note that applying the algorithm from Figure 10 does not cor-
rectly compute the outcome of the BGP decision process. Proceed-
ing up the hierarchy: (1) routersX, Y , andZ would select routes a,
b, and c, respectively; (2)RR selects route c because it has a short-
est IGP path; (3) each router selects its own eBGP-learned route,
since eBGP routes are preferred over iBGP routes. While the graph

walk correctly computes the outcome in this case, a different IGP
graph would produce a different result: ifRR’s IGP path cost to Y
were less than that to Z, then X would learn routes a and b, rather
than a and c, and it would ultimately select b, because of its lower
MED value. On the other hand, if X had learned a second eBGP-
learned route, d, that was better than b, but worse than a, then X
would ultimately select d, which is an eBGP-learned route but not
its locally best eBGP route.

To account for this, we apply the result from Lemma 3 to derive
the algorithm in Figure 13. This algorithm also immediately elimi-
nates all candidate routes that have a lower local preference, longer
AS path, or higher origin type than other eBGP-learned routes, as in
the algorithms from Figures 5 and 6. The algorithm repeatedly ap-
plies the graph walk from Figure 13 and eliminates eBGP-learned
routes from the set of candidate routes, C, when they are worse,
according to MED, than some other route learned as a result of the
graph walk. Similarly to the algorithm in Figure 6, the algorithm in
Figure 13 can be equated with iteratively restarting the activation
sequence after eliminating routes from the system.

THEOREM 4. If a network uses route reflection, and routers cannot
form a total ordering over all candidate routes, then the algorithm
in Figure 13 correctly computes the outcome of the BGP decision
process, br , for all routers r ∈ R.

Proof. Consider the activation sequence where (1) all routers select
their locally best eBGP learned route and readvertise these routes
via iBGP; (2) every router compares their eBGP-learned routes
with routes learned via iBGP.

From Theorem 3, we know that one iteration of the loop in Fig-
ure 13 correctly computes the result of one iteration of this activa-
tion sequence. From Lemma 3, it is possible to eliminate any lo-
cally best eBGP-learned routes that are eliminated by other routes
in Bi, since those routes will never appear in a Bj for any j > i,
and restart the activation sequence with the smaller set of candidate
routes. The termination condition, L = φ, corresponds to the con-
dition that no router’s best route changes as a result of applying the
algorithm from Figure 10, which will also result in no new iBGP
messages being sent in the activation sequence. ✷

Computational Complexity. Sorting a total ofN routes locally
at each router (to allow for the application of λr) has O(N logN)
running time. Each iteration has the following complexity:

1. Once B has been computed, executing the algorithm from
Figure 10 has complexity O(|S|).

2. Computing the set L and eliminating those routes from the
candidate set requires a comparison at each router, which has
complexity O(|R|).

This loop executes a maximum of N − 1 times, since, in the worst
case, one route is eliminated at each iteration and the ultimate set
B has only a single route. Therefore, the total running time is
O(N logN +N |R|+N |S|)).

6. Discussion: Proposed Improvements to BGP
Thus far, this paper has focused on modeling BGP route se-

lection inside a single AS. Notably, two artifacts, the MED at-
tribute and route reflection, complicate this modeling. Not only do
these attributes make modeling difficult, they also create problems
with the operation of BGP itself. The use of MED, both with and
without route reflection has been shown to cause oscillation [12];
route reflection can also prevent convergence and cause forwarding
loops [7]. The MED attribute is intended to allow a neighboring AS

Algorithm: Route Reflection, MED

SELECTBEST EBGP MED RR(E, R)
C ← σ(E)
do

B ← ∪rλr(Cr)
SELECTBEST EBGP RR(B, R)
L← ∪{r|br �=λr(Er)}λr(Er)
C ← C \ L

while L �= φ

Figure 13: Efficiently computing the best route at each router
in a network with route reflection, where MED is only com-
pared across routes from the same AS.

to dictate preferred exit points on routes advertised at multiple exit
points, but it prevents a router from forming a consistent ordering
of preferences over routes. Route reflectors were introduced to al-
low an iBGP topology to scale, but they do so in a way that prevents
routers from having full visibility of eBGP-learned routes. In this
section, we explore possible solutions to the problems introduced
by MED and route reflection.

6.1 MED-ication for Late-Exit Semantics
The MED attribute causes problems because it is not compara-

ble across routes from different neighboring ASes, which prevents
a router from producing a consistent total ordering over all possible
routes. Also, note that in networks without route reflection, incon-
sistent preferences between pairs of routes is based on the router ID
attribute, an arbitrary tiebreak that carries no meaningful semantics
(as in Figure 4, for example).

Before we consider solutions to the problems introduced by MED,
it is worth noting that MED, as it operates today, does not satisfy
late-exit semantics when used with route reflection. Consider the
example shown in Figure 12. A neighboring AS sending routes a
and bwith MED values 10 and 20, respectively, expects that the AS
shown would always prefer route a over route b, as long as both ex-
isted, causing routerX to perform cold-potato routing (i.e., send its
traffic via route b via router Y). Unfortunately, the AS shown will
not do so: RR prefers route c, so routerX will never learn route b,
and it will continue to forward packets via route a. In other words,
setting MEDs may have no effect whatsoever on route selection!

Recognizing the root causes of the problems with MED allowed
us to make the following realization: if MED values are remapped
into an explicit ranking (i.e., 1st, 2nd, etc.), rather than arbitrary
values, then MED can be compared across all routes with impunity.
Comparing an exit-rank across all routes can sometimes result in
different outcomes than those of BGP today, but in many cases the
differences do not affect the important semantics of BGP. For ex-
ample, consider Figure 4, but where the MED attribute is compared
across all routes. Suppose that AS 2’s MED values of 10 and 20 are
remapped to 1 and 2, and that the highest MED value of any eBGP-
learned route, 2, is added to the MED value on every route learned
via iBGP (this transformation guarantees that eBGP-learned routes
are still preferred over iBGP-learned routes). In this case, routers
X and Y would ultimately select routes c and d, respectively, as
opposed to a and d in BGP today. Although X selects c instead of
a, its preference between these two routes was based on the arbi-
trary router ID tiebreak; therefore, having routerX select c instead
does not destroy any meaningful semantics.

The type of remapping we have described would preserve late-
exit semantics (in fact, as opposed to the way MED works today,
it would actually respect late-exit semantics), but implementing an
exit-rank requires visibility into the set of available routes that is

not available today. Unfortunately, MED values are typically based
on dynamic values (e.g., IGP path costs across the network), so
an AS that sends MED cannot simply configure a static ranking.
Given today’s architectures, neither the sending nor receiving AS
could perform a remapping of MED values into an exit-rank, since
no single router learns the complete set of routes advertised from
a neighboring AS. Performing such a remapping would require ei-
ther the sending or receiving AS to have complete visibility over all
routes being sent or received for a destination. On the other hand,
the Routing Control Platform (RCP) [13] or similar recently pro-
posed architectures [14] can perform such a remapping, since RCP
has full visibility of routes sent from a neighboring AS (as well as
full control over the routes that it sends to a neighboring AS).

This modification would eliminate intra-AS oscillation; further-
more, it facilitates modeling BGP route selection: the algorithm
from Figure 3 would be sufficient to compute the outcome of BGP
route selection; this algorithm is significantly more efficient and
less complex than the algorithm in Figure 13.

6.2 Scalability without Route Reflection
Route reflectors allow iBGP topologies to scale to large num-

ber of routers because they obviate the need to have a “full mesh”
topology with O(|R|2) sessions. Unfortunately, they restrict route
visibility because they only send a single best route, from all of the
routes they have learned. In this paper, we have explained how this
restriction complicates the modeling of BGP path selection; previ-
ous work has also noted that it can cause persistent oscillation and
forwarding loops [7, 12].

To remedy the problems with persistent oscillation, Basu et al.
proposed that route reflectors forward all routes that are equally
good up to and including the MED comparison. It turns out that
this modification correctly emulates a full mesh iBGP topology;
thus, it is possible to model the outcome of their modified proto-
col with the algorithm from Figure 6. Unfortunately, this proposal
requires modifications to the routers, since each router readvertises
multiple routes instead of a single best route. Additionally, because
each router readvertises multiple routes to its neighboring routers,
every router must select routes using a consistent selection crite-
rion. Otherwise, given multiple routes, some router along the path
to an exit point might select a different route, causing a deflection.
This restriction precludes certain policies and configurations (e.g.,
a router may not manipulate attributes on a route learned via iBGP).

Architectures such as RCP propose separating route computa-
tion from the routers and placing this functionality in a system that
computes routes on behalf of all of the routers within an AS [13].
Rather than returning only a single best route to all of its clients
(as a route reflector does), RCP advertises to each router the route
that it would have selected in a full mesh iBGP configuration. This
architecture allows the network to scale in the same way that route
reflectors do, but it provides some important additional advantages.
First, because the RCP explicitly assigns routes to all routers in the
network, it can guarantee that the assignments are free from deflec-
tions and forwarding loops. Second, RCP allows for a more scal-
able network design. Because RCP is not on the forwarding path, it
does not have to make the same routing decisions as its clients (as
route reflectors do today). As a result, unlike route reflectors, RCP
servers can be replicated at arbitrary places in the IGP topology.

7. Related Work
Previous work presented an IGP emulator that helps network

operators optimize link weights for intradomain traffic engineer-
ing [15], but this emulator does not model changes to BGP routing
policies or the effects of iBGP on path selection. There has also

been much focus on modeling BGP convergence [9, 16, 11], but
this is the first paper to model BGP route selection.

Recent work proposes efficient techniques for large-scale param-
eter optimization for various network protocols, including the tun-
ing of the local preference attribute in BGP [17]. This work is com-
plementary to ours—the proposed search techniques could use our
emulator as the “inner loop”. These techniques currently use sim-
ulators such as SSFNet [2], but they only depend on the outcome
of BGP path selection (not on dynamics) and would likely benefit
from having an efficient, accurate emulator as an inner loop.

The BGP model in this paper applies several previous theoreti-
cal results in new ways. The constraints for iBGP configuration that
we present in Section 2 are motivated by previously-derived suffi-
cient conditions for iBGP to guarantee that the routing protocols
converge to a stable assignment [7, 18]. This work specified these
conditions to ensure correct routing behavior, but these constraints
are also required to model BGP routing. The route prediction al-
gorithm in Section 4.2 also uses results from previous work. We
applied a constructive proof regarding stable inter-AS policy con-
figurations [11] to iBGP configuration and used this proof as the
basis for the third phase of the algorithm.

In previous work, we explored practical traffic engineering tech-
niques in BGP; we assumed the existence of a BGP emulator for
testing traffic engineering techniques offline [1]. We previously
presented a model that accurately and efficiently predicts the out-
come of the BGP route selection process in a single AS using only a
snapshot of the network configuration and the eBGP-learned routes
from neighboring domains, without simulating protocol dynam-
ics [4]. We implemented an emulator based on this model to demon-
strate that our algorithm is accurate and efficient enough to be used
in practice for many network engineering tasks. This paper extends
that work by: designing an algorithm that models BGP path selec-
tion in networks that use both MEDs and route reflection; formally
presenting the proofs, algorithms, and running time complexity for
various cases of network configuration; formalizing the complexity
introduced by MED and route reflection; and proposing protocol
improvements that achieve the goals of MED and route reflection
reduce modeling complexity, and prevent undesirable side effects
(e.g., oscillations).

8. Conclusion
To perform everyday network engineering tasks effectively, effi-

ciently, and with minimal unnecessary changes to the live network,
operators need a way to model how a routing protocol configura-
tion will behave before deploying that configuration. The model we
have presented is a necessary step for advancing the state of the art
of network engineering. We believe that our model and BGP emu-
lation tool present several immediate possibilities for future work.
First, network-wide BGP route prediction could be combined with
traffic measurements to help network operators select BGP con-
figuration changes that achieve various traffic engineering tasks.
Second, the emulator could be combined with higher-level mech-
anisms that spot misconfiguration or check that other constraints,
such as robustness, are satisfied [19].

Finally, we note that modeling BGP routing is much more diffi-
cult than it should be. In the future, we hope that routing protocol
designers will consider ease of modeling as a design goal; as we de-
scribe in Section 6, some of these simplifications that aid protocol
modeling also fix problems with protocol operation. Routing pro-
tocols that are easy to model and reason about will make everyday
network engineering tasks more tractable.

Acknowledgments
We thank Ramesh Johari and Renata Teixeira for helpful comments
and suggestions.

9. References
[1] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines for

interdomain traffic engineering,” ACM SIGCOMM Computer
Communication Review, vol. 33, October 2003.

[2] “SSFNet.” http://www.ssfnet.org/, 2003.
[3] “How BGP Routers Use the Multi-Exit Discriminator for Best Path

Selection.”
http://www.cisco.com/warp/public/459/37.html.

[4] N. Feamster, J. Winick, and J. Rexford, “A model of BGP routing for
network engineering,” in Proc. ACM SIGMETRICS, June 2004.

[5] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental study of
Internet stability and wide-area network failures,” in Proc. Fault
Tolerant Computing Symposium, June 1999.

[6] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability of
popular destinations,” in Proc. Internet Measurement Workshop,
November 2002.

[7] T. G. Griffin and G. Wilfong, “On the correctness of IBGP
configuration,” in Proc. ACM SIGCOMM, August 2002.

[8] C. Villamizar, R. Chandra, and R. Govindan, “BGP Route Flap
Damping.” Request for Comments 2439, November 1998.

[9] T. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths
problem and interdomain routing,” IEEE/ACM Trans. Networking,
vol. 10, pp. 232–243, April 2002.

[10] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True, “Deriving traffic demands for operational IP networks:
Methodology and experience,” IEEE/ACM Trans. Networking, vol. 9,
June 2001.

[11] L. Gao and J. Rexford, “Stable Internet routing without global
coordination,” IEEE/ACM Trans. Networking, vol. 9, pp. 681–692,
December 2001.

[12] A. Basu, A. Rasala, C.-H. L. Ong, F. B. Shepherd, and G. Wilfong,
“Route oscillations in I-BGP with route reflection,” in Proc. ACM
SIGCOMM, August 2002.

[13] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merve, “The case for separating routing from routers,” Proc. ACM
SIGCOMM Workshop on Future Directions in Network Architecture,
August 2004.

[14] O. Bonaventure, S. Uhlig, and B. Quoitin, “The case for more
versatile BGP route reflectors.” Internet Draft
draft-bonaventure-bgp-route-reflectors-00.txt, July 2004.

[15] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,
“NetScope: Traffic engineering for IP networks,” IEEE Network
Magazine, pp. 11–19, March 2000.

[16] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
routing convergence,” IEEE/ACM Trans. Networking, vol. 9,
pp. 293–306, June 2001.

[17] T. Ye, H. T. Kaur, and S. Kalyanaraman, “A recursive random search
algorithm for large-scale network parameter configuration,” in Proc.
ACM SIGMETRICS, June 2003.

[18] T. G. Griffin and G. Wilfong, “Analysis of the MED oscillation
problem in BGP,” in Proc. International Conference on Network
Protocols, November 2002.

[19] N. Feamster and H. Balakrishnan, “Verifying the correctness of
wide-area Internet routing,” Tech. Rep. MIT-LCS-TR-948,
Massachusetts Institute of Technology, May 2004.

APPENDIX

A. Prototype Implementation
In this section, we describe a prototype that incorporates the

model of BGP path selection described in this paper. Our current
prototype separates the computation of egress routers for a given
destination from the assignment of other routers to those egress
routers. This separation of functionality requires that br ∈ γ(E),
which does not hold when both MED and route reflection are used
(as shown in Section 5.3). We refer readers to our previous work,
which discusses the design, implementation, and evaluation of the
prototype implementation in more detail [4].

A.1 Design Overview
We now highlight the high-level design of the prototype, shown

in Figure 14. We briefly describe: the necessary inputs for driving
the prototype, the decomposition of functionality into three distinct
modules and the relationships of those modules to the algorithms
described in this paper, and optimizations that reduce computa-
tional complexity.

BGP tables

known routes

route maps

import

MODIFIED ROUTES

BGP Neighbor Info

router ID

EGRESS POINTS

iBGP topology

RR clients

IGP configuration

IGP Path Costs

PREDICTED ROUTES

Apply import policy
Compute best

eBGP routes
Compute best route

Figure 14: Data flow in the prototype. Fonts specifyraw inputs,
input tables, and DERIVED TABLES. In practice, operators might
collect raw inputs once a day.

Input data. The prototype uses three inputs:

• BGP routing tables: The BGP tables for the eBGP-speaking
routers provide the first stage of the algorithm with a snapshot
of the routes advertised by neighboring ASes. We ignore the
router’s current view of the best route and the current setting
of the local preference attribute, since these relate to the exist-
ing network configuration rather than the scenarios we might
want to emulate.

• Router configuration files: The configuration files are used to
(1) determine the import policies (i.e., route maps) for each
eBGP session, (2) determine the iBGP signaling graph, and
(3) compute the IGP path costs between each pair of routers.
The import policies are used to manipulate attributes of the
eBGP routes in the first stage of the algorithm, and the iBGP
and IGP information are needed for the third stage.

• BGP neighbor information: Because the BGP decision pro-
cess depends on the router ID associated with the BGP ses-
sion announcing the route, our algorithms require knowing
the router ID associated with each BGP session. The second
stage uses the router IDs of the eBGP sessions, while the third
stage uses the router IDs for the iBGP sessions.

We emphasize several points with regard to the input data. First, a
network operator can capture all of the necessary data with telnet
or ssh access to each router. Second, many aspects of the input
data do not change very often; as such, the prototype is useful even
if all of the input data is collected infrequently (e.g., once a day).

Finally, because certain inputs can be approximated (e.g., router ID
is typically the loopback IP address of the router), the prototype
can be effective even with limited input.

Prototype operation. The prototype uses a database back-end,
which provides efficient access to small subsets of the configuration
data and routes and also stores intermediate results, which allow us
to validate each part of the algorithm separately. Figure 14 sum-
marizes how the prototype uses the inputs and intermediate results
to generate a table of predicted routes. The three modules shown
in Figure 2 correspond to the first two stages from Section 2.2; as-
suming that br ∈ γ(E) allows us to break the second stage into
two simpler modules. The prototype performs three operations:

Applying import policy to eBGP-learned routes: This operation
corresponds to the first step described in Section 2.2. Each row of
the import table specifies how a particular set of rows in the known
routes table should be modified; the prototype performs the actual
modifications on the MODIFIED ROUTES table. For each row in the
import table, the first operation applies the policy by (1) finding
the appropriate routes by selecting the set of routes learned at the
corresponding router on that BGP session that match the specified
AS path regular expression and (2) setting the other attributes (e.g.,
local preference) according to the values specified in that row of
the import table.

Computing the egress routers for a destination: This operation
generates the set of the set of best eBGP-learned routes B using
the technique from Section 4.2, corresponding to the first half of
stage 2 in Section 2.2. This part of the algorithm performs “select”
statements on the MODIFIED ROUTES table to successively refine the
set of candidate routes. The router ID table contains the router ID
for every BGP session at each router, which is needed for step 7 of
the decision process. As the method from Section 3 marks “best”
routes, these routes are inserted into the EGRESS POINTS table for
use by the third operation.

Computing the predicted routes: This operation uses the iBGP
signaling graph, IGP path costs, and technique from Section 5.2 to
determine the best BGP route for each prefix at each router. The
module uses the iBGP signaling graph to determine which routes
are advertised to each router, the IGP path costs between each pair
of routers to determine the closest eBGP-speaking router to each
ingress router (used in step 6 of the decision process), and the router
ID of each iBGP session (step 7) to determine the egress router that
each ingress router will select. The RR clients table represents the
iBGP signaling graph and IGP path costs represents the shortest
IGP path between each pair of routers in the AS. Each row of RR
clients specifies a route reflector client for a particular cluster; this
provides the partial ordering needed by the algorithm. When ap-
plying the IGP tiebreaking step at an ingress router, IGP path costs
is used to determine the egress router with the shortest IGP path.

Optimizations. To ensure that the prototype operates on rea-
sonable timescales, even with a large number of routes and eBGP
sessions, we made the following optmizations: (1) as many routes
have the same AS path attribute, store the AS paths in a separate
table to accelerate lookups based on AS path regular expressions;
(2) as many prefixes are advertised in exactly the same manner (i.e.,
at the same set of exit routers and with the same attributes), exe-
cute route computation only once for each group of prefixes; and
(3) upon an incremental policy change, only recompute the routes
for prefixes affected by that change.

A.2 Evaluation
The analysis focuses on a snapshot of the network state from

early morning (EST) on February 4, 2003. We validate the pre-
diction algorithm for the 91,554 prefixes whose eBGP routes are

learned at peering points to other large providers, since we have
routing tables from all of these locations; we excluded prefixes that
were learned at other routers. (Recall that the prediction algorithm
relies on knowing all of the potential egress routers where routes
to a prefix are learned.) The initial BGP routing data consists of
1,620,061 eBGP-learned routes with 43,434 distinct AS paths. We
apply the tool to these inputs and check whether the emulator pro-
duces the same answers that the operational routers selected. In
addition to collecting BGP routing tables from the peering routers
(where the eBGP routes are learned), we also collect BGP tables
from several route reflectors and access routers to verify the results.

Performance evaluation. We ran the prototype on a Sun Fire
15000 with 192 GB of RAM and 48 900 MHz Ultrasparc-III Cop-
per processors. Because this is a time-shared machine, we ran each
of our experiments several times to ensure the accuracy of our mea-
surements. Except where noted, the prototype used only two 900
MHz processors (one for the database process and one for the em-
ulator itself); the combined memory footprint of the database pro-
cess and the emulator never exceeded 50 MB. Because the emula-
tor did not use more resources than a standard PC, the results of our
evaluation should reasonably reflect the emulator’s performance on
commodity hardware.

While our evaluation is preliminary, our performance tests demon-
strate that the prototype can operate on timescales that could allow
an operator to use a BGP prototype based on our algorithms in a
practical setting. Our evaluation demonstrates the following points:

• The prototype computes the best routes for one prefix through-
out a large tier-1 ISP network in about one second. Although
predicting the best route for all prefixes at all routers in such
a network takes several hours, this type of computation does
not need to be performed all that frequently in practice.
• Exploiting commonalities among route advertisements to elim-

inate redundant computation reduces the running time of the
prototype by approximately 50%.
• Evaluating the effects of an incremental change to router con-

figuration typically takes only a few seconds.

Validation. To verify that the prototype produces correct an-
swers, we perform validation using complete routing protocol im-
plementations on production routers in a large operational network.
We performed independent validation for each of the three mod-
ules, as well as an end-to-end validation to study the effect of error
propagation on the best routes ultimately predicted by the proto-
type. We summarize the results of the end-to-end evaluation here.

We compared the prototype’s computation with the same four
routing tables used for the validation of the third module, with
the exception that the input included the errors from the first two
modules. At these four routers, the prototype predicted the correct
routes for more than 99% of all prefixes, as summarized in Table 4.
Prediction errors are infrequent and result mainly the dynamics of

Router # Predictions Total Errors
RR1 89,343 554 (0.620%)
RR2 88,647 394 (0.444%)
AR1 88,649 391 (0.441%)
AR2 76,733 511 (0.666%)

Table 4: Summary of errors for end-to-end validation.

the inputs. Since most prefixes whose routes change frequently do
not receive much traffic [6], these inconsistencies would be permis-
sible for most traffic engineering tasks.

