
Proactive Techniques for
Correct and Predictable

Internet Routing

Nicholas Greer Feamster

Proactive Techniques for
Correct and Predictable

Internet Routing
by

Nicholas Greer Feamster
M.Eng., Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2001

S.B., Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2000

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

Massachusetts Institute of Technology

February 2006

c©Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 30, 2005

Certified by .
Hari Balakrishnan

Associate Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Proactive Techniques for
Correct and Predictable Internet Routing

by
Nicholas Greer Feamster

Submitted to the Department of Electrical Engineering and Computer Science
on September 30, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract
The Internet is composed of thousands of autonomous, competing networks that exchange
reachability information using an interdomain routing protocol. Network operators must
continually reconfigure the routing protocols to realize various economic and performance
goals. Unfortunately, there is no systematic way to predict how the configuration will
affect the behavior of the routing protocol or to determine whether the routing protocol
will operate correctly at all. This dissertation develops techniques to reason about the
dynamic behavior of Internet routing, based on static analysis of the router configurations,
before the protocol ever runs on a live network.

Interdomain routing offers each independent network tremendous flexibility in con-
figuring the routing protocols to accomplish various economic and performance tasks.
Routing configurations are complex, and writing them is similar to writing a distributed
program; the (unavoidable) consequence of configuration complexity is the potential for
incorrect and unpredictable behavior. These mistakes and unintended interactions lead to
routing faults, which disrupt end-to-end connectivity. Network operators writing config-
urations make mistakes; they may also specify policies that interact in unexpected ways
with policies in other networks. To avoid disrupting network connectivity and degrading
performance, operators would benefit from being able to determine the effects of configu-
ration changes before deploying them on a live network; unfortunately, the status quo provides
them no opportunity to do so. This dissertation develops the techniques to achieve this
goal of proactively ensuring correct and predictable Internet routing.

The first challenge in guaranteeing correct and predictable behavior from a routing pro-
tocol is defining a specification for correct behavior. We identify three important aspects of
correctness—path visibility, route validity, and safety—and develop proactive techniques
for guaranteeing that these properties hold. Path visibility states that the protocol dissem-
inates information about paths in the topology; route validity says that this information
actually corresponds to those paths; safety says that the protocol ultimately converges to a
stable outcome, implying that routing updates actually correspond to topological changes.

Armed with this correctness specification, we tackle the second challenge: analyzing
routing protocol configurations that may be distributed across hundreds of routers. We
develop techniques to check whether a routing protocol satisfies the correctness specifi-
cation within a single independently operated network. We find that much of the specification
can be checked with static configuration analysis alone. We present examples of real-world
routing faults and propose a systematic framework to classify, detect, correct, and prevent
them. We describe the design and implementation of rcc (“router configuration checker”),
a tool that uses static configuration analysis to enable network operators to debug configu-
rations before deploying them in an operational network. We have used rcc to detect faults

4

in 17 different networks, including several nationwide Internet service providers (ISPs).
To date, rcc has been downloaded by over seventy network operators.

A critical aspect of guaranteeing correct and predictable Internet routing is ensuring
that the interactions of the configurations across multiple networks do not violate the cor-
rectness specification. Guaranteeing safety is challenging because each network sets its
policies independently, and these policies may conflict. Using a formal model of today’s
Internet routing protocol, we derive conditions to guarantee that unintended policy inter-
actions will never cause the routing protocol to oscillate.

This dissertation also takes steps to make Internet routing more predictable. We present
algorithms that help network operators predict how a set of distributed router configura-
tions within a single network will affect the flow of traffic through that network. We de-
scribe a tool based on these algorithms that exploits the unique characteristics of routing
data to reduce computational overhead. Using data from a large ISP, we show that this
tool correctly computes BGP routing decisions and has a running time that is acceptable
for many tasks, such as traffic engineering and capacity planning.

Thesis Supervisor: Hari Balakrishnan
Title: Associate Professor of Computer Science and Engineering

To Mom, Dad, and Gram

6

Acknowledgments

The crowd makes the ballgame.
- Ty Cobb

My advisor, Hari Balakrishnan, once said that one secret to success is to surround yourself
with people who are smarter than you are. This task must be incredibly difficult for him. I
am extremely fortunate to have crossed paths with Hari and to have had the opportunity
to work with him so closely for many years. Hari has guided me with amazing expertise.
His sharp intellect and ability to quickly grasp the important and interesting aspects of a
problem are matched only by his fantastic taste in research problems. Hari opened (and
closed) all of the right doors for me; he gave me the opportunity to succeed at every corner,
and he continually encouraged me to consider the broader impact of my research while
allowing me the freedom to pursue problems I found most interesting.

Jennifer Rexford has been another fantastic mentor. She shares my insatiable passion
for details and practical problems. Her patience, willingness to consider new ideas, and
ability to explain complicated concepts make her a fun person to work with and should
serve as a model for every advisor. Jennifer introduced me to Internet routing, and many
of her papers provided inspiration for several chapters in this dissertation. She has also
been a teacher, a useful sounding board, and a continual source of sound advice.

I owe a great debt to the other two members of my committee, David Clark and Frans
Kaashoek. David read this dissertation with vigilance, and my discussions with him, both
during the writing process and throughout my graduate career, helped me strengthen
many of the conceptual aspects of this dissertation. Frans provided invaluable guidance
in clarifying the presentation of many of the ideas in this dissertation. His enthusiasm for
both the work in this dissertation and other projects we worked on together have kept
me optimistic and excited about my research. When I’d think some of my projects were
fruitless or boring, Frans always provided the boost I needed. On the squash court, he
continually reminds me about the virtues of humility.

I am lucky to have Ramesh Johari and David Andersen as colleagues. I’ve had great
fun working with both of them and learning from their different research styles. Ramesh’s
penchant for precision—both in math and in English—and his tenacity in problem solving
make him a pleasure to work with. I have great respect for him as a researcher, a mentor,
and a friend. Dave’s energy, fun-loving nature, and willingness to put up with my con-
tinual questions while always questioning my own research was one of the most valuable
assets throughout my graduate career. Dave was my officemate and housemate, but he is

7

8

also a great collaborator and a terrific friend. Some of my best times in graduate school
were spent cycling through Massachusetts and talking research with Dave.

One of the great things about MIT is that you don’t have to try very hard to surround
yourself with people who are smarter than you are. My research and career benefited from
the influence of many faculty members, including Rod Brooks, John Guttag, David Karger,
Daniel Jackson, Dina Katabi, Barbara Liskov, Sam Madden, Robert Morris, and Ron Rivest.
It has been a joy to share my graduate career with Magdalena Balazinska; she is a tremen-
dous colleague and friend. Thanks to her, I remembered to eat lunch most of the time. I
have learned a lot from exchanging ideas with Alex Snoeren, who was also a tremendous
support during my job search. Both Michel Goraczko and Dorothy Curtis were helpful
and patient with my technical questions and emergencies. I have also had fantastic of-
ficemates. Jaeyeon Jung and Mythili Vutukuru have been fun to work with; I hope we
continue working together. Michael Walfish’s clarity of expression—not to mention his
enthusiasm for a good argument—made G982 an exciting place to work. Discussions with
Jaeyeon, Mythili, and Mike have helped me refine my research ideas. Sheila Marian made
my life around the lab smooth and pleasant; I will miss discussing the latest Red Sox gos-
sip with her. I also thank the members of the NMS and PDOS groups for listening to my
many thoughts and practice talks.

I am fortunate to have wonderful colleagues outside of MIT. In particular, I would
like to thank Randy Bush, Tim Griffin, Albert Greenberg, Jacobus van der Merwe, Aman
Shaikh, Lixin Gao, kc claffy, Avi Freedman, Morley Mao, Olivier Bonaventure, Richard
Mortier, and the network operators who have used rcc, for taking a deep interest in my
work and providing feedback and support. I thank Joan Feigenbaum and Anthony Joseph
for their advice and insights during my job search. I’ve had helpful discussions (and great
times) with Aditya Akella, Anukool Lakhina, Ratul Mahajan, Joel Sommers, Lakshmi Sub-
ramanian, and Renata Teixeira. Susie Wee and John Apostolopoulos introduced me to the
rewards of research and have offered useful professional advice.

Mike Freedman, Sean Montgomery, and Ajay Kulkarni have continually supported me
for nearly ten years. Anukool Lakhina has been an indispensable friend during the writing
of this dissertation. Greg Harfst, Claire Monteleoni, Jamie Fine, Jennifer Bowen, Jonathan
Hall, Jeremy Stribling, Kelly Carleton, Carson Reynolds, and Steven Richman have been
companions in both celebration and commiseration. Dave Andersen, Thomer Gil, Alex
Yip, Sam Madden, Dye-Zone Chen, and the members of the MIT Cycling Club were all
great cycling partners. Sanmay Das, Tony Ezzat, and José Rafael Galvanis gave me many
memories on the squash courts, and Doug DeCouto made swimming less dull.

The research in this dissertation was funded through an NSF Graduate Research Fel-
lowship, the NSF under Cooperative Agreement ANI-0225660, the Defense Advanced Re-
search Projects Agency (DARPA) and the Space and Naval Warfare Systems Center, San
Diego, under contract N66001-00-1-8933, and a Cisco URP grant. The writing of this dis-
sertation was fueled with sustenance from the 1369 Coffeehouse and Mariposa Café in
Cambridge, MA; and the Big Cup, the Saurin Park Café, and Grounded in New York City.

My parents, Carolyn and Scott Feamster, have always encouraged me to push the fron-
tier of knowledge. Both my parents and my late grandmother, Elizabeth Huey, have been
a constant source of love and inspiration, without which this accomplishment would have
been impossible. In return, I dedicate this dissertation to them. My success is also theirs.

Bibliographic Notes

An early version of some material from Chapter 3 appears in a paper co-authored with
Hari Balakrishnan [29]. Material from Chapter 4 appears in a paper co-authored with Hari
Balakrishnan [30]. Material from Chapter 5 appears in papers co-authored with Jennifer
Rexford and Jared Winick [36, 37]. Material from Chapter 6 appears in a paper co-authored
with Ramesh Johari and Hari Balakrishnan [33]. The original design for the Routing Con-
trol Platform, which is briefly discussed in Chapter 7, appears in a paper co-authored
with Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Jacobus van der Merwe [31].
Ramesh Johari’s dissertation provided formatting and typography inspiration.

9

10

Contents

Acknowledgments 7

Bibliographic Notes 9

List of Figures 14

List of Tables 15

1 Introduction 17
1.1 Internet Routing Overview . 19
1.2 Configuration: The Achilles’ Heel of Internet Routing 21
1.3 Challenges . 22
1.4 The Role of Proactive, Static Configuration Analysis 24
1.5 Contributions . 25
1.6 Lessons Learned . 29
1.7 How to Read This Dissertation . 31

2 Background and Related Work 33
2.1 Internet Structure and Operation . 33
2.2 Internet Routing: The Border Gateway Protocol 34
2.3 Internet Routing Configuration . 39
2.4 Related Work . 44
2.5 Summary . 51

3 Correctness Specifications for Internet Routing 53
3.1 Preliminaries: Paths, Routes, and Policy . 54
3.2 Route Validity . 58
3.3 Path Visibility . 62
3.4 Safety . 64
3.5 Summary . 73

11

12

4 rcc: Detecting BGP Configuration Faults with Static Analysis 75
4.1 rcc Design . 77
4.2 Path Visibility Faults . 82
4.3 Route Validity Faults . 83
4.4 Implementation . 85
4.5 Evaluating Operational Networks with rcc 87
4.6 Take-away Lessons . 93
4.7 Summary . 94

5 Predicting BGP Routes with Static Analysis 97
5.1 Motivation and Overview . 98
5.2 Problem Statement and Challenges . 100
5.3 Modeling Constraints and Algorithm Overview 102
5.4 Preliminaries . 105
5.5 Simple Case: BGP with Determinism and Full Visibility 106
5.6 Route Computation without Determinism . 110
5.7 Route Computation without Full Visibility 115
5.8 Implementation: The Routing Sandbox . 122
5.9 Proposed Improvements to BGP . 132
5.10 Summary . 134

6 Local Conditions for Safe Internet Routing 135
6.1 Background . 137
6.2 Routing Model and Definitions . 141
6.3 Ranking Classes and Safety . 145
6.4 Dispute Wheels and Dispute Rings . 149
6.5 Autonomy and Safety . 154
6.6 Implications: Possibilities for Guaranteeing Safety 163
6.7 Summary . 166

7 Conclusion 169
7.1 Reasons for Correctness and Predictability Problems 169
7.2 Summary of Contributions . 170
7.3 Moving Forward from the Lessons Learned 171
7.4 Concluding Remarks . 179

References 183

List of Figures

1-1 Overview of the Internet’s structure . 19
1-2 How ASes exchange routing information . 20
1-3 Example BGP routing table entry . 20
1-4 The state-of-the-art in network configuration management 24
1-5 This dissertation’s contributions in fault detection and route prediction. . . 27
1-6 Workflow for fault detection and route prediction tasks. 27

2-1 The use of AS path prepending to control inbound traffic 36
2-2 The use of the MED attribute to control inbound traffic 37
2-3 How the IGP implements “hot potato” routing 37
2-4 BGP configuration semantics. 39
2-5 Internal BGP configuration for small ASes: “full mesh” topology 41
2-6 Internal BGP configuration for large ASes: route reflector topology 41
2-7 Example of a Cisco router configuration. 43

3-1 Illustration of an induced path. 55
3-2 Paths and routes in BGP. 57
3-3 Expressing policy-conformant paths at the AS-level in BGP. 58
3-4 The conditions of route validity. 58
3-5 The main idea of the proof of Theorem 3.1 . 60
3-6 The interaction of IGP and route reflection may cause forwarding loops. . . 61
3-7 A simple iBGP topology that violates path visibility. 63
3-8 The main idea of the proof of Theorem 3.4. 64
3-9 How determinism violations can cause safety violations. 65
3-10 Instantiation of Figure 3-9 in a BGP configuration. 66
3-11 The relationship between determinism, egress determinism, and safety. . . . 68
3-12 The interaction of IGP and iBGP can cause a violation of egress determinism. 68
3-13 Egress determinism violations can cause safety violations. 69
3-14 The interaction of IGP and iBGP can cause a violation of egress determinism. 70
3-15 The main idea of the proof of Lemma 3.2. 71
3-16 The three cases in the proof of Theorem 3.5. 71
3-17 When iBGP satisfies egress determinism, a cyclic iBGP topology typically

do not cause safety violations. 72

13

14

4-1 Number of threads discussing routing faults on the NANOG mailing list. . 76
4-2 Overview of rcc. 78
4-3 Relationships between faults and failures. 81
4-4 An iBGP route reflector topology that violates path visibility. 82
4-5 How rcc computes route propagation. 85
4-6 Overview of rcc implementation. 85
4-7 BGP configuration in normalized format. 86
4-8 Number of ASes in which each type of fault occurred at least once. 90

5-1 Network with three egress routers connecting to two neighboring ASes . . . 99
5-2 Route prediction requires resolving circular dependencies. 101
5-3 Decomposing BGP route selection into three independent stages. 104
5-4 Algorithm: Full Mesh, No MED . 107
5-5 With MED, a router may select a route that is no router’s best eBGP route. . 109
5-6 When an AS’s iBGP topology uses route reflectors and MED, a router may

not always select a route in γ(E). 111
5-7 Interaction between MED and router ID in the BGP route selection process. 112
5-8 Algorithm: Full Mesh, MED . 112
5-9 Efficient Algorithm: Full Mesh, MED . 115
5-10 Implementation of the route computation algorithm from Figure 5-9. 116
5-11 Example iBGP signaling graph. 116
5-12 When an AS’s iBGP topology uses route reflectors, a router may not always

discover the route corresponding to its closest egress router. 118
5-13 Algorithm: Route Reflection, No MED . 119
5-14 Running time analysis of an iBGP graph walk. 120
5-15 An example where the algorithm in Figure 5-13 produces the incorrect result. 121
5-16 Data flow in the prototype. 123

6-1 Safety violation caused by conflicting rankings in different ASes 136
6-2 Constraints on filtering and topology are not enforceable. 139
6-3 Pairs of ASes may have different relationships in different geographic regions. 140
6-4 Model of the routing protocol dynamics . 144
6-5 Routing system with next-hop rankings that is not safe 146
6-6 Routing system that is stable without filtering but unstable under filtering. . 147
6-7 Routing system with edge weight-based rankings. 148
6-8 Relationships between safety and dispute rings and wheels. 150
6-9 Illustration of a dispute wheel. 150
6-10 A routing system that is safe for any choice of filters. 152
6-11 Routing system that has no dispute ring and is not safe. 153
6-12 Activation sequence for unsafe system from Figure 6-11. 154
6-13 Dispute wheel construction for Lemma 6.1. 159
6-14 Dispute ring construction for Lemma 6.2. 161

7-1 Overview of Routing Control Platform . 175
7-2 How aggregation can interfere with an AS’s attempt to control inbound traffic.177

List of Tables

2-1 Commonly used BGP route attributes. 35
2-2 Steps in the BGP route selection process. 36
2-3 Common business relationships and practices between ASes 40
2-4 The results of previous empirical studies of the effects of routing faults and

protocol artifacts on routing convergence or end-to-end performance. 45
2-5 Existing configuration management tools . 47

4-1 Normalized configuration representation. 78
4-2 BGP configuration problems that rcc detects and their potentially active faults. 80
4-3 BGP configuration faults in 17 ASes. 89

5-1 Description of the notation used in this chapter, and the sections where each
piece of notation is introduced. 105

5-2 Properties of the BGP route prediction algorithms in each of the four cases
(with and without MED, and with and without route reflection). 108

5-3 Summary of errors in applying import policy. 129
5-4 Mispredictions in the set of best eBGP routes. 130
5-5 Errors in predicting the best egress router. Prefixes predicted incorrectly by

the second phase and those where the “right” answer was not a peering
router are excluded. 131

5-6 Summary of errors for end-to-end validation. 131

6-1 Results from previous work on global routing stability. 138

15

16

If you don’t know where you’re going, you might not get there.
- Yogi Berra

CHAPTER 1
Introduction

T
he past fifteen years have seen a migration from the government-operated NSFNet
to an agglomeration of commercial networks that communicate with one another to

constitute what we commonly refer to as “the Internet”. This data network requires the
cooperation of tens of thousands of independently operated networks that are nonetheless
competing with one another for each other’s customers. In the midst of this changeable,
federated landscape, we as users expect to be able to reliably communicate with other
users of the network at any time.

Reliable communication between nodes in a network fundamentally depends on rout-
ing, the process by which some participant discovers paths to other network destinations.
In the same way that a human might use routing to plan a course (e.g., using the “driving
directions” feature of an online mapping service to discover a path from Boston to New
York), computers on the Internet rely on routing to discover paths between each other.
There are many reasons why traffic on the Internet may not reach its intended destination:
parts of the network infrastructure, network systems, and end hosts can all fail, for exam-
ple. Even if all infrastructure and services operate correctly, though, two endpoints cannot
communicate if they cannot discover a path between them.

Today’s Internet routing infrastructure is unacceptably fragile. Among its shortcom-
ings, it converges slowly [78] (and sometimes not at all [56]); it is often misconfigured [85];
it is hard to control and predict [32]; and it has weak security properties [93]. This fragility
causes communication on the Internet to be unreliable and unpredictable. A major con-
tributing factor to this fragility is Internet routing’s configurability. Internet routing config-
uration enables competing networks both to implement policies reflecting complex busi-
ness arrangements and to tune routing protocols to maintain good performance under
highly dynamic conditions. The behavior of Internet routing is determined almost entirely
by the set of configurations distributed across the routers in the network. In this sense, it
is rather accurate to think of Internet routing as a massive distributed computation, and
the routing configuration as a complex, distributed program written in a variety of low-
level languages running on a heterogeneous set of platforms. This dissertation develops
techniques towards making Internet routing more correct and predictable; much of the
dissertation focuses on how to make configuration less of a harbinger of incorrect and

17

18 CHAPTER 1. INTRODUCTION

unpredictable behavior.
Given that there are so many ways for Internet routing to go wrong, guaranteeing cor-

rect and predictable behavior is a daunting task. Each new problem seems to merit a point
solution that adds complexity to the routing protocol, making the infrastructure more com-
plex, unpredictable, and unwieldy. Worse yet, network operators, protocol designers, and
researchers have adopted a reactive approach to reasoning about Internet routing. The
state-of-the-art for configuring Internet routing typically involves logging configuration
changes and rolling back to a previous version when a problem arises. The lack of a for-
mal reasoning framework means that configuring routers is time-consuming, ad hoc, and
error-prone, and it is becoming more so as with the unceasing addition of new point fixes
and “features”.

This trend is unsettling, especially as the Internet matures and increasingly becomes
a mission-critical part of our communication infrastructure. Rather than proposing point
solutions to the myriad problems in Internet routing, this dissertation takes the opposite
approach: we work top-down, first defining a high-level correctness specification for In-
ternet routing and subsequently developing techniques to ensure that the routing protocol
satisfies this specification. Using the correctness specification as a guide, this dissertation
develops techniques that improve the correctness and predictability of the Internet routing
system. We focus on this problem in the context of non-malicious network operations. We
develop techniques that help operators and protocol designers reason about the behavior
of today’s Internet routing system. Further, we propose architectural and protocol changes
that make the routing protocol itself less likely to behave incorrectly. This dissertation pro-
poses two such tools based on proactive analysis of static routing configurations. One of
these tools, called rcc (“router configuration checker”), uses the correctness specification
and its constraints to derive a set of constraints that it checks directly against the routing
configuration. The second tool, which we call a routing sandbox, allows a network operator
to determine how traffic will flow through the network and quickly evaluate the effects of
configuration changes on the flow of traffic.

While the techniques we present have proved effective for improving the correctness
and predictability of today’s Internet routing system, we firmly believe that the design
of the routing infrastructure should address correctness and predictability as first-order
concerns. The tools and techniques presented in this dissertation would likely have been
far easier had the routing infrastructure been designed with these goals in mind in the
first place. Consequently, this dissertation also proposes several architectural and protocol
changes towards improving the robustness and manageability of the system. In general,
we believe that the correctness specification in this dissertation provides a sound frame-
work for considering such design changes.

We begin with a high-level overview of Internet routing to provide some context. In
Section 1.2, we discuss how routing configuration can be used to control the behavior
of the routing protocol; we also describe how mistakes and unintended interactions in
routing configuration can induce catastrophic routing failures. After discussing the chal-
lenges in guaranteeing correct and predictable Internet routing (Section 1.3), we explain
how proactive techniques for analyzing routing configuration can guarantee correctness
and improve predictability of Internet routing (Section 1.4), summarize the major contri-
butions of this dissertation (Section 1.5) and offer some take-away lessons (Section 1.6) that

SECTION 1.1. INTERNET ROUTING OVERVIEW 19

offer insights that we hope will prove useful when thinking about further improvements
to Internet routing. Section 1.7 concludes the chapter with a guide for reading the rest of
this dissertation.

� 1.1 Internet Routing Overview

Although it is common to think of “the Internet” as a single, monolithic network, it is
actually composed of tens of thousands of independently operated networks, commonly
called Autonomous Systems (ASes). Figure 1-1 shows an example of how traffic from a
cable modem user may traverse multiple ASes en route to machines at MIT. Internet traffic
is forwarded from source to destination through a sequence of routers in one or more ASes.

Each one of these ASes typically has independent (and often conflicting) economic and
performance goals, yet these ASes must cooperate by exchanging routing information to
achieve global connectivity (e.g., to allow a home user who buys service from his cable
modem provider to communicate with hosts that purchase connectivity from other ASes).
The current routing protocol on the Internet is the Border Gateway Protocol (BGP) [118].
As shown in Figure 1-2, ASes achieve global reachability by establishing BGP sessions be-
tween neighboring “border” routers. Each AS has may have anywhere from a single router
to hundreds of routers. Each of these routers maintains a routing table, which contains one
or more routes for each destination. Each router selects a single best route to each desti-
nation. Routing on the Internet is destination-based; that is, a router selects the next hop
(i.e., router) for which to forward traffic solely based on the destination IP address of each
packet. The destination for a route is represented in terms of an IP prefix, which specifies a
group of IP addresses that share a common number of bits.

Figure 1-3 shows example routing table entries for the set of destinations represented
by the IP prefix 18.0.0.0/8, which represents the 224 IP addresses that share the first
24 bits, 18.*. Although each router may learn multiple candidate routes to a prefix, (i.e.,
the routing table shown in Figure 1-3 has two possible routes for the same destination),
each router ultimately selects a single best route for each prefix (in the routing table, the
route that the router ultimately selects is indicated by the “>”. The next hop attribute is
the IP address that the router must forward traffic towards to send traffic along this route.
The router may learn how to reach this next hop IP address in one of several ways: a
“static” route may be hardcoded, the router might learn a route via a routing protocol that

Figure 1-1: A typical Internet path may traverse multiple “Autonomous Systems”.

20 CHAPTER 1. INTRODUCTION

Figure 1-2: ASes exchange routing information over BGP sessions between routers. A router may learn
multiple routes to the destination but ultimately selects a single best route. Traffic flows in the opposite
direction of route advertisements.

Network Next Hop Path
*> 18.0.0.0/8 144.228.241.81 1239 3
* 18.0.0.0/8 12.0.1.63 7018 3356 3

Figure 1-3: BGP routing table entry for prefix 18.0.0.0/8 as it might appear on a router. Each BGP route has
attributes in addition to the next hop IP address and AS path, which we will discuss later.

is run inside the AS (e.g., OSPF), and so forth. The path attribute refers to the AS path: the
sequence of ASes that the route advertisement traversed en route to this router. A BGP
route has several additional route attributes that are not pictured; we will describe these
additional attributes in more detail in Section 2.2.1.

Internet routing requires neighboring ASes to exchange routing information, but it also
requires each of these ASes to run an internal routing protocol (“Interior Gateway Proto-
col”, or IGP) to establish reachability information about destinations within the same AS.
For example, in the routing table excerpt shown in Figure 1-3, the router knows that to
forward traffic to any destination in 18.*, it must send the traffic towards the next hop
144.228.241.81. For “border” routers, this next hop is typically the address of an in-
terface of the router in a neighboring autonomous system and is an immediate next hop.
Routers within an AS, however, must use the IGP to discover the outgoing interface over
which to send traffic towards this next hop, which may be multiple hops away. This dis-
sertation focuses on BGP but does not address the operation of internal routing protocols.
Other work provides more detailed treatment of IGPs [41, 123, 124].

SECTION 1.2. CONFIGURATION: THE ACHILLES’ HEEL OF INTERNET ROUTING 21

� 1.2 Configuration: The Achilles’ Heel of Internet Routing

Analyzing the behavior of any routing protocol is inherently difficult, but Internet routing
presents a unique set of challenges because it must be highly configurable to support the
complex economic and performance goals that each independently operated network is
attempting to satisfy. The standards document for BGP [118] specifies the message format
but intentionally leaves unspecified many details, including the criteria for selecting the
route to a destination given multiple alternatives. Instead, these details are left to its con-
figuration. In this section, we explain how configuration affects routing protocol behavior;
we then present some examples that demonstrate how configuration mistakes can induce
catastrophic routing failures.

� 1.2.1 How Configuration Affects Routing Protocol Behavior

Internet routing configuration provides a network operator remarkable latitude in con-
trolling how the protocol behaves. In particular, Internet routing configuration allows an
operator to control the routing protocol in the following ways:

• Which ASes to carry traffic for. Depending on the business relationships that an AS
has established with other ASes, it may arrange to carry traffic to a destination for
some of those ASes but not others [47]. Routing configuration controls which routes
an AS advertises to each of its neighbors, implicitly controlling which neighbors can
send traffic over the AS en route to a destination.

• How traffic enters and leaves the AS. An AS typically has multiple links over which
it can send traffic to a destination: some of these links are internal (i.e., they are
between two routers in the same AS) and others are external (i.e., they are between
routers in neighboring ASes). Changes in traffic demands may cause any of these
links to become congested. In response, a network operator may change the routing
configuration to shift portions of the traffic load to a different set of links [36].

• How routers within an AS learn routes to external destinations. Each indepen-
dently operated network comprises tens to hundreds of routers. Ultimately, every
router in the AS must learn the routes to external destinations, but, initially, only the
AS’s “border” routers learn these routes. Routing configuration controls how the
routes propagate from an AS’s border routers to the rest of the routers in the AS.

Changing traffic demands and business relationships, planned maintenance, and
equipment failures may all change traffic patterns through the AS, but routing protocols
do not automatically adapt to these changing conditions. As a result, network operators
must constantly tune the behavior of the routing protocols in their ASes to control how
traffic flows through them.

� 1.2.2 Problem: Configuration Mistakes Cause Routing Failures

The cost of Internet routing’s configurability is a high degree of complexity. The unfor-
tunate consequence of this complexity is that the potential for incorrect behavior is enor-
mous.

22 CHAPTER 1. INTRODUCTION

The consequences of incorrect behavior can be staggering. The past few years alone
have seen several high-profile examples of Internet routing configuration problems:

• In 1997, a small ISP in Florida configured its routing in a way that caused all of the
Internet’s traffic to be routed through it [121].

• In 2001, Microsoft brought down its Web servers with a routing misconfiguration; it
took nearly a day to diagnose the problem [90].

• In 2002, Worldcom took down more than 20% of its nationwide “backbone” in the
United States with a routing configuration problem [143].

• In 2004, Level3 incurred a widespread outage due to a router configuration prob-
lem [81].

• In 2005, an ISP in Bolivia caused a major outage when it announced the IP prefix for
AT&T’s United States backbone network (i.e., 12.0.0.0/8). [82].

Major news outlets report only the most catastrophic routing failures; in fact, mistakes in
routing configuration are continually causing reasonably serious routing failures. In the
introduction to Chapter 4, we present the results of our informal study of the mailing list
archives of the North American Network Operators Group (NANOG) [96]. In this study,
we find that upwards of two-thirds of the routing failures reported on this mailing list can
be attributed to problems with routing configuration. Network operators are continually
misconfiguring routing protocols in ways that cause such problems as loops, “blackholes”
(where a router simply drops traffic en route to some destination because it does not have
a route for it), routing instability, and so forth.

� 1.3 Challenges

While guaranteeing correct and predictable behavior poses challenges for any routing pro-
tocol, Internet routing presents several unique challenges. First, Internet routing has more
configurable facets than traditional routing protocols, many of which can be misconfigured
or otherwise cause the routing protocol to behave unpredictably. In order to analyze the
correctness of the routing protocol, we must first define a specification for correct behav-
ior. Second, the sheer size of the distributed router configuration, as well as the fact that
the configurations have dependencies across routers, can give rise to erroneous or unpre-
dictable behavior. Third, because each network operator configures his AS independently
of others, the policies defined in one AS may conflict with those in neighboring ASes.

� 1.3.1 Defining a Correctness Specification

As described in Section 1.2.1, Internet routing configuration affords a network operator
much flexibility in defining how the protocol operates. The Cisco configuration language
has more than 1,000 different commands, and a network of 500 routers may have upwards
of one million lines of configuration distributed across the AS [19]. Given the many ways

SECTION 1.3. CHALLENGES 23

in which an operator can affect protocol behavior, determining the correctness of the con-
figuration is a daunting task without a high-level specification for “correct” behavior. De-
veloping such a specification involves distilling the high-level properties that the protocol
should satisfy from the protocol’s mechanistic detail.

Defining a correctness specification for Internet routing is complicated by the fact that
the protocol’s correctness is in part based on whether it achieves a network operator’s
economic and performance goals. Unfortunately, these high-level policies are encoded in
terms of mechanistic configuration commands distributed across hundreds of routers—
that is, the specification of the intended behavior doesn’t even exist in the first place, which
makes it difficult to determine whether the routing configuration indeed induces the in-
tended behavior.

One motivation for developing a correctness specification for Internet routing is that
the protocol not only “does the right thing” when it satisfies the specification, but a rout-
ing protocol that satisfies the specification is also more predictable. For example, network
operators often would like to predict the effects of a configuration change on the behavior
of the routing protocol without testing that change on a live network or running a com-
plex simulator. Predicting how the protocol will behave first requires making assumptions
about its behavior to simplify route prediction, but precisely determining the constraints
that are required to simplify route prediction for such a complex protocol is challenging.

� 1.3.2 Analyzing Complex Configuration

In designing tools that can help network operators reason about the correctness of Internet
routing, we must also design ways to manage routing configuration’s staggering complex-
ity. First, we must represent this distributed router configuration in a format that is easy
to analyze. Second, we must tackle the engineering problem of parsing the various rout-
ing configuration languages from different vendors and translating the configurations into
this format.

Determining how a configuration change will affect routing is difficult in practice. Not
only do ASes contain a large number of routers, but the route that each router ultimately
selects for each destination depends on many factors, including the routes that the AS’s
“border” routers learn from neighboring ASes, the routing topology within the AS (i.e.,
both the internal topology, and the internal BGP topology that controls how routes are dis-
seminated within the AS). As we discuss in more detail in Chapter 5, various complicating
protocol artifacts prevent informally reasoning about the route that each router selects.
Thus, network operators need tools and systematic techniques to assist them in predicting
how a particular routing configuration will affect the flow of traffic through the AS.

� 1.3.3 Providing Global Guarantees with Only Local Information

While end-to-end connectivity between Internet hosts fundamentally depends on the
global behavior of the routing system, no single party has a global view of the Internet
routing system. A network operator may configure the protocol in a way that interacts in
unexpected ways with the configurations in other ASes. For example, the interactions of
routing policies in neighboring ASes can cause the routing protocol to oscillate.

One goal of our work is to explore how we can achieve assurances about the global
behavior of the Internet routing system, while still preserving the autonomy of each AS.

24 CHAPTER 1. INTRODUCTION

Configure
Routers Effect?

Desired
Observe

Effects on
Traffic

Wait until
next problem

occurs

Revert
Configuration

Yes

No

Figure 1-4: The state-of-the-art in network configuration management: reactive, “stimulus-response” mode
of operation.

That is, each network operator should retain the ability to independently configure his
own AS, but should also be able to gain some assurances about the global behavior of the
routing system, assuming every AS abides by a similar set of rules.

� 1.4 The Role of Proactive, Static Configuration Analysis

Prior to our work, the state-of-the-art in managing Internet routing protocols was reactive:
the primary way for network operators to determine the effects of a particular routing con-
figuration (i.e., what effects that configuration will have on the flow of traffic, or whether
the configuration is even correct in the first place) was to deploy that configuration on a
live network, observe the resulting behavior, and revert the configuration to a previous
version in the event that the configuration did not produce the desired effects (see Fig-
ure 1-4). This mode of operation has two shortcomings: First, testing configuration on a
live network can cause unnecessary downtime or poor network performance (and, hence,
angry customers!). Second, the undesirable effects that result from a particular configura-
tion may not be immediately apparent when the configuration is deployed; a failure may
only be triggered by the presence or absence of certain routes.

This dissertation posits that proactive techniques for analyzing routing configuration can
both prevent a large class of routing failures and help operators predict and analyze rout-
ing protocol behavior. Changing the workflow from Figure 1-4 to include a step that proac-
tively detects problems with routing configuration is critical for improving the correctness
and predictability of Internet routing. A remarkable result of our work is that proactive
analysis techniques (i.e., those that analyze the static routing configuration offline, before
it is deployed on a live network) are useful in detecting configuration faults and efficiently
and accurately predicting the routing protocol’s behavior. In particular, proactive analysis
techniques provide the following benefits over the status quo:

1. Offline. A reactive mode of configuration is time consuming and can lead to un-
necessary performance degradation. The complexity of Internet routing makes it
essentially impossible to compute back-of-the-envelope estimates of the effects of
configuration changes. Proactive techniques for determining the correctness and the
effects of Internet routing configuration can help network operators evaluate the ef-
fects of a routing configuration before it is deployed on a live network.

2. Accurate. Network simulators (e.g., ns [7], SSFNet [127]) help operators under-
stand dynamic routing protocol behavior, but simulation models network behavior

SECTION 1.5. CONTRIBUTIONS 25

in terms of its protocol dynamics over some certain period of time. The outcome of
the simulator will ultimately be the same as that predicted by static techniques, and
the dynamics (which are nondeterministic) may not necessarily correspond to those
in the actual network anyhow. Existing simulators do not capture all of the relevant
protocol interactions that may affect correctness, nor do they explain why a partic-
ular configuration is incorrect. Because incorrect behavior sometimes depends on a
particular sequence of route advertisements or may be nondeterministic, correct be-
havior in a simulator cannot guarantee correct behavior on a live network. In this
dissertation, we show that techniques based on direct analysis of static configura-
tion files can test for necessary or sufficient correctness conditions and predict the
outcome of the routing protocol without having to simulate the protocol dynamics.

3. Efficient. Because network operators cannot use “back of the envelope” calculations
to determine what a particular routing configuration will do, they must often ex-
periment with many possibilities before arriving at an acceptable solution. As we
will show in Chapters 4 and 5, static analysis techniques can assist network opera-
tors in efficiently determining the correctness and effects of incremental changes to a
routing configuration.

Analyzing the static router configurations of a single AS proves surprisingly effective
at improving the correctness and predictability of Internet routing. An important open
question that is not addressed in this dissertation involves exploring the classes of faults
that cannot be detected with static analysis alone and how analysis of routing dynamics
might complement static configuration analysis for fault detection and diagnosis.

� 1.5 Contributions

We now briefly overview the major contributions of this dissertation before describing
each in more detail. A central contribution of this dissertation is a formal correctness spec-
ification for Internet routing. We use this specification to derive tests for configuration
faults and as the groundwork for efficient offline analysis of Internet routing. Using this
specification as a guide, we present the design and implementation of two systems that use
proactive configuration analysis techniques to improve the correctness and predictability
of Internet routing. The first, rcc (“router configuration checker”), detects faults in rout-
ing configuration. rcc helps network operators eradicate configuration faults before they
cause catastrophic routing failures on a running network. The second, the routing sandbox,
efficiently computes the routes that each router within a single AS ultimately select, using
only a static snapshot of the routing configuration and network state.

Because Internet routing inherently involves interaction between multiple indepen-
dently operated, competing ASes, some aspects of the correctness specification are difficult
to verify by only looking at the configuration of a single AS in isolation. In particular, it
turns out to be difficult to determine whether the routing protocol will converge to a stable
route assignment (a property defined as safety in previous work [135]). Traditional rout-
ing protocols typically satisfy safety, but BGP’s policy-based nature means that the policies
of neighboring ASes can interact to create oscillations. This dissertation provides the first
necessary conditions for guaranteeing the stability of a policy-based routing protocol. The
rest of this section discusses these contributions in more detail.

26 CHAPTER 1. INTRODUCTION

� 1.5.1 A Correctness Specification for Internet Routing

We define three high-level properties that a routing protocol should satisfy. Essentially,
all three aspects of this correctness specification reflect the following underlying princi-
ple: a routing protocol should propagate information that accurately reflects the properties of the
underlying network topology. The three properties are as follows:

• Route validity. If an endpoint learns a route to a destination, then that route should
correspond to some path. An example of a route validity violation would be a persis-
tent forwarding loop: a router learns a route to some destination (i.e., a destination,
and the next-hop IP address to which traffic should be sent for that route), but when
it actually attempts to send traffic along that route, it is caught in a forwarding loop
and never reaches the destination.

• Path visibility. If there exists a sequence of IP-level hops (i.e., a path) from an end-
point to a destination, then that endpoint should learn at least one route to that des-
tination. An example of a path visibility violation would be a case where all routers
inside a fully-connected AS did not learn a route to the destination when at least one
of those routers learned the route.

• Safety. This property requires that the routing protocol ultimately assigns a route
to each node in the Internet graph such that no node has a more preferred available
route to the destination that it would rather use. Safety is important not only because
a routing protocol that persistently oscillates can cause lost and reordered packets,
but also because it is incredibly difficult to diagnose problems when the routing pro-
tocol is changing independently of the underlying topology. A violation of safety
would be an oscillation caused by conflicting policies from different ASes (rather
than due to topological changes), as described in previous work [56, 135].

Chapter 3 formalizes each of these properties, as well as well as other concepts (e.g.,
path, route, etc.). Path visibility and route validity are violated primarily because of con-
figuration complexity, and safety is violated because the configurations of one AS may
interact in unexpected ways with configurations of other ASes.

Although this dissertation applies this correctness specification to Internet routing,
these properties should prove valuable for analyzing any routing protocol. Applying these
properties to routing in other areas (e.g., wireless or sensor networks) is beyond the scope
of our work, but is ripe for exploration.

� 1.5.2 Systems for Proactive Fault Detection and Route Prediction

This dissertation recognizes a critical missing piece in the workflow of configuring today’s
networks: the step at which network operators evaluate the effects of a routing configura-
tion before deploying and running it on a live network.

This dissertation presents two complementary systems that advance the state-of-the art
in fault detection and traffic engineering, respectively. Figure 1-5 shows how these two
systems change the workflow of configuring routers. Both of these new systems analyze
the static router configuration files. We first describe rcc, a fault detection system for router
configurations. We then describe the routing sandbox, a tool that predicts how traffic will

SECTION 1.5. CONTRIBUTIONS 27

Configure
Routers

Deploy
ConfigurationResulting Traffic Flow

Predict Routes andDetect
Faults

(Chapter 4) (Chapter 5)

Network Management Tools

Figure 1-5: This dissertation develops two tools for fault detection and route prediction. These tools should
be used to analyze the behavior of routing configuration before it is deployed on a live network.

Faults
Configuration

Centralized

Traffic Statistics

Traffic Flow
Prediction

Routes from
Neighboring ASes

for
Traffic Engineering

Static
Fault

Detection

Route Prediction

Configuration
Database

rcc

The Routing Sandbox

CiscoSystems Cisco 7500 SERIES

CiscoSystems Cisco 7500 SERIES

CiscoSystems Cisco 7500 SERIES

CiscoSystems Cisco 7500 SERIES

CiscoSystems Cisco 7500 SERIES

CiscoSystems Cisco 7500 SERIES

Figure 1-6: Workflow for fault detection and route prediction tasks described in this dissertation. Both
fault detection and route prediction tasks rely on offline analysis of the distributed router configurations,
which are first collected into a centralized database.

flow through an AS, given only a static snapshot of the router configurations. Together,
these contributions assist a network operator in detecting faulty routing configurations
and determine the effects of a configuration on traffic flow.

Because the techniques we present predict the behavior of the routing protocol before it
even runs, the techniques we present directly analyze of the static configuration files. Fig-
ure 1-6 illustrates this process. The configurations from the routers within an AS are first
collected from the routers and stored in a central database. Fault detection is performed by
executing queries directly against this repository (Chapter 4 provides more details). Route
prediction for traffic engineering (Chapter 5) is performed in a similar fashion, but also
requires additional inputs: computing the routes that each router selects requires knowing
which routes each router learns from neighboring ASes in the first place. Once the route
that each router ultimately selects is computed, an operator could use traffic statistics to
determine the utilization on each link in the network, but this dissertation does not address
this problem.

rcc: Proactive fault detection for Internet routing configuration

Chapter 4 presents the design and implementation of rcc, the “router configuration
checker”, a tool that uses static configuration analysis to detect faults in the routing con-
figurations within a single AS. We designed rcc starting with the correctness specification
as a guide and determining the constraints on the aspects of configuration (described in
more detail in Section 2.3.1) that must hold to guarantee that the higher level correctness

28 CHAPTER 1. INTRODUCTION

properties are satisfied. rcc analyzes the set of router configurations from a single AS and
determines whether they could induce violations of the correctness specification.

rcc has been downloaded by over seventy network operators, and we have personally
used rcc to study faults in the routing configurations of 17 real-world ASes. Chapter 5
presents algorithms and a tool that helps network operators predict how a particular rout-
ing configuration will affect the flow of traffic through the AS. In conjunction with rcc, this
tool allows a network operator to answer critical questions about routing configuration
(i.e., whether the configuration will cause catastrophic problems, and how it will affect
the flow of traffic through the AS) before the configuration is actually deployed on a live
network.

Our work on rcc demonstrates that static configuration analysis can detect a significant
number of configuration faults that could cause the routing protocol to violate correct-
ness. Surprisingly, rcc also discovered many such faults in deployed routing configurations,
even those from large, well-known Internet service providers. rcc even found configura-
tion faults in ASes that use “automated” configuration techniques: of course, automated
configuration systems will have difficulty generating correct configuration if they do not
receive correct input in the first place. Many of the configuration faults that rcc detects in
practice suggest that configuring a network of routers without introducing inconsistencies
across router configurations is surprisingly difficult.

The Routing Sandbox: Proactive route prediction for network engineering

Chapter 5 describes algorithms that compute the effects of a configuration change offline,
given only a static snapshot of the routing configurations and the available routes. These
algorithms can then be combined with information about traffic demands to help network
operators determine how a particular routing configuration will affect the flow of traffic
through the AS. Rather than simulating complex protocol dynamics to determine the ef-
fects of configuration on route selection, we model the outcome of BGP’s route selection
process. We exploit the properties of the correctness specification to simplify this process: assum-
ing that rcc has already verified that the configuration satisfies route validity, path visibil-
ity, and safety makes it possible to model AS-wide route selection without simulating the
dynamics of the routing protocols.

Route prediction becomes increasingly difficult in ASes that enable two protocol “fea-
tures”: the Multiple Exit Discriminator (MED) attribute and route reflection, which are
described in Sections 2.2.1 and 2.3.1, respectively. We design algorithms for predicting
BGP route selection for ASes that have any combination of these two features enabled. We
also perform a running-time analysis of each of these algorithms, which provides insight
into how each of these features adds complexity to Internet routing.

We have implemented these algorithms in a tool called the routing sandbox that allows a
network operator to quickly evaluate the effects of incremental configuration changes. This
tool exploits several unique aspects of the system inputs to optimize the computation of
routes for all destinations for every router in the AS. We envision that the routing sandbox
could be used as an “inner loop” to other tools that iteratively search through a large
parameter space to find optimal settings [146].

SECTION 1.6. LESSONS LEARNED 29

� 1.5.3 Conditions for Safety of the Global Routing System

Configuration allows an operator to control both the route that each router selects to a
destination (i.e., ranking) and which routes each router readvertises to neighboring routers
(i.e., filtering). One way to guarantee safety is to restrict some aspects of the configuration’s
flexibility. In Chapter 6, we derive necessary and sufficient conditions on the policies of
each AS that guarantee safety if each AS independently follows these constraints. Specifi-
cally, we explore how each AS must restrict rankings to guarantee that the global routing
system satisfies safety, assuming that no AS wants to share its rankings with any other AS,
and no AS’s rankings should be constrained by the rankings of another AS (that is, each
AS should retain autonomy).

We show that any protocol that does not restrict the business arrangements of how ASes
exchange routes with one another must impose strong restrictions on how ASes are al-
lowed to express preferences over candidate routes for a destination. Initially, this finding
may sound rather grim, because shortest paths routing may not provide network opera-
tors sufficient flexibility to achieve their economic and performance goals. On the contrary,
the results we present in this dissertation should be viewed as a first cut towards designing
routing protocols that are guaranteed to satisfy safety, regardless of how they are config-
ured. Today, network operators have no way to reason about the stability of the routing
protocol, so they are left to ad hoc methods for determining whether routing updates corre-
spond to unintended interactions. A routing protocol that conforms to the guidelines we
outline in Chapter 6 guarantees that changes in the routing protocol always reflect changes
in the underlying topology, thereby facilitating troubleshooting. Furthermore, designing a
protocol that is guaranteed to satisfy safety on a fast timescale allows conflicts of business
policy to be resolved outside the protocol, rather than being reflected as oscillations within
the protocol itself.

� 1.6 Lessons Learned

This dissertation provides the following important lessons that can aid the networking
community as it considers proposals for evolving the Internet routing infrastructure.

� 1.6.1 Static configuration analysis detects many faults

rcc detected configuration faults in the routing configurations of all 17 ASes we analyzed
and more than a thousand faults overall. It may seem surprising that rcc was able to detect
configuration faults in deployed routing configurations. In fact, this finding demonstrates
that there are many potentially catastrophic configuration faults that do not immediately
cause routing failures when they are deployed.

The fact that static analysis can find important configuration faults without overwhelm-
ing network operators with a vast quantity of false positives is also somewhat remark-
able. rcc does not operate with a specification of the routing protocol’s intended behavior.
Rather, it operates solely on the routing configurations that implement an operator’s intent
with low-level mechanisms. Ideally, rcc would check the router configurations against a
high-level specification of intended behavior. It is noteworthy that rcc can provide a useful
tool to network operators in the absence of such a specification.

30 CHAPTER 1. INTRODUCTION

Configuration languages may ultimately evolve to make certain types of configuration
faults less likely, but static configuration analysis will remain a crucial step in the workflow
of network operations. We believe that the more mechanistic aspects of routing configu-
ration will ultimately be supplanted with high-level policy specification. For example,
preventing routes that were learned from one neighboring AS from being advertised to
another today requires configuring low-level, mechanistic operations on every router that
exchanges routes with either of those ASes. Such a simple policy would better be expressed
in a specification language and “compiled” to the statements that implement the mecha-
nisms on the routers themselves. However, because Internet routing must always afford a
network operator flexibility in controlling the behavior of the protocol, static configuration
analysis will be invaluable for detecting faults and evaluating routing protocol behavior,
regardless of the configuration language.

� 1.6.2 Distributed routing configuration leads to errors

Our study of configuration faults in Chapter 4 (Section 4.5) demonstrates that most config-
uration faults result from the fact that routing protocol configuration is distributed across
the routers in the AS. This approach naturally causes operators to make mistakes because
it is more natural to think of the AS as a whole as implementing some certain task (e.g., con-
trolling traffic flow, implementing contractual arrangements, etc.) rather than reasoning
about what each router must do to implement such a task. A better approach may be to
allow operators to configure the AS as a monolithic entity from a single location.

Of course, a crucial open research challenge upon which this goal depends is what that
centralized language should look like, and how the routers themselves should implement
the directives in that language. Recent work in constraint satisfaction for network con-
figuration presents a possible starting point for a centralized configuration language that
satisfies high-level specification [97].

A logically centralized routing infrastructure could act as a catalyst for such a central-
ized configuration language. For example, a network operator could configure the AS
from the RCP, which could either (1) compile this high-level specification into low-level
router configurations, and push the configuration to the individual routers or (2) select the
routes on behalf of each router and push the routes themselves to the routers.

� 1.6.3 Safety + Autonomy ⇒ Tight restrictions on expressiveness

The (strict) conditions we derive in Chapter 6 for guaranteeing safety suggest several pos-
sible ways for evolving the Internet routing infrastructure. One possibility is to relax the
autonomy requirement, by allowing groups of ASes to share certain properties about their
rankings with one another (although likely not the rankings themselves). Recent work has
begun exploring this possibility by recognizing that some ASes may have rankings that are
more expressive as long as others are not and designing ways to guarantee these global
properties without requiring ASes to divulge sensitive information about rankings [83].
One area for future work to determine the information that must be shared (and with
what other ASes it must be shared) to detect and resolve safety violations, and, in general,
to study the tradeoffs between safety and the autonomy and privacy of an ASes rankings.

Another possibility for evolving the Internet routing system is to restrict expressive-
ness so that rankings must be consistent with shortest paths routing, but allow each AS

SECTION 1.7. HOW TO READ THIS DISSERTATION 31

to control the weights on edges incident to itself. Such a routing protocol would always
satisfy safety (even assuming ASes are allowed to filter routes arbitrarily), and any policy
disputes could then be resolved with a negotiation protocol that operates independently of
the routing protocol, where routing updates would only reflect actual changes in the net-
work topology. We explore this possibility and others in detail in Chapter 6 (Section 6.6).

� 1.6.4 Protocol design should consider correctness and predictability

This dissertation focuses on improving the correctness and predictability of the current
Internet routing system, but a major lesson from our work is that many of the tools and
techniques that we develop in the coming chapters could have been much simpler had the
protocol been designed with correctness and predictability in mind in the first place.

To this end, this dissertation proposes several minor modifications to the Internet rout-
ing protocol that would have simplified the task of achieving correct and predictable be-
havior. These modifications are minor in the sense that they can be implemented with
no modifications to routers or routing protocol specifications; on the other hand, they are
significant because they eliminate the artifacts that result from the two most troublesome
aspects of BGP: route reflection and the “multiple exit discriminator” (MED) attribute. In
summary, we will see that these two artifacts are responsible for much of the undesirable
behavior in Internet routing, ranging from persistent oscillation to network partitions.

One logical conclusion that can be drawn from the work in this dissertation is that,
rather than trying to infer the protocol’s behavior, the Internet routing system should pro-
vide more direct control over route selection. This insight is central to the Routing Control
Platform (RCP) proposal, which we describe briefly in Section 7.3.4. RCP takes as input
the routes that an AS learns from neighboring ASes and the network configuration, and
computes routes on behalf of each router in the AS. In some sense, RCP can be viewed as
the logical extension to the routing sandbox: RCP takes roughly the same inputs as the
sandbox, but rather than simply computing the routes that each router would select, RCP
actually controls route selection.

� 1.7 How to Read This Dissertation

The problems with today’s Internet routing infrastructure suggest one of two attitudes:

1. Accept the Internet routing architecture “as is” and retrofit correctness and pre-
dictability by providing tools and techniques that make network operations less
prone to faults and more predictable.

2. Adapt the routing architecture to make incorrect behavior less likely in the first place.

Various parts of this dissertation cater to each of these philosophies. The former philos-
ophy can have more immediate impact and in fact can provide “bottom up” insight regard-
ing what aspects of the routing architecture are most problematic. Chapters 4 and 5 adopt
this philosophy by providing tools and algorithms that have helped network operators
today. rcc has been downloaded by over seventy network operators and has successfully
detected faults in the configurations of many large backbone Internet Service Providers.
Additionally, the faults that rcc uncovered in our analysis of 17 real-world ASes, as well as

32 CHAPTER 1. INTRODUCTION

the various aspects of BGP that contribute complexity to the algorithms in Chapter 5, have
helped us identify the aspects of the routing architecture that beg for improvement.

Chapter 6 explores possibilities for improving routing stability that will most likely
require fundamental changes to the Internet routing architecture because the conditions for
stability would require changing the configuration “knobs” that are exposed to network
operators. The problems examined in this chapter use restrictions on static configuration
of the routing protocol to guarantee stable dynamics.

This dissertation caters both to the theoretician and the practitioner. Chapter 3 presents
a correctness specification for Internet routing that could appeal to both parties. Those
most interested in practical applications should focus primarily on Chapters 4 and 5; Chap-
ter 6 has fewer immediate practical applications, but will be of interest to those interested
in fundamental results on routing stability and safety. At the end of Chapters 4, 5, and 6,
we explore possibilities for evolving the Internet infrastructure to make the problems we
solve easier in the future; these sections should also have broad appeal.

Don’t look back. Something might be gaining on you.
- Leroy “Satchel” Paige

CHAPTER 2
Background and Related Work

I
n this chapter, we provide an overview of how routing on the Internet works today, as
well as prior work on improving the correctness and predictability of Internet routing.

We begin in Section 2.1 with an overview of today’s Internet routing infrastructure: we
describe the high-level organization of the Internet (i.e., as a federation of thousands of
independently operated networks that exchange reachability information) and proceed to
describe in detail the routing protocols that these networks use to achieve global reacha-
bility. Section 2.2 describes how these independently operated networks exchange rout-
ing information with one another using the Border Gateway Protocol (BGP) [118, 119],
and Section 2.3 both explains at a high-level how configuration controls BGP’s operation
and presents a brief example that describes Cisco’s router configuration language syn-
tax [19, 76]. Section 2.4 presents an overview of previous studies related to the correctness
and predictability of Internet routing. Readers who are already familiar with today’s In-
ternet routing protocols and infrastructure (in particular, BGP) may wish to skip directly
to Section 2.4.

� 2.1 Internet Structure and Operation

Tens of thousands of independently operated networks connect to each other to form the
larger network that we know as “the Internet”. These networks are called Autonomous
Systems (ASes), and they cooperate with one another to provide global connectivity. Nev-
ertheless, these networks are also in competition with one another. Each one of these ASes
contains many routers. The routers inside of one of these networks run an internal rout-
ing protocol called an interior gateway protocol (IGP) that allows them to discover routes to
other destinations within the same AS, including the AS’s border routers—those routers that
connect to neighboring ASes. Examples of IGPs are Open Shortest Paths First (OSPF) [91],
Intermediate System-Intermediate System (IS-IS) [104], and Routing Information Protocol
(RIP) [67].

The Internet is composed of many different types of ASes, from universities to corpo-
rations to regional Internet Service Providers (ISPs) to nationwide ISPs. Smaller ASes (e.g.,
universities, corporations, etc.) typically purchase Internet connectivity from ISPs. Smaller

33

34 CHAPTER 2. BACKGROUND AND RELATED WORK

regional ISPs, in turn, purchase connectivity from larger ISPs with “backbone” networks.
The different types of ASes lead to different types of business relationships, and, hence,

different policies for exchanging and selecting routes. Although we will expound on these
business relationships later in this chapter, it is reasonable to think of these business re-
lationships in terms of two types: customer-provider and peering. Customer-provider rela-
tionships involve one AS (the “customer”) paying another (the “provider”) in exchange
for carrying its traffic to some portion of the Internet’s destinations (often, every destina-
tion outside of its own network) [45]. In today’s Internet routing, a route advertisement is an
implicit agreement for carrying traffic. The process of carrying traffic between two different
ASes is called “providing transit”. In these relationships, the customer pays the provider
for transit, regardless of the direction in which the traffic is flowing.

In peering relationships, two ASes agree to trade traffic to various destinations at no
cost. Typically, a pair of ASes will recognize that it is more cost-effective to directly ex-
change traffic to (some or all of) one another’s customers, rather paying to send the traffic
through one or more provider ASes. For those interested in a more detailed treatment of
the business aspects of peering, Norton provides an excellent overview of peering and the
decision parameters that ASes must consider for deciding whether to peer [99].

� 2.2 Internet Routing: The Border Gateway Protocol

In this section, we describe the operation of the Border Gateway Protocol, version 4
(BGP) [118, 119]. The first two sections describe the basic operation of the protocol—the
protocol state machine, the format of routing messages, and the propagation of routing
updates—all of which is defined in the protocol standard [118]. A noteworthy aspect of
BGP is that many of the features that determine the behavior of the global routing system
are not standardized. Later in this section, we discuss two important non-standard aspects
of Internet routing: the route selection process and configuration languages.

To ensure reliable delivery of routing messages, all BGP sessions exchange information
using the Transmission Control Protocol (TCP) [109] (the same transport protocol used by
common Internet applications that require reliable message delivery, such as email and
the Web). Like TCP, BGP also has a protocol state machine. Because BGP’s state machine
is primarily concerned with enabling two routers to establish a communication channel
with one another and is unconcerned with the routing messages themselves (all routing
messages are exchanged in the “ESTABLISHED” state), we forgo further description of
BGP’s state machine. For a detailed description of BGP’s finite state machine (including
how timers can affect the transition between protocol states, and when these timers are
reset), see the protocol standard and related documents [6, 118, 128].

� 2.2.1 Route Propagation: Announcements and Withdrawals

To understand how routers exchange routes using BGP, it is important to keep in mind
several defining features. First, BGP is a path vector protocol. In a path vector protocol,
routing updates contain the sequence of ASes that the routing advertisement traversed
(i.e., the AS path). BGP includes AS path information to avoid the “counting to infinity”
problem that exists in traditional distance vector protocols [64]. The AS path allows an AS
that learns a route to determine whether or not it has already heard the route by checking

SECTION 2.2. INTERNET ROUTING: THE BORDER GATEWAY PROTOCOL 35

Route Attribute Description

Next Hop

IP Address of the next-hop router along the path to
the destination.
On eBGP sessions, the next hop is set to the IP ad-
dress of the border router. On iBGP sessions, the
next hop is not modified.

Multiple-Exit Discriminator (MED)

Used for comparing two or more routes from the
same neighboring AS. That neighboring AS can set
the MED values to indicate which router it prefers
to receive traffic for that destination.
By default, not comparable among routes from different
ASes.

Local Preference

This attribute is the first criteria used to select
routes. It is not attached on routes learned via eBGP
sessions, but typically assigned by the import policy
of these sessions; preserved on iBGP sessions.

Table 2-1: Commonly used BGP route attributes.

to see whether its own AS is contained in the path.1 Destinations are represented as IP
prefixes, as described in Section 1.1. A BGP route announcement has several associated
route attributes in addition to the AS path, many of which are obsolete. The most relevant
BGP route attributes are summarized in Table 2-1.

Second, BGP maintains state about the routing topology: routers do not periodically
“refresh” routing reachability information; rather, routing messages reflect only changes
in this information. These changes in information are reported with two types of routing
updates: announcements and withdrawals. To announce that it can reach a destination (or to
change the existing route to a destination), a BGP-speaking router sends an announcement
for that destination to a neighboring router. If a destination is no longer reachable, a router
sends a withdrawal message to the neighboring router. That neighboring router may be
located either in a neighboring AS or in the same AS. BGP sessions between routers in
the same AS are called internal BGP (iBGP) sessions, and those between routers in different
ASes are called external BGP (eBGP) sessions. The goal of eBGP is to allow ASes to exchange
reachability to destinations in each other’s networks; the goal of iBGP is to ensure that every
router within an AS learns at least one route to every destination.

� 2.2.2 Route Selection (And How Operators Can Control It)

Any given router may learn multiple routes to a destination (i.e., IP prefix), but must ul-
timately select a single best route along which to forward traffic to that destination. The
route selection process determines which route each router selects. The original standards
document does not specify the route selection process [118], but the route selection process
has since become a de facto standard [17, 119].

1Contrary to what many believe, the AS path is not intended to indicate the sequence of ASes that traffic
will traverse en route to the destination, although the AS path and this sequence of ASes often match [88].

36 CHAPTER 2. BACKGROUND AND RELATED WORK

Step Criterion How Configuration Can Manipulate This Step
1 Highest local preference AS’s import policy
2 Lowest AS path length Neighboring AS can “prepend” additional hops
3 Lowest origin type Obsolete
4 Lowest MED (with same next-hop AS) Neighboring AS’s export policy
5 eBGP-learned over iBGP-learned —
6 Lowest IGP path cost to egress router AS’s IGP topology
7 Lowest router ID of BGP speaker —

Table 2-2: Steps in the BGP route selection process.

Figure 2-1: Operators sometimes use AS path prepending to try to control inbound traffic.

Table 2-2 summarizes the route selection process, as well as how network operators can
use routing configuration to try to influence which route each router selects at each step
of the process. First, given multiple routes to the same destination (i.e., IP prefix), a router
will select the route with the highest “local preference” value. As this attribute is not set by
the receiving AS’s import policy and is the first step in the decision process, it provides the
operator direct influence over which route the router ultimately selects to this destination.
Operators typically use the local preference attribute to implement the types of policies
described in Table 2-3.

Among multiple routes to a destination with equal local preference values, a router will
select the route with the shortest AS path length, which is simply the number of AS-level
hops in the AS path. This criterion is a crude approximation for selecting a shortest path
to the destination. In practice, a path with the fewest number of ASes does not correspond
to the path with the lowest latency, or to the path with the fewest number of IP-level
hops. However, network operators do use routing configuration to try to influence route
selection using a technique called AS path prepending, which artificially increases the length
of a route’s AS path by adding the same AS number to the path multiple times. Figure 2-1

SECTION 2.2. INTERNET ROUTING: THE BORDER GATEWAY PROTOCOL 37

Figure 2-2: A neighboring AS can advertise routes
to a destination with different MED values at dif-
ferent locations to control the exit point that routers
in a neighboring AS uses to send traffic for that des-
tination. When I learns both routes, it will select
the route learned via the router in New York (and,
thus, it will send traffic that way).

Figure 2-3: If router I learns two or more routes that
are equally good up through Step 5 in Table 2-2, it
will select the route whose next hop has a shortest
IGP path cost. IGP path costs are shown as num-
bered edges; these path costs often correspond to
geographic distance.

illustrates this practice: AS 1 wants inbound traffic for D to arrive via AS 2, rather than via
AS 3. To express this preference, it prepends an additional “1” to the AS path for its route
to D when it advertises the route to AS 3. If an upstream AS, say AS 4, learns two routes
to D—i.e., one via AS 2 and the other via AS 3—it will prefer the route with the route
via AS 2 because it has a shorter AS path length (assuming it does not assign a higher
local preference to routes learned from AS 3). Of course, this technique for controlling
inbound traffic has limited utility in practice, because AS 1 does not control the policies
(i.e., local preference values) of other ASes, and it also cannot easily determine the AS
path lengths that an upstream might see for its route advertisements [48]. Despite the
fact that prepending is widely used, the technique is largely ad hoc and of only limited
utility [32, 112].

If a router has two routes to the same destination with equal local preference and AS
path length, the router will then select the route with the lowest “origin type”. Because this
route attribute is deprecated, in practice, route selection then typically falls to selecting
the route with the lowest multiple exit discriminator (MED) value. If a neighboring AS
advertises a route to an AS at multiple locations, it may attach different MED values to
these routes to indicate that it prefers a neighboring AS to use one exit point over another.
For example, in Figure 2-2, AS 1 is indicating to AS 2 that it wishes to have traffic sent to
destination d via the exit point in New York over the one in San Francisco by advertising
the route to d with a larger MED value over the BGP session in San Francisco. By default,
the MED value is only comparable among routes learned from the same neighboring AS,
since different ASes may use different ranges of MED values to specify preferences over
routes. As we will see later in this dissertation, the fact that the MED attribute is not
comparable across all routes creates many problems for correctness and predictability.

If multiple routes remain after Step 4, a router will prefer a route that it learned via
eBGP over one that it learned via iBGP. If multiple routes still remain, the router will pre-

38 CHAPTER 2. BACKGROUND AND RELATED WORK

fer the route whose next-hop IP address is “closest” in the internal routing topology (i.e.,
the shortest IGP path). This step allows a network to achieve what is commonly referred
to today as “hot potato routing”: the process by which an AS tries to offload traffic to
neighboring ASes as quickly as possible.2 Figure 2-3 illustrates this mechanism. A net-
work operator could conceivably control interdomain traffic by adjusting edge weights in
the IGP. Unfortunately, updates in the IGP topology can cause unexpected and unwanted
shifts in BGP routes, potentially affecting large volumes of traffic [130].

If multiple routes remain after the IGP tiebreak, the routers may break ties in a number
of ways. This final tiebreak is usually based on the “router ID” of the router that advertised
the route, although other tiebreaking mechanisms are sometimes used, such as selecting
the “most stable” route (i.e., the one that has been advertised for the longest period of
time).

A key problem operators face is determining which route each router in the AS will
select. It might seem that this process might be as simple as taking the set of eBGP-learned
routes for a destination and applying the process in Table 2-2 at each router. In fact, pre-
dicting the outcome of this process is not so simple: Chapter 5 is dedicated to solving this
problem.

� 2.2.3 Putting It Together: How Traffic Gets from Here to There

We now describe how IGP, iBGP, and eBGP act in concert to establish routes between var-
ious endpoints. One can think of a route in terms of two distinct phases: (1) the route to
some exit (or “egress”) router in that AS (or to the ultimate destination, if the destination is
located in the same AS) and (2) the route from the egress point to the appropriate next-hop
AS.

An example of the route to a destination in a router’s routing table is shown in Fig-
ure 1-3: each destination prefix has a next-hop IP address to which to send traffic. If the
destination is in a different AS and the router is not an egress router, then that next hop is
typically the IP address of an egress router. The BGP route selection process determines
which egress router each router sends traffic to: each router in the AS may learn a route for
some destination from one or more egress routers, but ultimately selects only one of those
routes. The AS’s IGP is then responsible for determining the route from that router to the
egress router named by that next-hop IP address.

If, on the other hand, the destination is in a remote AS and the router is an egress router,
the router will either select a route with a next hop that is in a neighboring AS, or it will
select a route learned from a different egress router and rely on the AS’s IGP to forward
traffic to the egress router with that next-hop IP address.

2“Hot potato routing” was initially coined by Paul Baran for all routing techniques where nodes would for-
ward messages as quickly as possible [62]. This notion stood in contrast to quintessential “store and forward”
networks like the telegraph. In these systems, the electrical signal would dissipate after some distance. As
such, relay nodes would transcribe the message in Morse code, and an operator would then re-feed the ticker
to the relay node, which would regenerate the electrical signal.

SECTION 2.3. INTERNET ROUTING CONFIGURATION 39

Figure 2-4: BGP configuration semantics.

� 2.3 Internet Routing Configuration

Internet routing’s true complexity lies in the fact that so many aspects of the routing pro-
tocol’s operation are manipulable with configuration. As discussed in Chapter 1 (Sec-
tion 1.2), and as we will see throughout this dissertation, many of the problems faced by
the Internet routing system result from the protocol’s configurability.

This section provides background on Internet routing configuration. Internet routing
configuration languages typically have thousands of distinct commands [19]; the reader
will be pleased to learn that we will not survey all of them here. Rather, we first classify
the semantics of routing configuration into three main operations: ranking, filtering, and
dissemination. We then provide a brief example of Cisco router configuration syntax to
demonstrate how a network operator can implement these operations in practice.

� 2.3.1 Semantics: Ranking, Filtering, Dissemination

Internet routing configuration allows the routing protocol to achieve two important goals:

1. Policy. Internet routing must be flexible enough to implement complex business re-
lationships. Internet routing configuration provides network operators the ability to
encode these policies in router configurations.

2. Scalability. The Internet must scale to a large number of hosts, routers, and ASes. To
achieve this scalability, Internet routing configuration allows an operator to specify
various ways for the routing protocol to aggressively aggregate routing information
(e.g., using route reflection).

The rest of this section describes how routing configuration’s three main operations—
ranking, filtering, and dissemination—facilitate the expression of complex business poli-

40 CHAPTER 2. BACKGROUND AND RELATED WORK

Type of
neighboring AS Ranking Filtering

Customer Most preferred Advertise to all other ASes
Peer Less preferred than routes through

customer, more preferred than
routes through provider

Advertise to customer ASes

Provider Least preferred Advertise to customer ASes

Table 2-3: Common business relationships and practices between ASes on the Internet today. Although
this table summarizes the conventional wisdom of how ASes commonly interact today, Section 6.1 de-
scribes several violations of these practices.

cies and provide options for achieving scalability. We also briefly explain how each of
these operations can affect the correctness and predictability of Internet routing.

Policy: Ranking and Filtering

The bilateral business relationships established between ASes (as described in Section 2.1)
imply that the policy afforded by Internet routing configuration should provide a network
operator two degrees of control: (1) which route each router in the AS should prefer, given
multiple routes to a destination (ranking); (2) which routes should be advertised to which
neighboring ASes (filtering). Table 2-3 summarizes these common practices for both rank-
ing and filtering. Although these practices constitute the conventional wisdom for how
ASes operate, Section 6.1 presents examples of some common deviations from these prac-
tices. We now explain these practices in more detail in this section.

Because a customer pays a provider per unit traffic regardless of the direction the traffic
is flowing, it is to an AS’s advantage to select routes to destinations via its customer ASes,
given the option. Similarly, an AS would typically prefer to send traffic through one of its
peers (which it can do at no additional cost) versus sending traffic via one of its providers
(which will charge it for the service of carrying that traffic).

A router’s configuration can prevent a certain route from being accepted on inbound or
readvertised on outbound. Configuring filtering is complicated because global behavior
depends on the configuration of individual routers. An AS will typically advertise its
entire set of routes to its customers (who it will gladly charge to carry traffic to any of
those destinations) but will only advertise to one of its peers the routes that it learned from
one of its customers. On the other hand, an AS will not advertise routes that it learns
from one if its providers to another one of its providers: doing so would cause that AS to
provide transit between two of its providers and pay both of its providers to boot!

Scalability: Dissemination

A router’s configuration controls the dissemination of routes within the AS and between
neighboring ASes by allowing each router to establish BGP sessions with neighboring
routers. Router configuration allows an the router to establish two types of BGP sessions:
those to routers in its own AS (iBGP) and those to routers in other ASes (eBGP). A small
AS with only two or three routers may have only 10 or 20 BGP sessions, but large back-
bone networks may have more than 10,000 BGP sessions, more than half of which are iBGP

SECTION 2.3. INTERNET ROUTING CONFIGURATION 41

Figure 2-5: Small ASes establish a clique (or “full mesh”) of iBGP sessions. Each circle represents a router
within an AS. Only eBGP-learned routes are readvertised over iBGP sessions.

(a) Routes learned from clients are readver-
tised over all iBGP sessions.

(b) Routes learned from non-clients are read-
vertised to clients only.

Figure 2-6: Larger ASes commonly use route reflectors, which advertise some iBGP-learned routes as de-
scribed above. Directed edges between routers represent iBGP sessions from route reflectors to clients (e.g.,
router R2 is a route reflector with two clients). As in Figure 2-5, all routers readvertise eBGP-learned routes
over all iBGP sessions.

sessions.
BGP messages propagate differently depending on whether the update is propagating

over an eBGP session or an iBGP session. An eBGP session is typically a point-to-point
session: that is, the IP addresses of the routers on either end of the session are directly
connected with one another and are typically on the same local area network. There are,
of course, exceptions to this practice (i.e., “multi-hop eBGP” [24]), but directly connected
eBGP sessions is normal operating procedure. In the case where an eBGP session is point-
to-point, the next-hop attribute for the BGP route is guaranteed to be reachable, as is the
other end of the point-to-point connection. A router will advertise a route over an eBGP
session regardless of whether that route was originally learned via eBGP or iBGP.

On the other hand, an iBGP session may exist between two routers that are not directly
connected, and it may be the case that the next-hop IP address for a route learned via
iBGP is more than one IP-level hop away. In fact, as the next-hop IP address of the route
is typically one of the border routers for the AS, this next hop may not even correspond
to the router on the other end of the iBGP session, but may be several iBGP hops away.

42 CHAPTER 2. BACKGROUND AND RELATED WORK

In iBGP, the routers thus rely on the AS’s internal routing protocol (i.e., its IGP) to both
(1) establish connectivity between the two endpoints of the BGP session and (2) establish
the route to the next-hop IP address named in the route attribute.

The session-level iBGP topology determines how BGP routes propagate through the
network. By default, a router will only readvertise a route on an iBGP session if it learned
that route via an eBGP session. This constraint requires that every router in an AS have an
iBGP session with every router that learns routes via eBGP (typically every other router),
as shown in Figure 2-5; i.e., those routers must form a clique (the networking community
commonly refers to this configuration as a “full mesh” iBGP topology).

ASes with a small number of routers are often configured in a full mesh iBGP topology,
but a fully meshed iBGP topology requires O(n2) sessions for an AS with n eBGP-speaking
routers, which does not scale well. Two alternatives have been proposed to solve these
problems: route reflection [5] and confederations [131]. To improve scalability, larger net-
works typically use route reflectors. A route reflector selects a single best route and an-
nounces that route to all of its “clients”. A route reflector is defined by the fact that it has
client routers, and it readvertises its iBGP-learned routes to some other routers in the same
AS according to the following rules: (1) if a route reflector learns a route via eBGP or via
iBGP from one of its clients, it readvertises that route over all of its sessions to its clients;
(2) if it learns the route via iBGP from a router that is not one of its clients, it readver-
tises the route to its client routers but not over any other iBGP sessions. Figure 2-6 shows an
example route reflector hierarchy and how routes propagate from various iBGP sessions.

Configuring an iBGP topology correctly is relatively difficult; we discuss iBGP mis-
configuration in more detail in Section 4.2. Incorrect iBGP topology configuration can
create many types of incorrect behavior, including persistent forwarding loops and os-
cillations [61]. Route reflection causes problems with correctness because not all route
reflector topologies are guaranteed to propagate a route learned via an eBGP session (i.e.,
not all iBGP topologies satisfy path visibility). We describe this problem in more detail in
Chapter 4.

Route reflectors also complicate predictability because they prevent each router from
learning every BGP route. Thus, the BGP route that each router ultimately selects may not
be the same route that it would have selected had it learned every BGP route for that des-
tination (as it would have in a full mesh iBGP topology). This property makes route pre-
diction more difficult because the routes that some routers ultimately select depend on the
routes that other routers in the AS select. Efficiently computing the route that each router
selects thus requires determining these dependencies and “visiting” the routers within the
AS in the correct order. Chapter 5 describes in more detail how route reflection complicates
predicting route selection within an AS.

Dissemination primarily concerns flexibility in iBGP configuration, but the configura-
tion may also manipulate route attributes when disseminating routes for one of the follow-
ing reasons: (1) controlling how a router ranks candidate routes, (2) controlling the “next
hop” IP address for the advertised route, and (3) “tagging” a route to control how the
ranking and filtering functions on other routers treat it.

SECTION 2.3. INTERNET ROUTING CONFIGURATION 43

router bgp 7018
neighbor 192.0.2.10 remote-as 65000
neighbor 192.0.2.10 route-map IMPORT in

neighbor 192.0.2.20 remote-as 7018
neighbor 192.0.2.20 route-reflector-client

!
route-map IMPORT permit 1

match ip address 199
set local-preference 80

!
route-map IMPORT permit 2

match as-path 99
set local-preference 110

!
route-map IMPORT permit 3

set community 7018:1000
!
ip as-path access-list 99 permit ˆ65000$
access-list 199 permit ip host 192.0.2.0 host 255.255.255.0
access-list 199 permit ip host 10.0.0.0 host 255.0.0.0

Figure 2-7: Example of a Cisco router configuration.

� 2.3.2 Syntax: Routing Configuration Languages

Figure 2-7 shows an example of how ranking, filtering, and dissemination are encoded
into a router configuration for a single router. The example shows an excerpt from a Cisco
router configuration; each router vendor has a different configuration language, although
many are similar to Cisco’s. The first clause indicates that this router is located in AS 7018.
BGP sessions to neighboring routers are indicated with the neighbor statements. The
router has a BGP session with IP address 192.0.2.10 in AS 65000.

The second neighbor statement specifies that the “inbound route map” (i.e., import
policy) called IMPORT should be applied to the route advertisements learned on this
BGP session. This policy has two clauses that implement the import policy. The first
clause assigns a local preference value of 80 for advertised routes to 192.0.2.0/24 and
10.0.0.0/8, as defined in access-list 199. The second clause assigns a local preference of
110 to routes with an AS path of 65000 (i.e., a one-hop path to AS 65000). All remaining
routes are assigned the default local preference value, 100, and tagged with a “commu-
nity” value of 7018:1000. By itself, the community value has no meaning; it is nothing
more than a label. Some other router’s configuration, however, may have an import or
export policy that takes some action (e.g., filtering the route, changing its local preference
value, etc.) based on this value. Setting the community attribute on one route and acting
on that community on another introduces dependencies across routers that can be difficult
to debug.

This router also has a BGP session to a router with the IP address 192.168.2.20.
The remote-as command indicates that this router is in AS 7018—the same as the

44 CHAPTER 2. BACKGROUND AND RELATED WORK

router of this AS, as specified with the router bgp statement—which implicitly con-
figures this session as an iBGP session. The next line of the configuration indicates that
192.168.2.20 is a route reflector client. No additional configuration (beyond simply
setting up a regular iBGP session) is required on the client router to establish that it is a
client.

Figure 2-7 shows an excerpt of a Cisco configuration, but a noteworthy aspect of BGP
configuration is that the configuration language is not standardized. As a result, an AS may
contain routers from many different vendors (e.g., Cisco, Juniper, Avici, etc.). Although all
routers can exchange routes using the standard BGP message format, their configuration
languages are often different. This heterogeneity makes the static configuration analysis
problems described in Chapters 4 and 5 even more challenging.

� 2.4 Related Work

While Internet routing achieves its policy and scalability goals fairly well, the high degree
of configurability that allows these goals to be met also presents challenges both for cor-
rectness (i.e., preventing mistakes and unintended interactions) and for predictability (i.e.,
determining offline how the protocol will behave in practice). This section surveys previ-
ous approaches to addressing these two challenges and how they relate to the work in this
dissertation.

� 2.4.1 Correctness

Operator-induced configuration faults are perhaps the single biggest threat to the correct
operation of Internet routing today. After surveying previous studies on the effects of con-
figuration faults (and resulting routing instability) on end-to-end performance, we survey
previous work on configuration management tools, which help operators audit configura-
tion changes and detect faults.

How Routing Problems Affect Connectivity and Performance (Why Correctness Matters)

Many researchers have studied both the effects of misconfiguration and routing insta-
bility on network downtime and end-to-end performance. This section highlights the re-
sults of some previous studies, which provide supporting evidence for the adverse effects
of routing instability on end-to-end performance. Table 2-4 summarizes these previous
findings in terms of three categories: those that study the effects of configuration faults on
end-to-end performance, those that study the effects of routing instability on end-to-end
performance, and those that study the effects of various routing protocol artifacts on rout-
ing stability and convergence (both of which indirectly affect end-to-end performance).

Mahajan et al. studied the effects of BGP misconfiguration on connectivity disrup-
tions [85]. This work studied short-lived BGP misconfiguration by analyzing transient,
globally visible BGP announcements from an edge network. They defined a “misconfig-
uration” as a transient BGP announcement that was followed by a withdrawal within a
small amount of time (suggesting that the operator observed and fixed the problem). They
found that many misconfigurations are caused by faulty route origination and incorrect

SECTION 2.4. RELATED WORK 45

Year Author Analysis Technique Major Results
How Configuration Faults Affect End-to-End Performance

2002 Mahajan et al. [85] Measurement/Email survey 30% of all configuration
“slips” that cause short-lived
BGP announcements disrupt
connectivity.

2002 Griffin et al. [61] Theoretical analysis Some iBGP configurations
can cause protocol oscillations
and persistent forwarding
loops.

How Routing Instability Affects End-to-End Performance
1997 Paxson [106] End-to-end measurement Routing-induced path fail-

ures for 0.21-0.5% of end-to-
end observations.

2001 Labovitz et al. [78] Fault injection Up to 30% packet loss during
periods of routing instability

2003 Feamster et al. [28] End-to-end measurement 50% of all end-to-end path
failures correlate with BGP in-
stability.

2005 Bush et al. [12] Fault injection 85% of BGP instability events
cause loss periods of 15 sec-
onds or longer.

How Protocol Artifacts Affect End-to-End Performance
2001 Labovitz et al. [78] Measurement/Analysis Some failures take up to

15 minutes to converge after
failover. Some routers may
explore O(n!) paths, where n
is maximum AS path length.

2001 Griffin et al. [55] Simulation Advertisement timer set-
tings significantly affect
convergence time.

2002 Mao et al. [86] Simulation Route flap damping can slow
convergence by several orders
of magnitude.

Table 2-4: The results of previous empirical studies of the effects of routing faults and protocol artifacts on
routing convergence or end-to-end performance.

filtering. rcc (Chapter 4) can help operators find these faults; it can also detect faults that
are difficult to quickly locate and correct. rcc also helps operators detect the types of mis-
configurations found by Mahajan et al. [85] before deployment.

Griffin et al. examine two aspects of iBGP correctness that may affect the end-to-end
delivery of traffic: non-convergence and “deflections”, whereby packets do not follow their
intended path [61]. This work does not observe how often incorrect iBGP routing occurs
in practice.

Previous work has gathered evidence to suggest that routing instability and configu-
ration faults have serious ramifications for end-to-end connectivity. Paxson studied the

46 CHAPTER 2. BACKGROUND AND RELATED WORK

end-to-end properties of Internet paths by performing two separate experiments between
37 hosts distributed across the Internet; each path was probed with traceroute approxi-
mately once every day or two (in a second experiment, a fraction of the paths were probed
approximately once every two hours) [106]. Each experiment was conducted over the
course of approximately 6 weeks. The first experiment was in 1994, and the second was
in 1995. In this work, Paxson studied both general routing pathologies (e.g., asymmetric
paths, erroneous routing, route flapping), and also studied the times during which paths
were unreachable due to failures of the routing infrastructure. Paxson found that paths
were unavailable for 0.21% of the time in his first sample and 0.5% of the time during his
second experiment.

In 2002-2003, Feamster et al. performed a similar study on the RON testbed [3] over the
course of 13 months. This work extended Paxson’s study by incorporating both more fre-
quent active probes (each of approximately 900 geographically and topologically diverse
paths was probed at least once every 90 seconds), which triggered traceroute probes
upon detecting a reachability failure. The BGP routing information was collected at sites
that were co-located with the measurement hosts [28]. About half of the end-to-end fail-
ures observed coincided with some BGP routing instability. This study considered only
correlation between BGP routing instability with end-to-end path failures; an interesting
future direction would be to determine how many of the path failures were caused by rout-
ing instability (i.e., cases where the routing protocol actually disrupted communication)
versus those that were simply reflected by instability.

Labovitz et al. observed that BGP undergoes a process called “path exploration”, a pro-
cess by which routers select (and propagate) alternate routes upon learning a route with-
drawal [78]. They showed that, in theory, during convergence, a router may explore O(n!)
alternate routes, where n is the maximum AS path length to the destination. To study
this phenomenon in practice, they injected routing faults into the running network and
measured the duration of the convergence process, finding that convergence may take as
long as 15 minutes when a route is withdrawn [78]. Bush et al. performed a similar study
that artificially injected routing updates into the network from “BGP beacons” [87]; this
experiment created instability on a small set of paths, on which they then perform more
targeted observations to study the properties of end-to-end paths during these periods of
instability. While they observe that many periods of prolonged loss do not correlate with
routing instability, they also find that most episodes of routing instability cause periods of
prolonged loss.

Several other researchers have examined the effects of various protocol artifacts on con-
vergence time. Mao et al. observed that damping routes that oscillate can cause significant
delays in convergence; in pathological topologies, BGP may take roughly an hour to con-
verge after a single route withdrawal [86]. Other work has simulated the effects of BGP’s
timer settings on convergence time [55]. This dissertation does not address correctness
problems that occur during the convergence process.

Configuration Management Tools: Helping Operators Cope with Complexity

Many network operators use configuration management tools such as “rancid” [113],
which periodically archive and manage versions of router configurations. When a network
problem coincides with the configuration change that caused it, these tools can help oper-

SECTION 2.4. RELATED WORK 47

Traffic
eng.

Failure
Analysis

Static
Fault
Detec-
tion

Monitoring Inventory Revision
Mgmt.

“Automated”
Configu-
ration

Fault Detection and Traffic Engineering
NetSys/IPAT [140] • • •
OpNet SP Guru [102] •
Cariden MATE [15] •

Change Management
Intelliden R-Series [72] • •
Redcell [114] •
VoyenceControl [115] •
Opsware NAS [103] •
Tripwire [132] •

Route Analytics
HP RAMS [69] •
RouteDynamics [73] •
Route Explorer [105] •

Table 2-5: Existing configuration management tools, which generally fall into three categories: fault detec-
tion and traffic engineering, change management, and route analytics. The fault detection tools are most
related to rcc, and the traffic engineering tools are most related to the model and tool in Chapter 5. Change
management tools help an operator audit configuration changes and revert to a previous version of the
configuration when faults are discovered. Route analytics products rely on analyzing protocol dynamics to
detect faults.

ators revert to an older configuration. Unfortunately, a configuration change may induce
a fault that becomes active later, and these tools do not detect whether the configuration
has these types of faults in the first place.

Some tools analyze network configuration and highlight rudimentary configuration er-
rors. One such tool was Cisco’s Netsys-Agent, which was decommissioned in November
2000 and evolved into a product called IP Analysis Tools (IPAT), supported by the Wide
Area Network Design Laboratory [140]. IPAT periodically collects the configurations from
the network’s devices and helps network operators diagnose “connectivity issues”. The
product also allows network operators to evaluate “what-if” scenarios (i.e., how a particu-
lar configuration change will affect network connectivity and topology), verify that a net-
work configuration satisfies connectivity requirements (e.g., that two nodes in the network
can reach each other), and evaluate various failure scenarios. IPAT also provides graphi-
cal interfaces to network operators that assist them in viewing router configurations and
routing tables.

OpNet’s NetDoctor product analyzes the configurations of many routing protocols, in-
cluding OSPF, IS-IS, RIP, MPLS, and BGP [100]. A white paper on NetDoctor provides
examples of the types of fault detection that the tool performs, such as: checking that two
interfaces on the opposite ends of an OSPF edge are in the same area, checking consis-
tency of BGP “hold timer” values, checking for redundant access control lists, enabling
system logging, blocking ICMP and telnet, etc. [101] NetDoctor also appears to allow op-
erators to check their configurations against best common practice (an issue we also tackle
in Section 4.3). Although the checks performed by NetDoctor are similar in spirit to those
performed by rcc (Chapter 4), the work we present in this dissertation focuses more on

48 CHAPTER 2. BACKGROUND AND RELATED WORK

verifying network-wide properties of routing, rather than simply performing checks on the
consistency of the configuration of a single router (or pair of routers)—NetDoctor does not
implement these types of checks.

Intelliden provides a product called R-Series, which helps network operators keep track
of device inventory and changes to the network configuration [72]. The product provides:
(1) a device modeling application, which translates the differing configuration languages
for a device (i.e., depending on vendor, type, model, and operating system) into a single, in-
dependent XML representation, (2) a system for managing version histories of the network
configuration, and (3) a framework for managing device inventory. Intelliden’s R-Series
does not provide any automated fault detection or debugging support; it is primarily a tool
to help network operators manage the complexity that results from heterogeneous devices
and multiple network operators who can make changes to the configuration.

Several other similar products exist to assist network operators with auditing config-
uration changes: Redcell allows a network operator to update the network configuration
from a centralized location and also performs version control and automated backup [114].
Voyence’s VoyenceControl allows an operator to configure network devices from a central-
ized server and performs some validation of configuration before deployment [115]. Op-
sware’s Network Automation System [103], and Tripwire [132] also monitor configuration
changes to network devices.

Other commercial tools do not directly analyze the configuration, but rather moni-
tor routing dynamics and network performance to assist operators in finding problems
(including possible configuration faults). Hewlett Packard (HP) offers a Route Analyt-
ics Management System (RAMS) [69], which participates in the routing protocol with the
routers in the network, actively detects problems related to OSPF, IS-IS, BGP, and EIGRP,
and reports these problems to the network operator. RAMS also correlates routing infor-
mation with other performance data to help network operators diagnose the underlying
cause of a problem. HP’s OpenView product line has many other tools designed to help
operators with network and application management [68].

Ipsum Networks (now defunct) developed a product called RouteDynamics that ac-
tively participated in a network’s IP routing protocols and monitored routing activity to
predict and analyze potential routing problems [73]. The product primarily focuses on
helping operators both detect routing instability and identify the cause of the instability.
The product also allows network operators to view and “play back” historical routing data,
as many of the routing instabilities that affect network performance are transient.

Most network management tools detect rudimentary errors and track changes to the
network configuration for auditing purposes, but they do not help a network operator
determine whether a network configuration will actually achieve the intended behavior.
A deficiency in today’s router configuration languages is that there is no high-level lan-
guage with which a network operator can specify policies. The lack of such a language
not only makes configuring the network more complex, but it also makes deducing faults
more difficult: any fault detection technique must infer the operator’s intent solely from
the low-level configuration. Recent work proposes a “service grammar” for BGP, which
includes a requirements language with which operators can specify higher-level require-
ments against which the system can be checked [110]. While developing such a grammar
would ease the task of both specifying and validating routing configuration, the proposed

SECTION 2.4. RELATED WORK 49

grammar is still rather low-level: for example, it requires operators to specify requirements
such as the existence of a BGP session between pairs of routers, which routers are route
reflectors for which other routers, etc. Such a grammar could have just as many errors as
the configuration itself and still does not specify the intended behavior of the network at a
high enough level (e.g., load balance, backup links, etc.).

Model Checking and “Automated” Configuration

Model checking has been successful in verifying the correctness of programs [49] and other
network protocols [8, 63, 95]. Unfortunately, model checking is not ideal for verifying all
aspects of BGP configuration because it depends heavily on exhausting the state-space
within an appropriately defined environment [94]. The behavior of an AS’s BGP config-
uration depends on routes that arrive from other ASes, some of which, such as backup
paths, cannot be known in advance [27]. On the other hand, model checkers may ulti-
mately be appropriate for generating BGP configuration: Recent work has proposed using
a model checker to specify the parameters of a high-level routing policy for a virtual pri-
vate network and running these parameters through a model checker [97]. The output of
the model checker—a solution that satisfies all of the specified constraints—are the con-
figuration fragments themselves. It is conceivable that such an approach could be used to
generate BGP configuration as well.

A trend called “automated configuration” refers to techniques that allow a network
operator to configure the network using templates and graphical interfaces, rather than by
typing configuration commands on individual devices. Another goal of these automated
configuration projects is to assist network operators in handling device heterogeneity by
providing a standard interface through which all devices in the network can be configured.

Recent work has proposed automation tools that build an inventory of both intrado-
main routing and session-level interdomain routing configuration [41] and automate en-
terprise network configuration [14]. These tools detect router and session-level syntax
errors only (e.g., undefined filters), a subset of the faults that rcc detects. rcc is the first
tool to check network-wide properties using a vendor-independent configuration represen-
tation and the first tool that bases its tests on a high-level specification of routing protocol
correctness.

Automated configuration entails not only building an inventory of the network-wide
configuration, but also enabling an operator to configure many heterogeneous network
devices through a common interface. Cisco is currently leading a research initiative in
this area [20]. The IETF “Netconf” working group is also actively developing a stan-
dard API over which network devices can be managed via remote procedure calls; the
group is also defining a standard XML schema with which a network operator can send
queries about the network device [98]. More recent work has proposed a technique for
automating interdomain routing configuration by representing the network configuration
in a database, configuring the network from the database itself, and automatically gen-
erating low-level routing configuration from the specification in the database [84]. Some
existing firewall and virtual private network (VPN) technologies, such as products from
Reef Point [116], also allow a network operator to configure network appliances from a
centralized database. rcc also normalizes the network-wide configuration and stores it
in a centralized database. In this sense, it could be seen as an element of a configura-

50 CHAPTER 2. BACKGROUND AND RELATED WORK

tion automation system that configures the network from a central location, checks the
configuration for errors, and subsequently pushes that configuration to the actual devices
distributed across the network.

Correctness Problems that Span Multiple ASes

The behavior of Internet routing depends on configuration that spans many independently
operated networks and administrative boundaries. Internet routing configuration allows
each AS to express policies independently of every other AS. Unfortunately, the policies
of one AS may interact with those of another in unexpected (and unintended) ways. One
serious undesirable consequence of this interaction is that the protocol may oscillate—that
is, it may continue to send cycles of routing updates that do not reflect changes in the
underlying topology. These oscillations (which we referred to as violations of safety in
Chapter 1) can cause problems for both performance and debugging. Chapter 6 addresses
how to guarantee safety across multiple ASes; Section 6.1 discusses related work on this
topic.

� 2.4.2 Predictability

Previous work presented an IGP emulator that helps network operators optimize link
weights for intradomain traffic engineering [39]. Cariden’s Multiprotocol Automation and
Traffic Engineering (MATE) framework parses IGP routing configuration, estimates traffic
demands, performs IGP simulation and metric optimization, and helps network opera-
tors with capacity and changeover planning, in addition to everyday traffic engineering
tasks [15]. These tools incorporate traffic demand data to model how routing changes
will affect traffic flow, but they do not model changes to BGP routing policies or the ef-
fects of iBGP on path selection. There has also been much focus on modeling BGP conver-
gence [47, 56, 78, 125] but the work in Chapter 5 is the first to model BGP route selection.

OpNet’s SP Guru [102] helps network operators perform traffic engineering and fail-
ure analysis within a single domain. Such tools have similar applications to the model of
interdomain routing that we present in Chapter 5. SP Guru can model the network, given
the routing configuration as input, to provide a “virtual network environment”, where a
network operator can evaluate potential changes to routing in the network. One of the
tool’s stated goals is to assist network operators in evaluating various types of configura-
tion changes before deploying a configuration on a live network. SP Guru also integrates
with NetDoctor [100] (described earlier in this section).

Network simulators (e.g., ns [7], C-BGP [16], SSFNet [127]) help operators understand
dynamic routing protocol behavior, but simulation represents network behavior in terms
of message passing and protocol dynamics over a certain period of time. In contrast, net-
work engineers usually just need to know the outcome of the path-selection process and
not the low-level timing details. Furthermore, existing simulators do not capture some of
the relevant protocol interactions that can affect the outcome of the route selection process.
Simulating every detailed interaction is difficult without a higher level model of BGP in
the first place.

Recent work proposes efficient techniques for large-scale parameter optimization for
various network protocols, including the tuning of the local preference attribute in
BGP [146]. This work is complementary to ours—the proposed search techniques could

SECTION 2.5. SUMMARY 51

use the routing sandbox (Chapter 5) as the “inner loop”. These techniques currently use
simulators such as C-BGP [16] or SSFNet [127], but the techniques only depend on the
outcome of BGP path selection (not on dynamics) and would likely benefit from having
an efficient, accurate emulation tool as an inner loop. An accurate model of network-wide
BGP route selection can also improve the accuracy of simulators. Recent work has built a
system that takes the BGP and IGP configurations from a single AS, as well as an estimate
of traffic demands, and searches for the appropriate configuration changes that should be
made to achieve a certain traffic engineering goal while limiting the amount of “churn”
(i.e., route changes) [133].

The BGP model in Chapter 5 applies several previous theoretical results in new ways.
The constraints for iBGP configuration that we present in Section 5.3 are motivated by
previously derived sufficient conditions for iBGP to guarantee that the routing protocols
converge to a stable assignment [60, 61]. This work specified these conditions to ensure
correct routing behavior, but these constraints are also required to model BGP routing. The
route prediction algorithm in Section 5.6.2 also uses results from previous work. We apply
a constructive proof regarding stable inter-AS policy configurations [47] to iBGP configu-
ration and used this proof as the basis for predicting how a network with route reflectors
will select BGP routes.

In previous work, we explored practical traffic engineering techniques in BGP; we had
assumed the existence of a BGP emulator for testing traffic engineering techniques of-
fline [32]; Chapter 5 describes such a tool that uses algorithms that accurately and efficiently
predict the outcome of the BGP route selection process in a single AS using only a snap-
shot of the network configuration and the eBGP-learned routes from neighboring domains,
without simulating protocol dynamics [37]. The evaluation of this prototype demonstrates
that our algorithm is accurate and efficient enough to be used in practice for many network
engineering tasks.

� 2.5 Summary

This chapter has provided the requisite background material on Internet routing for read-
ing the rest of this dissertation. In the process of introducing the basic operation of today’s
Internet routing protocol, BGP, we have drawn attention to the aspects of the protocol that,
though they provide the necessary flexibility for network operations, introduce a signifi-
cant amount of complexity. The rest of the dissertation focuses on proactive techniques for
providing correctness and predictability guarantees in the face of this complexity.

Although this dissertation focuses on providing correctness and predictability using
static configuration analysis within the context of today’s routing protocol, the following
chapters will draw out many important lessons for designing future Internet routing pro-
tocols and architectures. Chapter 7 draws on some of these lessons to propose a routing
infrastructure called the Routing Control Platform (RCP) [13, 31], whose ultimate goal is
to explicitly enforce various correctness guarantees.

Network operators are often their own worst enemies concerning Internet routing cor-
rectness and predictability, but malicious behavior also poses a major threat to these goals.
This dissertation presents techniques for protecting network operators from themselves,
but our next goal should be to protect it from adversaries. This imminent problem is not

52 CHAPTER 2. BACKGROUND AND RELATED WORK

our focus (it is difficult enough to provide correctness and predictability even when no
parties are malicious!), but we discuss some open problems in Internet routing security in
the final chapter (Section 7.3.5).

We are now armed with a basic understanding of Internet routing and the basic prob-
lems with guaranteeing correct and predictable behavior, but, despite all previous work,
our understanding of the properties that constitute “correct” behavior are not sharp. The
next chapter addresses this problem.

One of the beautiful things about baseball is that every once in a while you come into a situation
where you want to, and where you have to, reach down and prove something.
- Nolan Ryan

CHAPTER 3
Correctness Specifications for

Internet Routing

T
he flexibility offered by Internet routing configuration allows the protocol to scale well
and enables operators to express a wide variety of policies, but it increases the com-

plexity of the system. This complexity makes it difficult to reason about the behavior of
Internet routing, leading to ad hoc fixes to observed problems that ultimately only worsen
this complexity. Today, network operators (who continually tweak routing configuration)
and protocol designers (who repeatedly propose “point” solutions to various problems)
have no way of reasoning about whether their modifications to Internet routing will op-
erate as intended. Worse yet, operators and designers do not even have a specification of
properties that Internet routing should satisfy. This chapter seeks to remedy this situation
by specifying correctness properties that any routing protocol should satisfy.

We introduce three properties to classify the behavior of a routing protocol. We briefly
describe these properties below and explain why they are critical for correct routing.

1. Route validity states that if a router has a route to a destination, then a usable path
corresponding to that route exists in the underlying topology. If route validity is vi-
olated, then end users could experience a failure of end-to-end connectivity, because
routers could forward packets along non-existent paths.

2. Path visibility states that if there is a usable path between two nodes, then the rout-
ing protocol will propagate information about that path. A failure of path visibility
could disrupt end-to-end communication by preventing two connected nodes from
learning routes between one another.

3. Safety states that the routing protocol converges to a stable route assignment, regard-
less of the order in which routing messages are exchanged. A routing protocol that
violates safety will induce persistent route oscillations, causing routing changes that
are unrelated to changes in topology or policy.

This chapter defines and investigates these properties and demonstrates how they can
deepen our understanding of network routing. This correctness specification addresses
static properties of network routing, not dynamic behavior (i.e., its response to changing

53

54 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

inputs, convergence time, etc.). Internet routing, like any distributed protocol, may expe-
rience periods of transient incorrectness in response to changing inputs, but we are con-
cerned with persistent misbehavior.

Chapter 4 presents an approach to detect when two of these properties (route validity
and path visibility) are violated. Chapter 5 exploits these properties to predict which of
many possible routes each router in the network will select. Chapter 6 deals with the
challenges of guaranteeing safety, an inherently global property.

After we introduce some basic terminology in Section 3.1, we motivate and describe the
correctness properties. Sections 3.2, 3.3, and 3.4 describe route validity, path visibility, and
safety, respectively, and explain how various aspects of the operation and configuration of
the Internet’s routing protocols can cause each of these to be violated in practice.

� 3.1 Preliminaries: Paths, Routes, and Policy

Before introducing the correctness properties themselves, we first introduce some basic
terminology for routing. We explain these terms in the context of Internet routing and
BGP. We first define paths and routes in terms of a graph G = (V, E), where the nodes in
V = {v1, . . . , vN} correspond to IP-level nodes (i.e., routers and end hosts) and the edges
in E corresponds to IP-level links between those nodes.

� 3.1.1 Paths and Routes

We now define two basic terms—path and route—and explain how they are related.

Definition 3.1 (Path) A path is a sequence of nodes P = (v0, . . . , vn), where vi ∈ G for all 0 ≤
i ≤ n.

The definition of a path does not constrain how the sequence of nodes is actually con-
structed. As such, a path might represent a sequence of directly connected IP-layer nodes
or endpoints of a tunnel.1 Note that deleting some nodes from a path still results in a path.

In contrast to a path, a route is information that allows nodes in G to construct paths to
destinations. The destination d may refer either to a single node or a group of nodes (named,
for example, by an IP prefix). The purpose of a routing protocol is to propagate routes for
destinations. Collectively, the routes to d that the nodes in G ultimately select define the
path from any node in G to that destination. All of our definitions presume that the handle
for a destination, d, cannot be manipulated (e.g., our definitions do not consider the effects
of IP prefix aggregation [44, 117]).

Definition 3.2 (Route) A route is a mapping (d→ v i), where d is a destination, and vi ∈ G is a
node en route to the destination d.

We say that vi ∈ d if the destination d includes vi. A route (d→ vi) received by v j indicates
that, if v j has a packet to send to some node at destination d, it can forward that packet
to vi, which in turn ought to have a route to d (whereupon this process repeats until the

1A tunnel is a sequence of nodes that all forward packets to some intermediate node (i.e., the tunnel’s
“exit”), rather than the ultimate destination. A tunnel may be implemented by a variety of mechanisms, such
as IP-in-IP encapsulation [26], Multiprotocol Label Switching (MPLS) [22, 92], etc.

SECTION 3.1. PRELIMINARIES: PATHS, ROUTES, AND POLICY 55PSfrag replacements

v1 vn ∈ d

vi−1

v0
v1

Pv0(rv0(vi)) Pv1(rv1(d))

Pv0(rv0(d))

Figure 3-1: Illustration of an induced path from v0 to d, collectively induced by the selection of a route to
d at every node along the path. The node vi may be immediately adjacent to v0 (as shown), but it may also
be several hops away.

data reaches d). One can think of a route (d→ vi) being used at node v j as inducing a path,
(v j, . . . , vi), where either v j and vi are directly connected or where the actual nodes along
that path segment are determined by the connectivity between those nodes, as established
by the IGP or using tunnels. We will formalize the notion of induced paths in Section 3.1.2.

Note that Definition 3.2 can apply to any routing protocol, not just to BGP. In an IGP,
the node vi is typically the router that is immediately connected at the IP layer. In BGP,
however, (particularly in iBGP) the next hop may be several IP-layer hops away. In BGP, a
node that receives a route (d→ v) but is not directly connected to v must rely on the IGP
for reachability to v.

� 3.1.2 Induced Paths and Consistent Paths

We can think of paths as being induced by routes. That is, while there exist many sequences
of nodes between any node v0 and a node in some destination d, the path that traffic will
actually take from v0 en route to d is determined by the routes that the nodes in G select.
In many routing protocols, including BGP, no single node has knowledge about the entire
sequence of nodes that traffic traverses en route to d; rather, the nodes that the routes
select collectively induce a path to d. We are interested in making statements about those
induced paths. We now formalize the concept of induced paths and describe a special class
of induced paths called consistent paths.

Definition 3.3 (Induced path) Let rv j (d) be the route that node v j selects en route to d (i.e., it
is a mapping (d→ vk) for some other vk ∈ G. Then, the path induced by route rv0(d) : (d→ vi),
Pv0(rv0(d)), is:

Pv0(rv0(d)) =







φ if v0 has no route to d
v0 if v0 ∈ d
(v0, Pv1(rv1(d))) otherwise

where v1 is defined according to rv0(vi) : (d→ v1); that is, v1 is the next-hop node in v0’s forwarding
table for destination vi.

Figure 3-1 illustrates an induced path and its constituent subpaths. The node v i in the
induced path may either be adjacent to v0 in G, or it may be several hops away. When
vi is adjacent to v0 in G, data traffic can reach vi from v0 via a direct IP link. When vi is
several hops away in G, however, v0 must rely on intermediate nodes to forward traffic to
vi. In this case, the nodes between v0 and vi could use routes that induce paths that never

56 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

even traverse vi. In other words, the path that is described by (v0, Pv0(rv0(vi))) may traverse
an intermediate node whose induced path to d does not traverse v i. To precisely classify
the types of paths for which this inconsistency does not arise, we define the notion of a
consistent path.

Definition 3.4 (Consistent path) An induced path Pv0(rv0(d)) = (v0, . . .vn) to d is consistent if,
(1) for all 1 ≤ i ≤ n, Pvi(rvi (d)) = (vi, vi+1, . . . , vn); (2) Pv0(r(v0(d))) contains vi, where rv0(d) :
d→ vi.

Consistent paths are an important class of paths because inconsistent paths can some-
times give rise to forwarding loops. A forwarding loop is a special case of an inconsistent
path where some intermediate node’s induced path includes a node that has already ap-
peared on the path.

When v0 and vi are not adjacent, ensuring that all intermediate nodes select a route
(d→ vi) will guarantee that an induced path is consistent. If an intermediate node selects
some route (d→ v j) where vi 6= v j, then the induced path to d may never traverse v i. If, on
the other hand, the intermediate node selects a route (d→ v i), then the induced path from
that node to vi will be a subpath of Pv0(rv0(vi)), assuming all nodes use the same function
to induce paths (e.g., if the induced path to v i is based on shortest paths routing, as in an
IGP).

We now briefly discuss paths and routes in the context of BGP. To illustrate the dis-
tinction between routes and paths, we examine their definitions within the context of BGP
routing within a single AS. In this case, a route is of the form (d→ v i), where d is an IP prefix
and vi is the BGP “next hop” (a node that need not be directly connected at the IP layer).
The path that traffic ultimately takes from some node v j to the destination d, for which v j
has a route (d→ vi), depends on how connectivity is established between v j and vi. If v j
and vi are in two different ASes, then they are typically directly connected. If they are in
the same AS, however, it is common for vi to be the IP address of an egress (or “border”)
router and for v j to be several IP hops away. The induced path between v j and vi may be
determined by a tunnel, by a shortest paths routing protocol, using static routes, etc.

If the induced path between v j and vi is not defined by a tunnel, then the nodes between
v j and vi will use their own routes for forwarding data to d. In this case, the induced path
to d is actually determined by “stitching together” these constituent induced paths. If all
nodes between v j and vi select routes that indicate that traffic to d should be sent via v i,
then the induced path between v j and vi will be consistent. Otherwise, the path could be
arbitrary; in fact, it might never traverse v i.

Figure 3-2 shows an example that illustrates this distinction. In this example, all routers
in the AS are clients of the route reflector, v3; solid lines show the edges in the IGP graph,
and all edges have a cost of 1. Suppose that v3 learns two routes to d and selects the route
that it receives from v5. In this case, v3 propagates that route (i.e., (d → v5)) to all of its
clients, as shown. Using that route, each node ultimately uses a different path to the egress
router, v5. For example, v1’s shortest IGP path to v5 is v1, v3, v5, whereas v2’s shortest path
to v5 is v2, v5. Even if a node, say v1 selects a BGP route with the “next hop” v5, there is
no guarantee that the resulting induced path will traverse v5. If an additional node, v6, had
been on the path between v1 and v3, and had instead selected a route (d→ v4), then v1’s
path to d through the AS could have in fact been v1, v6, v4.

SECTION 3.1. PRELIMINARIES: PATHS, ROUTES, AND POLICY 57

PSfrag replacements

v1 v2

v3

v4
v5

dd

(d→ v5)

(d→ v5)(d→ v5)

Figure 3-2: An example that demonstrates how BGP routes induce paths. Dashed lines are iBGP sessions
from route reflectors to clients (i.e., v3 is a route reflector, and the rest of the routers are its clients); route
reflector operation is summarized in Section 2.3.1. Dashed lines show propagation of routes. Solid lines
show IGP links; in this example, all links have a cost of 1. The routes at each node induce paths over the
IGP topology. For example, the induced path from v2 to d is (v2, v5, ...), the induced path from v1 to d is
(v1, v3, v5, ...), etc.

� 3.1.3 Policy

A noteworthy aspect of Internet routing is that it is policy-based. The job of the routing pro-
tocol is not to propagate complete information about the topology, but to only propagate
information about paths that comply with the various economic and policy goals of each
AS. We must therefore qualify paths in the topology according to those that comply with
such these policies and those that do not.

Definition 3.5 (Policy) A policy is a function P (s, v i−1, vi, vi+1, d)→ (0, 1), where s is a source,
vi−1, vi, and vi+1 are nodes on a path (v0, v1, . . . , vn), d is a destination, and P is defined as follows:

P (s, vi−1, vi, vi+1, d) =



























1 if i = 0 and v0 forwards packets from source s destined for d
1 if 0 < i < n and vi forwards packets with source s from vi−1

destined for d via vi+1
1 if i = n and vn forwards packets with source s destined for d
0 otherwise

The function P (vi−1, vi, vi+1, d) is not expressive enough to capture all policies, but, as
we will see, it is general enough to capture the policies that are commonly expressed in
Internet routing. Other routing protocols may require more expressive policy functions.
Our intent here is not to define a policy function that captures all policies, but rather to
allow us to define a policy-conformant path in the context of Internet routing.

Definition 3.6 (Policy-conformant path) A path (v0, v1, v2, . . . , vn) is policy-conformant for
source s and destination d if P (s, vi−1, vi, vi+1, d) = 1 for all 0 ≤ i ≤ n.

For simplicity, we assume that paths for which the source, destination, and all nodes in
between the source and destination are in the same AS are policy-conformant.

Although the policy function is defined at the level of nodes, it is in fact expressive
enough to capture many AS-level policies that network operators commonly want to ex-
press. For example, suppose an operator wants to express that AS Y should not forward

58 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTINGPSfrag replacements

X Y Z
vX vi v j vZ

Figure 3-3: An example illustrating policy-conformant paths at the AS-level in BGP.

2. All routers along path forward traffic to 3. The induced path must terminate at

1. Every router learns a route that induces a consistent path.

PSfrag replacements

vi

vn ∈ d

vn ∈ dvi−1v0 v1

(d→ vi)

d

Figure 3-4: The conditions of route validity. A route is valid if it induces a consistent, policy-conformant
path at every node along the path from v0 to some vi ∈ d.

traffic between two other ASes, X and Z, for some destination d, as pictured in Figure 3-3.
Recall that a path with some nodes removed still constitutes a path. As such, it is possible
to express this policy in terms of the nodes in ASes X and Z along the path. For example, in
Figure 3-3, the policy can be expressed as P (s, vX, vi, vZ, d) = 0. In a more complicated sce-
nario, if AS Y has multiple nodes that are adjacent to nodes in ASes X and Z, the AS-level
policy would be expressed as an enumeration over node-level policies.

� 3.2 Route Validity

In this section, we motivate and describe route validity. Informally, route validity says that
any route that the routing protocol propagates should correspond to a usable path in the
topology. Route validity concerns the properties of the paths induced by the routes that
the routing protocol propagates.

Definition 3.7 (Route validity) A route for a destination d is valid if, and only if, the path in-
duced by the route (1) is consistent, (2) is policy-conformant for all sources that use the route, and
(3) terminates at d. We say that a routing protocol satisfies route validity if the protocol propagates
only valid routes for all destinations.

Figure 3-4 illustrates the conditions of route validity. The first condition of route va-
lidity enforces consistency along the path between v0 and the node vi towards which v0
sends traffic en route to d. Furthermore, the induced path from v0 to vi must be policy-
conformant; that is, every node along the path (v0, . . . , vi) must forward traffic from its
predecessor to its next hop en route to d. Verifying policy conformance is difficult for paths
that traverse multiple ASes, because operators do not explicitly specify the policy function
P . The final condition says that the path induced by the route must actually terminate at
some node vn ∈ d.

Because a source v0 and a destination d may be in different ASes, guaranteeing that BGP
satisfies route validity is difficult in practice. Determining both the induced path to d and

SECTION 3.2. ROUTE VALIDITY 59

determining whether that path is policy-conformant requires knowledge of the configura-
tions of multiple ASes. Fortunately, the properties of route validity (i.e., consistency and
policy-conformance) are composable.

Observation 3.1 Composing a path by concatenating two consistent, policy-conformant paths
results in a new consistent, policy-conformant path.

This observation implies that if the routing protocols in each AS en route to a destination
induce only consistent and policy-conformant paths to some destination d, then BGP will
only induce consistent, policy-conformant paths for that destination d. For the purposes of
this chapter, we assume that all paths are policy-conformant, because detecting violations
of policy are difficult to verify in practice; we will return to this issue in Section 4.3. We
also assume that all eBGP sessions are point-to-point (i.e., immediately connected at the
IP layer), which is almost always the case in practice: service providers typically apply
policies at AS boundaries, rather than on paths within an AS. Finally, we assume that
the IGP already satisfies route validity; detecting route validity faults in internal routing
protocols is beyond the scope of this dissertation.

Modulo policy-conformance, guaranteeing that BGP satisfies route validity boils down
to ensuring that iBGP always induces consistent paths within each AS. Guaranteeing this
property is the focus of the remainder of this section. We first focus on how to guarantee
that “full mesh” iBGP configurations (and protocol modifications that would allow every
router to the complete set of “best” eBGP-learned routes) always induce consistent paths;
we then derive conditions on iBGP configurations that use route reflection that guarantee
that iBGP only induces consistent paths.

� 3.2.1 Case #1: Every router learns all “best” eBGP routes.

If different routers within an AS receive different sets of candidate routes for some desti-
nation d, then the routers along a path from v0 to vi may not ultimately select the route
(d → vi). It turns out that the default iBGP configuration, where every eBGP-speaking
router has an iBGP session with every other eBGP-speaking router in the AS (i.e., a “full
mesh” iBGP configuration, as described in Section 2.3.1, Figure 2-5) satisfies route validity.

Theorem 3.1 If (1) every router learns the BGP routes selected by the complete set of eBGP-
speaking routers, and (2) iBGP-speaking routers do not modify route attributes (i.e., local pref-
erence, origin type, MED, or next hop), then all paths induced by iBGP (within the AS) will be
consistent.

Proof. If each router eventually learns of the route selected by every eBGP-speaking router,
then there are two cases for any router v0 in the AS: either (1) v0 selects a route via a vi
in a neighboring AS, or (2) v0 selects a route via vi in the same AS, where vi is an eBGP-
speaking router and, hence, in turn selects a route such that v i+i is in a neighboring AS.
The first case corresponds to a point-to-point eBGP session; the second case corresponds to
an iBGP session where the route’s next hop vi learned the route via a point-to-point eBGP
session but may be multiple IP hops away. For the proof of this theorem, we are only
concerned with the latter case; we rely on Observation 3.1 to ensure that iBGP induces
only consistent paths in neighboring ASes.

60 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

PSfrag replacements

viv j

a b

v0

Figure 3-5: This figure illustrates the main idea of the proof of Theorem 3.1. Dashed lines represent iBGP
sessions, and solid line represent IGP links. If routes a and b do not have equal local preference, AS path
length, origin type, or MED, then v0, vi, and v j will all select the same route. If these attributes are equal for
both a and b, then v0 selects either a or b depending on whether vi or v j has a shorter IGP path. If v j selects
route a and vi selects route b, then v0’s shortest IGP path to the next hop corresponding to the chosen route
must be direct.

To show that iBGP induces only consistent paths within the AS, we show that all routers
on the path (v0, . . . , vi) select the route (d→ vi), for any vi ∈ G. Because all eBGP-speaking
routers have an iBGP session with every other router in the AS, all routers (and, in par-
ticular, all routers along the path (v0, . . . , vi)) learn the same set of “best” routes. All of
these routers would thus select a route with the highest local preference, shortest AS path
length, lowest origin type, and lowest MED.

As a result, we know that all routers along the path (v0, . . . , vi) select some iBGP learned
route with the shortest IGP path among candidate iBGP routes. Suppose that some router
on this path, say v j, selects a route other than (d→ vi), say (d→ vk), because (v j, . . . , vk) has
a shorter path cost than (v j, . . . , vi). Then, the nodes in (v0, . . . , vk) also have a shorter IGP
path cost than (v0, . . . , vi) and, hence, all nodes in (v0, . . . , vk−1) would also select (d→ vk).
�

A full mesh iBGP configuration can guarantee the first condition of Theorem 3.1. An-
other approach to ensuring that every router learns the set of routes selected by the com-
plete set of eBGP-speaking routers is to alter how route reflectors readvertise routes to
their clients. By a similar argument as in the proof of Theorem 3.1, such a modification
would cause iBGP to induce only consistent paths. Such a configuration not only guar-
antees consistent paths, but it also prevents certain types of persistent route oscillation (a
pathology we examine in more detail in Section 3.4) [4]. Unfortunately, implementing such
a configuration in practice requires modifying the large deployed base of BGP routers. Al-
ternatively, an architecture such as either the Routing Control Platform (RCP) [13, 31] or
the recent proposal for more versatile route reflectors [9] could implement this type of
iBGP configuration.

� 3.2.2 Case #2: Each router learns only some “best” eBGP routes

If full mesh iBGP were the only intra-AS BGP configuration, guaranteeing that iBGP sat-
isfied route validity would be easy. Unfortunately, as discussed in Section 2.3.1, this tech-
nique does not scale to large ASes because it requires O(|R|2) iBGP sessions, where |R| is

SECTION 3.2. ROUTE VALIDITY 61

1

3

1 1

3
PSfrag replacements

RR1 RR2

C1 C2

dd

Figure 3-6: The interaction of IGP and route reflection in iBGP may cause route validity violations resulting
in forwarding loops [23]. Note that this topology satisfies path visibility but not route validity. Dashed
lines represent iBGP sessions; a directed edge indicates an iBGP sessions from a route reflector to its client.

the number of routers in the AS. Large ASes typically use a technique called route reflec-
tion, where a single route reflector selects a route on behalf of its client routers.

Guaranteeing route validity in an iBGP topology with route reflectors is not easy. Pre-
vious work has observed that the interactions between the IGP topology and an iBGP
topology with route reflectors can give rise to route validity violations [23]. Figure 3-6
shows one such example. Route reflectors RR1 and RR2 both receive a route to destina-
tion d and have clients C1 and C2 respectively. Hence, C1 may receive and select the route
(d→ RR1), and C2 may receive and select the route (d→ RR2). If the shortest IGP path (i.e.,
the induced path) between A and RR1 is via B, and the shortest IGP path between B and
RR2 is via A, then traffic en route to d that traverses either router A or B will be caught in
a persistent forwarding loop: that is, traffic destined for d will never reach d but instead will
repeatedly visit a cycle of two or more nodes. A forwarding loop is simply a special case
of a route validity violation.

Our goal is to detect whether a configuration of route reflectors and clients induces
only consistent paths with a simple algorithm that examines only the static iBGP and IGP
topologies. One such sufficient condition that guarantees this property requires that the
iBGP topology be RR-IGP-Consistent, defined as follows:

Definition 3.8 (RR-IGP-Consistent) A route reflector configuration is RR-IGP-Consistent if,
for all nodes, every shortest IGP path between that node and its possible egress nodes (i.e., the set of
eBGP-speaking routers) traverses that node’s route reflector before any other node’s route reflector
and the egress node’s route reflector before the egress node itself.

In previous work, Dube suggested placing route reflectors on the shortest IGP path to their
clients [23]. We now prove that this condition guarantees that the iBGP configuration will
only induce consistent paths.

Theorem 3.2 If an iBGP configuration is RR-IGP-Consistent, then all paths induced by iBGP
are consistent.

Proof. Suppose not. Then, there must exist a destination d and a path P = (v0, . . . , vn) for
which some node v j between v0 and vn selects a route (d→ vi), where i 6= n. There are two

62 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

cases: (1) v j is on the path from v0 to the route reflector of v0; and (2) v j is on the path from
the route reflector of v0 to vn.

In the first case, if v0 and v j select different next hops then, by definition, they must
be clients of different route reflectors. By definition, then, the iBGP topology is not RR-
IGP-Consistent. The second case reduces to a similar argument as in Theorem 3.1: if v j
selects a route with a next hop other than vn, then the route reflector of v0 would have
also learned that route and selected it (otherwise, v j would not have been on the route
reflector’s shortest path to vn, by the same argument as in Theorem 3.1). �

Although this result is a helpful sufficient condition, it does not guarantee that route va-
lidity will be satisfied when arbitrary links fail, thus causing shortest IGP paths to change.
Designing an RR-IGP-Consistent iBGP topology that is robust to link failures is a difficult
task. Recent work has proposed using graph separators as a way of efficiently placing
route reflectors in an iBGP topology to guarantee that route validity is satisfied [139].

� 3.3 Path Visibility

Path visibility says that if there exists one or more policy-conformant paths between two
nodes, then the routing protocol should propagate routes that induce at least one of those
paths. Path visibility is an important property for a number of reasons. First, if a rout-
ing protocol satisfies this property, then every node is guaranteed to have the necessary
information to reach all other nodes.

Definition 3.9 (Path visibility) A routing protocol satisfies path visibility if, for all v0 ∈ V and
for all destinations d, the existence of a policy-conformant path P = (v0, . . . , vn) implies that v0
learns a valid route (d→ v j) for some 0 ≤ j ≤ n.

Path visibility states that if there is a policy-conformant path from v0 to d, then v0 should
learn at least one valid route to d. Note that the definition does not require v0 to learn all
routes to d, nor does it require that v0 learn the “best” route to d by any metric. Path
visibility also does not require that the route that v0 learns correspond to the actual path
that traffic takes from v0 to d.

By definition, path visibility violations result when some router fails to propagate us-
able routes. These failures in route propagation range from the mundane (e.g., misconfig-
ured filters that fail to install or advertise routes for a policy-conformant path) to the subtle
(e.g., errors in iBGP configuration).

Because of the way iBGP readvertises routes, an arbitrary iBGP configuration is not
guaranteed to satisfy path visibility. In fact, even the very simple iBGP topology in Fig-
ure 3-7 does not satisfy path visibility: if the route reflector RR1 (or its client, C1) receives
a route for some destination via an eBGP session, then neither RR3 nor C3 will receive a
route to the destination, and vice versa.

Path visibility is important because it ensures that, if the network remains connected
at lower layers, the routing protocol does not create any new network partitions. Path
visibility also reduces the likelihood of suboptimal routing. For example, in Figure 3-7,
even if all clients learned some route to the destination via eBGP, the clients would not be
guaranteed to discover the best route to the destination (e.g., if a client of the route reflector

SECTION 3.3. PATH VISIBILITY 63

PSfrag replacements
RR1 RR2 RR3

C1 C2 C3

Figure 3-7: A simple iBGP topology that violates path visibility. Routes learned via eBGP at RR1 or C1 will
not be propagated to RR3 or C3 (and vice versa).

on the far left learned a route with a shorter AS path, neither the route reflector on the far
right nor its clients would learn it). As such, it is important that an AS’s iBGP configuration
satisfy path visibility. In the remainder of this section, we derive the constraints on the
iBGP configuration that must be satisfied to guarantee path visibility. We first consider
iBGP topologies that do not employ route reflection.

Theorem 3.3 For an iBGP topology without route reflectors, satisfying path visibility requires a
full mesh iBGP configuration.

Proof. Consider a router vi, which learns a route r for some destination d via eBGP, and
a router v0 within the same AS that does not have an iBGP session to v i. Then, vi will
readvertise r to the routers to which it has iBGP sessions, but none of those routers will
advertise the route to v0, because they all learned the route via iBGP. �

In large networks, a route reflector may itself be a client of another route reflector. Any
router may also have “normal” (i.e., peer) iBGP sessions with other routers. We use the set
of reflector-client relationships between routers in an AS to define a graph I , where each
router is a node and each session is either a directed or undirected edge: a client-reflector
session is a directed edge from client to reflector, and peer iBGP sessions are undirected
edges. We say that I is acyclic if I has no sequence of directed and undirected edges that
form a cycle. In typical iBGP hierarchy designs, I is acyclic (previous work states that I
should be acyclic to prevent protocol oscillations [59]—and it is a good design decision
anyway—although we will see in Section 3.4 that this constraint is unnecessary). We now
define the topological constraints on I to guarantee path visibility.

Theorem 3.4 Suppose that the graph defined by an AS’s iBGP relationships, I , is acyclic. Then,
I does not have a signaling partition if, and only if, the eBGP-speaking routers that are not route
reflector clients form a clique.

Proof. Call the set of routers that are not reflector clients the “top layer” of I . If the top
layer is not a clique, then there are two routers with no iBGP session between them, such
that no route learned via eBGP at RRi will ever be disseminated to RR j, since no router

64 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

PSfrag replacements RR0 RR1 RR2

Figure 3-8: Illustrating the main idea of the proof of Theorem 3.4.

readvertises an iBGP-learned route (e.g., RR0 and RR2 in Figure 3-8), and vice versa. Fur-
thermore, no route that is learned via eBGP at any of RR i’s clients will be disseminated to
RR j or RR j’s clients, and vice versa.

Conversely, suppose the top layer is a clique. Observe that if a route reflector has a
route to the destination, then all of its clients have a route as well. Thus, if every router
in the top layer has a route, all routers in the AS will have a route. If any router in the
top layer learns a route through eBGP, then all the top layer routers will hear of the route
(because the top layer is a clique). Alternatively, if no router at the top layer hears an eBGP-
learned route, but some other router in the AS does, then that route propagates up a chain
of route reflectors (each client sends it to its reflector, and the reflector sends it on all its
iBGP sessions) to the top layer, from there to all the other top-layer routers, and from there
to the other routers in the AS. �

The results in this section suggest that path visibility can be guaranteed by checking
relatively simple constraints on the iBGP topology, which can be determined by analyz-
ing the static configuration files alone. Although, in the long term, architectural changes
could be made to guarantee that no configuration ever violates path visibility [9, 13, 31],
relatively simple checks against routing configuration can guarantee path visibility today
(as we will see in Chapter 4).

� 3.4 Safety

Violations of safety can cause the routing protocol to continually send routing updates
that do not reflect changes in the underlying topology. We provide an informal definition
of safety and defer a formal definition to Chapter 6 (Definition 6.10).

Definition 3.10 (Safety) A routing protocol satisfies safety if and only if, given no changes to
available paths after time t0, then, at some finite time ts > t0, each node v ∈ G selects some route r
and does not select a route r′ 6= r for any t > ts.

Safety is an important property because it guarantees that changes in routes (i.e., rout-
ing update messages) correspond directly to changes in available paths. This invariant is
important for several reasons. First, if the routing protocol causes routers to change routes
unnecessarily (i.e., when the paths are in fact stable), the protocol itself may cause perfor-
mance degradations, such as lost or reordered packets. Second, if routing changes do not
correspond to changes in the actual topology, then debugging the cause of an oscillation

SECTION 3.4. SAFETY 65

PSfrag replacements

R1 R2

1
2

A
B

C

λR1({A, B}) = A; λR1({A, C}) = C λR2({A, B, C}) = C; λR2({B, C}) = B

A/φ

B/C

Figure 3-9: λR2 does not satisfy determinism. This violation can causes a safety violation.

becomes more difficult, because an operator cannot determine whether routing changes re-
flect problems with infrastructure (e.g., flaky or failing equipment) or the routing protocol
itself.

Safety problems arise for two reasons:

1. Conflicting route selections within the same AS, caused by interactions between BGP
route attributes and the IGP (iBGP safety).

2. Conflicting rankings, caused by conflicting policies between ASes (eBGP safety).

In both cases, guaranteeing safety is hard. The rest of this section focuses on the con-
straints for guaranteeing safety in iBGP. Guaranteeing that eBGP satisfies safety requires
either knowing the rankings of ASes across the global Internet (not a realistic requirement,
because ASes typically insist on keeping their rankings private) or placing restrictions on
how each AS can specify rankings and filters. This problem is the focus of Chapter 6.

Safety violations in iBGP occur because BGP’s route selection process (as described in
Table 2-2, Section 2.2.2) does not satisfy determinism. Determinism essentially says that the
route each router ultimately selects should not depend on either (1) the presence or absence
of routes that would not be selected in the first place or (2) the order in which messages
arrive. We formally define determinism and explain why guaranteeing this property is
difficult in practice.

Definition 3.11 (Selection function) A selection function at router r, λr, takes as input a set of
routes Rd = {r1, . . . , rn} for some destination d and produces a single route r i ∈ Rd. The route ri
is often called the router’s “best route” to d.

Definition 3.12 (Determinism) A routing protocol satisfies determinism for destination d if,
for all routers r, if r has a set of routes Rd to d, λr(Rd) satisfies the following two properties:

1. λr(Rd) = λr(R′d), where R′d is any subset of Rd that contains λr(Rd), and
2. λr(Rd) does not depend on the order in which the routes in Rd arrived at router r.

Determinism depends only on the selection function, λr, for all routers r. Thus, we may also discuss
a single selection function, λr, in terms of whether it satisfies determinism.

Determinism is important for predictability; moreover, as the following observation
shows, violations of determinism can induce safety violations, even when the selection
function of only one router violates determinism.

Observation 3.2 If the selection function of even one router, λr, violates determinism, then the
routing protocol may also violate safety.

66 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

MED: 10MED: 20

PSfrag replacements

R1

R2 R3

1 2

3

AB C

λR1({A, C}) = C; λR1({A, B}) = A

λR2({A, B, C}) = C; λR2({B, C}) = B

A/φ
B/C

Figure 3-10: Instantiation of Figure 3-9 in a BGP configuration. Router 1 is a route reflector with two clients,
R2 and R3. Costs on edges are IGP path costs. Router R2 prefers route B over route C due to a tiebreak.

The following example illustrates this point.

Example 3.1 Consider Figure 3-9. Router R1 selects route A given the choices {A, B} and
selects route C given choices {A, C}. This selection function satisfies determinism. On
the other hand, router R2’s selection function violates determinism: λR2({A, B, C}) = C,
but λR2({B, C}) = B. The interaction of the two selection functions creates the following
oscillation:

1. Router R1 receives only route A, selects it, and advertises this route to router R2.
2. Router R2 has received {A, B, C}, selects route C, and advertises it to router R1.
3. Router R1 has received {A, C}, selects route C, and sends a withdrawal (φ) for route

A to router R2.
4. Router R2 selects B from the set {B, C} and advertises it to router R1, implicitly with-

drawing route C.
5. Router R1 now has to select a route from the set {A, B}, selects route A, and advertises

it to router R2.

This process repeats forever, violating safety. �

� 3.4.1 Determinism Violations in BGP: The MED Attribute

It turns out that the above scenario can occur in BGP, because the MED attribute causes
each router’s selection function to violate determinism. The addition of a third router, as
shown in Figure 3-10, gives rise to the oscillation from the previous example. In this case,
router R1 is a route reflector for two clients: routers R2 and R3, with IGP costs as shown.
Routes A and B are advertised by the same AS, and route A has a lower MED value (and,
hence, is preferred to B). In this setup, the selection functions are exactly as described in
the from Figure 3-9: when router R2 learns {A, B, C}, route B is eliminated due to MED,
and route C is selected because it is an eBGP-learned route. When router R2 learns only
{B, C}, on the other hand, it prefers route B over route C due to the router ID tiebreak.
Similarly, router R1 prefers route C over route A due to IGP, but router A over router B

SECTION 3.4. SAFETY 67

due to MED. The routing system in this example oscillates in the same fashion as the one
shown in Figure 3-9.

As the above example shows, the interaction between the MED attribute and route re-
flection can cause BGP to violate safety. Note that this example satisfies the guidelines that
were specifically proposed to avoid these types of oscillations [89]. Even though not all
safety violations are caused by violations of determinism, eliminating BGP’s determinism
problem can eliminate all oscillations that do not involve cyclic preferences over routes
caused by setting the local preference attribute. Specifically, by making the MED attribute
comparable across all routes, rather than just those from the same AS, each router’s selec-
tion function can be made to satisfy determinism. We now formally show this result.

Lemma 3.1 If a router’s selection function compares the MED attribute across all routes to a des-
tination (rather than just across those from the same neighboring AS), then its selection function
satisfies determinism.

Proof. We must show that if the router’s selection function compares the MED attribute
across all routes to a destination then: (1) the route it selects does not change when any
route is removed from that set; and (2) the route it selects does not depend on the order in
which the router receives them.

When a router compares the MED attribute across all routes to a destination, then all
routes to a destination can be totally ordered. Specifically, all routes can be sorted by local
preference. Each set of routes with equal local preference can be sorted from shortest AS
path length to longest, and so forth. Thus, the set of routes to a destination can be totally
ordered, and removing a route from that set that is not the most preferred in the total
ordering will not change the most preferred route, since that route must have had a lower
local preference, longer AS path length, higher origin type, lower MED, etc.

We must also show that the route a router r selects, λr(Rd), does not depend on the order
that r receives the routes in Rd. We know that the routes in Rd are totally ordered, which
means that there is a preference relation between any two routes ρ i and ρ j that is consistent
for any subset of Rd that contains both ρi and ρ j. We also know that λr(Rd) will ultimately
select the route that is most preferred in that total ordering. Suppose that most preferred
route is ρi. When ρi arrives, r will select ρi and continue to select it even after other routes
arrive. Thus, if ρ j arrives before ρi, then the router will not continue to select ρ j after ρi
arrives, since ρi is strictly better than ρ j in the total ordering. Similarly, if ρ j arrives after
ρi, then r will continue to select ρi, since it is better than ρ j in the total ordering. �

We explore how comparing the MED attribute across all routes affects protocol opera-
tion, as well as how this might be done in practice, in Section 5.9.1. In short, the primary
benefit of making the route selection function deterministic is that a set of routers within
a single AS may violate safety if determinism is not satisfied. Although determinism pre-
vents safety violations such as those shown in Figures 3-9 and 3-10, it does not prevent all
violations of safety. For that, we require a stronger notion of determinism, which we call
egress determinism.

68 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

Determinism

Egress Determinism

iBGP Safety

Figure 3-11: The relationship between determinism, egress determinism, and safety.

32 1 4

5

PSfrag replacements

x y z

X Y Z

R1 R2

Figure 3-12: The interaction of IGP and iBGP can cause a violation of egress determinism. λR1 is equal to
either x or y depending on whether z ∈ Ed.

� 3.4.2 Egress Determinism Violations in BGP: Route Reflection

Even if determinism is satisfied, an AS’s iBGP topology can still cause a routing protocol
to violate safety. In particular, we can construct an oscillation that involves the interac-
tion between an AS’s route reflector topology and its IGP topology. To better understand
this interaction, we first define the notion of egress determinism. Egress determinism is a
stronger condition than determinism, as shown in Figure 3-11; essentially, it states that,
given a set of routes learned at any egress router in the AS, a router’s preference between
any pair of those routes should not depend on either the order in which those routes arrive
or the presence or absence of other routes. Egress determinism implies determinism, but it
also states that every router’s selection function should satisfy determinism for all routes
learned at any router in the AS, not just those learned locally at that router.

Definition 3.13 (Egress Determinism) Let Ed be the set of routes for destination d learned at
any router in the AS. Then, a routing protocol satisfies egress determinism for destination d if
λr(Ed) satisfies the following two properties:

1. λr(Ed) = λr(E′d), where E′d is any subset of Ed that contains λr(Ed), and

2. λr(Ed) does not depend on the order in which the routes in Ed arrived at router r.

Note that egress determinism is a stronger condition than determinism because it states
properties that λr must satisfy over the set of routes learned by all routers in the AS, not
just the routes learned at r.

SECTION 3.4. SAFETY 69
PSfrag replacements

R1 R2 R3

xx y
y zz

λR1({x, y}) = y; λR1({x, y, z}) = x
λR2({x, z}) = z; λR2({x, y, z}) = x

λR3({y, z}) = z; λR3({x, y, z}) = y

x/y

y/z

x/z

Figure 3-13: Violations of egress determinism can also cause the routing protocol to violate safety.

If every router in the AS always learned all routes in Ed, then violations of egress deter-
minism would never cause oscillations: given a fixed set of routes Ed, every router would
always see that set and select the same route. In an iBGP topology with route reflectors,
however, most routers will see some subset of Ed, which means that violations of egress
determinism may cause safety violations. Consider Figure 3-12: X is a route reflector client
of R1, and Y and Z are clients of route reflector R2. Suppose that routers X, Y, and Z all
learn routes for some destination d with equal local preference, AS path length, origin type,
and MED attributes, causing routers within the pictured AS to resort to preferring eBGP
routes over iBGP routes, and, that being equal, to prefer routes with the shortest IGP path
cost. If Ed = {x, y, z}, then λR1(Ed) = x: R2 selects z due to its shorter IGP path cost to the
next hop, and R1, having learned x and z, selects route x. If, on the other hand, Ed = {x, y},
then λR1(Ed) = y: R2 selects y, and R1, having learned both x and y, selects y due to the
shorter IGP path cost. Thus, the first condition of egress determinism is violated.

Like determinism violations, egress determinism violations can cause the routing proto-
col to violate safety. Consider three routers whose selection functions violate egress deter-
minism, as shown in Figure 3-13; R1’s selection function is identical to that in Figure 3-12.
Each router prefers one route or the other depending on the presence or absence of a third
route. In this case, there is no stable assignment of routes x, y, and z to routers R1, R2, and
R3. For example, if R1 selects x, then R2 selects z and R3 selects y, prompting R1 to select y,
and so on. This very scenario can be realized in BGP today if three routers’ route selection
functions fail to satisfy egress determinism, as shown in Figure 3-14.

Lemma 3.2 If an AS’s iBGP topology is RR-IGP-Consistent, and every router’s selection func-
tion satisfies determinism, then every router’s selection function also satisfies egress determinism.

Proof. Suppose that there exists some router R1 and routes x, y, and z (not necessarily
learned via eBGP at R1) such that λR1({x, y, z}) = y, but λR1({x, y}) = x. First, because
λR1 satisfies determinism, it must be the case that (1) R1 learns x via iBGP and (2) some
router R2 in the iBGP topology withdraws the eBGP-learned route x from router R1 upon
learning the route z, thereby preventing router R1 from receiving route x (if R1 had learned
x directly via eBGP, it would continue to select route x). Second, R2 must have selected z
over x because it had a shorter IGP path to the router from which it learned z—if x had
been less desirable based on some other attribute (e.g., AS path length), then r would have
also selected the route z upon learning it from R2, rather than selecting y instead. Third,
because R1 selects y after learning z from R2, its IGP path to the egress router that learned

70 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

2 3

1
1

55

41

PSfrag replacements

x y z

X Y Z

R1 R2 R3

Figure 3-14: The interaction of IGP and iBGP can cause a violation of egress determinism that induces a
safety violation. This figure shows the instantiation of Figure 3-13 in BGP. Previous work has also observed
that violations of this type could occur [61] but did not observe that these could be constructed in general
by composing egress determinism violations.

y must be shorter than its IGP path to the router that learned z, yet longer than its IGP path
to the router that learned x. This relation among distances to egresses is only possible if
the shortest path between R1 and either the egress router that learned route x or z does not
traverse R2 (i.e., the iBGP topology is not RR-IGP-Consistent). Figure 3-15 shows why this
relation is not possible in an iBGP topology that is RR-IGP-Consistent. �

We now state the conditions for iBGP to satisfy safety using our results involving deter-
minism and egress determinism. Specifically, we show that if MED is compared across all
routes (i.e., every router’s selection function satisfies determinism) and if the iBGP topol-
ogy is RR-IGP-Consistent (i.e., egress determinism is satisfied), then iBGP satisfies safety.

Theorem 3.5 If every router’s selection function compares MED attribute across all routes and
the iBGP topology is RR-IGP-Consistent, then iBGP satisfies safety.

Proof. The proof follows from Lemmas 3.1 and 3.2. If the conditions of the theorem hold,
then BGP satisfies both determinism and egress determinism. It remains to show that no
iBGP topology can violate safety if it satisfies both determinism and egress determinism.

We must show that, for any route that a router ultimately selects, other routers in the AS
will not select routes that ultimately causes the original router to change the route it selects.
For simplicity, we will consider an iBGP route reflector hierarchy with one level. The
argument can be extended to a multiple-level hierarchy, and to a network with multiple
top-level routers or multiple clients per route reflector, without loss of generality. Consider
the possible propagation of BGP routes between routers C1 and C2 and their route reflectors
R1 and R2, as shown in Figure 3-16. Suppose C1 and C2 initially select routes via eBGP;
each will readvertise these routes to R1 and R2. Then, there are three cases:

1. R1 prefers the route through its client C1. In this case, R1’s selection of the route through
C1 will obviously not cause either R1 or C1 to switch paths.

SECTION 3.4. SAFETY 71PSfrag replacements

R1 R2

XY Z

xy z

lr

ly lx lz

Figure 3-15: The main idea of the proof of Lemma 3.2. If R2 prefers z over x, then lz ≤ lx. If R1 prefers x,
given routes x, y, and z, then ly ≥ lr + lx. If R2 is on the shortest IGP path between R1 and both X and Z,
it follows that ly ≥ lr + lz (and, hence, R1 would not have selected route y). Thus, for R1 to prefer route y
when it learns routes x and z, its shortest path to either egress router Y or Z must not traverse R2. (The
links labeled with lx, ly, and lz are shown as single IGP links, but the argument generalizes to IGP paths.)

Case 2

Case 1

Case 3

PSfrag replacements

R1 R2

C1 C2

Figure 3-16: The three cases in the proof of Theorem 3.5.

2. R1 prefers its own eBGP-learned route (analogously for R2). In this case, C1 learns a route
via R1. If it continues to prefer its own route, neither router will select a new route.
If, on the other hand, it prefers the route through R1, then it will withdraw its eBGP-
learned route from R1. However, since λR1 satisfies determinism, R1 will continue to
select its own eBGP-learned route when it receives this withdrawal.

3. R1 prefers a route via R2 or C2 (analogously for R2). A similar argument can be used to
show that neither R1 nor C1 will select a new route once R1 selects a route via C1. For
the third case, we must also show that R1’s withdrawal of either its own route or the
route via C1 from R2 will cause neither R2 nor C2 to change routes. Since R1 prefers
a route via R2 then R2 selected its own route or the route via C2; egress determinism
guarantees that R1’s withdrawal will not cause either C2 or R2 to change its route
selection.

�

72 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

PSfrag replacements

x

y

z

X

Y

Z

R1

R2R3

l1 l2

l3

l4

l5

l6

Figure 3-17: When iBGP violates safety but satisfies egress determinism, the only way a cyclic iBGP topol-
ogy can violate safety is if the IGP allows negative edge weights. This example shows an iBGP hierarchy
that includes only six routers, but it generalizes: Ri could be any cyclic relationship at the top of the hierar-
chy, X could be a path through a sequence of iBGP sessions to the egress router X (e.g., a sequence of route
reflector-client sessions) and l4 could be the cost of that path, and so forth.

Our definitions have allowed us to derive sufficient conditions on safety that are signif-
icantly weaker (and therefore, the result is stronger) than in previous work [59]. In partic-
ular, our results show that assuming that the relationships between route reflectors and their clients
are acyclic is unnecessary (although a cyclic topology may make an oscillation more likely if
egress determinism is violated). It turns out that the only way for a cyclic iBGP topology
to cause oscillations would be for either the iBGP topology to not be RR-IGP-Consistent or
for some IGP edges to have negative edge weights.

To understand why cycles in the iBGP hierarchy do not cause problems if the topology
is RR-IGP-Consistent, see Figure 3-17. In this example, if egress determinism is satisfied,
then the only case where an oscillation might result is where R1 prefers route y over route
x, R2 prefers route z over y, and R3 prefers x over z. All other cases where oscillation
might occur (i.e., those caused by violations of egress determinism) require some shortest
IGP path between a router and another egress to not traverse that router’s route reflector.
For safety to be violated in this example, routes x, y, and z must all have equal local pref-
erence, AS path length, origin type and MED (otherwise, all routers would select the most
preferable route or routes). Presuming that all routes are equally good up to the step in
route selection involving the IGP tiebreak, then the only way for such a situation to occur
is if the following inequalities were satisfied:

l1 + l4 < l6
l2 + l5 < l4
l3 + l6 < l5

which implies that l1 + l2 + l3 < 0, or that some IGP edge weights must be negative.

SECTION 3.5. SUMMARY 73

Theorem 3.5 is significant because the conditions on the iBGP topology that are required
to guarantee safety are identical those for guaranteeing route validity, as stated in Theo-
rem 3.2. Furthermore, because there are now known techniques for generating these con-
figurations [139], our results are prescriptive, since this technique that was designed to
generate iBGP topologies that guarantee route validity also happens to generate topolo-
gies that guarantee safety.

This section has described safety violations that result from protocol interactions within
a single AS. However, safety is a somewhat unique property because it inherently depends
on how different ASes are allowed to rank candidate routes to a destination (i.e., Obser-
vation 3.1 is not satisfied). Whereas, in iBGP, a router’s rankings are constrained by the
underlying IGP topology, in eBGP, an AS’s rankings can be arbitrary. Verifying a prop-
erty that involves analyzing the interactions between the configurations of multiple ASes
is challenging: because these ASes compete with one another, no single AS has knowl-
edge of the configurations of other ASes. Chapter 6 explores how safety can be guaranteed
across multiple ASes without requiring each AS to expose its configurations to other ASes.

� 3.5 Summary

Detecting problems in Internet routing requires a precise specification of correct behavior
and a framework for reasoning about whether that specification is satisfied. In this chap-
ter, we presented a three-part correctness specification: route validity, path visibility, and
safety. We explained why each of these properties is important for the fundamental op-
eration of Internet routing and reasoned about how these properties may be satisfied or
violated in the context of BGP.

In the subsequent chapters of this dissertation, we will use the specification constraints
to guide the operations and design of correct Internet routing. In Chapter 4, we will explore
how static configuration analysis can be used to guarantee that two of these properties—
route validity and path visibility—hold. Theorems 3.1–3.4 suggest invariants on configura-
tion that could be verified by detecting when the configuration violates certain invariants,
and both Theorem 3.5 and the discussion at the end of Section 3.2.1 suggest possible pro-
tocol modifications. In Chapter 5, we will exploit the fact that, when the routing protocol
satisfies certain aspects of this specification (specifically, path visibility, safety, and, in some
cases, determinism), we can design algorithms that efficiently predict the routes that each
router in an AS will ultimately select. Chapter 6 tackles the problem of guaranteeing safety
in the context of eBGP, which is challenging since it inherently involves dependencies be-
tween the policies of multiple independent (and often competing) ASes.

74 CHAPTER 3. CORRECTNESS SPECIFICATIONS FOR INTERNET ROUTING

Things could be worse.
Suppose your errors were counted and published every day,
like those of a baseball player.
- Unknown

CHAPTER 4
rcc: Detecting BGP Configuration

Faults with Static Analysis

T
his chapter describes the design, implementation, and evaluation of rcc, the router
configuration checker, a tool that uses static analysis to detect faults in Border Gate-

way Protocol (BGP) configuration. By finding faults over a distributed set of router config-
urations, rcc enables network operators to test and debug configurations before deploying
them in an operational network. This approach improves on the status quo of “stimulus-
response” debugging where operators need to run configurations in an operational net-
work before finding faults.

As described in Chapter 2 (Section 2.3), network operators use router configurations
to provide reachability, express routing policy (e.g., transit and peering relationships [99],
inbound and outbound routes [6], etc.), configure primary and backup links [46], and per-
form traffic engineering across multiple links [37]. The complex process of configuring
routers is exacerbated by the number of lines of code, by configuration being distributed
across the routers in the network, by the absence of useful high-level primitives in today’s
configuration languages, by the diversity in vendor-specific configuration languages, and
by the number of ways in which the same high-level functionality can be expressed in a
configuration language.

Router configuration gives network operators the flexibility to control traffic and im-
plement complex business relationships, but its complexity also means that router con-
figurations are prone to faults [6, 85]. Configuration faults include invalid routes (in-
cluding hijacked and leaked routes); contract violations [35]; unstable routes [78]; routing
loops [23, 29]; and persistently oscillating routes [4, 58, 136]. As summarized in Table 2-4
(Section 2.4.1), BGP configuration faults can seriously affect end-to-end Internet connec-
tivity, leading to lost packets, forwarding loops, and unintended paths between hosts or
ASes.

To understand the extent to which this complex configuration is responsible for the
types of failures that occur in practice, we studied the archives of the North American
Network Operators Group (NANOG) mailing list, where network operators report oper-
ational problems, discuss operational issues, etc. [96]. Because the list has received about
75,000 emails over the course of ten years, we first clustered the emails by thread and

75

76 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

Figure 4-1: Number of threads discussing routing faults on the NANOG mailing list.

pruned threads based on a list of about fifteen keywords (e.g., “BGP”, “issue”, “loop”,
“problem”, “outage”). We then reviewed these threads and classified each of them into
one or more of the categories shown in Figure 4-1. This informal study shows some clear
trends. First, many routing problems are caused by configuration faults. Second, the same
types of problems continually appear. Third, BGP configuration problems continually per-
plex even experienced network operators. A tool like rcc that can proactively detect config-
uration faults will clearly benefit network operators.

Remarkably, static configuration analysis can detect many of these configuration faults
before the faulty configuration is ever deployed on a live network.

Detecting BGP configuration faults poses several challenges beyond simply defining a
correctness specification. First, a high-level correctness specification, such as the one de-
fined in Chapter 3, must be used to derive a set of constraints that can be tested against the
actual configuration. Second, BGP configuration is distributed—analyzing routing config-
uration requires both synthesizing distributed configuration fragments and representing
the configuration in a form that makes it easy to test constraints. This chapter tackles these
challenges and makes the following two contributions:

1. We present the design and implementation of rcc. rcc focuses on detecting faults
that have the potential to cause persistent routing failures. rcc is not concerned with
correctness during convergence (since any distributed protocol will have transient
inconsistencies during convergence). rcc’s goal is to detect problems that may exist
in the steady state, even when the protocol converges to some stable outcome.

2. We use rcc to explore the extent of real-world BGP configuration faults; this chap-

SECTION 4.1. RCC DESIGN 77

ter presents the first published analysis of BGP configuration faults in real-world
ISPs. We have analyzed real-world, deployed configurations from 17 different ASes
and detected more than 1,000 BGP configuration faults that had previously gone un-
detected by operators. These faults ranged from simple “single router” faults (e.g.,
undefined variables) to complex, network-wide faults involving interactions between
multiple routers. To date, rcc has been downloaded by over seventy network opera-
tors.

rcc is intended to be used before configurations are deployed, but we also used rcc to
study the deployed configurations of live, operational networks. In these networks, rcc dis-
covered many faults that could potentially cause failures. These include: (1) faults that
could have caused network partitions due to errors in how external BGP information was
being propagated to routers inside an AS, (2) faults that caused invalid routes to propagate
inside an AS, and (3) faults in policy expression that caused routers to advertise routes (and
hence potentially forward packets) in a manner inconsistent with the AS’s desired policies.
Our findings indicate that configuration faults that can cause serious failures are often not
immediately apparent (i.e., the failure that results from a configuration fault may only be
triggered by a specific failure scenario or sequence of route advertisements). If rcc were
used before BGP configuration was deployed, we expect that it would be able to detect
faults that immediately caused routing failures as well.

Our analysis of real-world configurations suggests that most configuration faults stem
from three main causes. First, the mechanisms for propagating routes within a network are
overly complex. The main techniques used to propagate routes scalably within a network
(e.g., “route reflection with clusters”) are easily misconfigured. Second, many configura-
tion faults arise because configuration is distributed across routers: even simple policy
specifications require configuration fragments on multiple routers in a network. Third,
configuring policy often involves low-level mechanisms (e.g., “route maps”, “community
lists”, etc.) that should be hidden from network operators.

The rest of this chapter proceeds as follows. Section 4.1 describes the design of rcc. Sec-
tions 4.2 and 4.3 highlight some of rcc’s path visibility and route validity tests. Section 4.4
describes implementation details. Section 4.5 presents configuration faults that rcc discov-
ered in 17 operational networks. Section 4.6 summarizes the take-away lessons from this
study, and Section 4.7 concludes.

� 4.1 rcc Design

rcc analyzes both single-router and network-wide properties of BGP configuration and
outputs a list of configuration faults. rcc checks that the BGP configuration satisfies a set
of constraints, which are based on a correctness specification. Figure 4-2 illustrates rcc’s
high-level architecture.

We envision that rcc has three classes of users: those that wish to run rcc with no mod-
ifications, those that wish to add new constraints concerning the existing specification,
and those that wish to augment the high-level specification. rcc’s modular design allows
users to specify other constraints without changing the system internals. Some users may
wish to extend the high-level specification to include other aspects of correctness (e.g.,
safety [61]) and map those high-level specifications to constraints on the configuration.

78 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

Correctness
Specification

routers in an AS)

BGP Configuration
(Distributed across

Correctness

Check

Faults

Constraints

ConstraintsRepresentation
Normalized

BGP Configuration

Ch. 3 / Section 4.1.1

Section 4.1 (preamble)

Section 4.1.2

Figure 4-2: Overview of rcc.

Table Description
global options router, various global options (e.g., router ID)
sessions router, neighbor IP address, eBGP/iBGP, pointers to policy, options (e.g.,

route-reflector client)
prefixes router, prefix originated by this router
import/export filters normalized representation of filter: IP range, mask range, permit or deny
import/export policies normalized representation of policies
loopback address(es) router, loopback IP address(es)
interfaces router, interface IP address(es)
static routes static routes for prefixes

Derived or External Information
undefined references policies and filters that a BGP configuration referenced but did not define
bogon prefixes prefixes that should always be filtered on eBGP sessions [21]

Table 4-1: Normalized configuration representation.

In this section, we describe how rcc generates a normalized representation of the con-
figuration that facilitates constraint checking. As described in Section 4.1.1, we use the
correctness specification from Chapter 3 as a guide for deriving actual correctness con-
straints that rcc can check against the normalized configuration. Section 4.1.2 explains this
process.

rcc implements the normalized representation as a set of relational database tables. This
approach allows constraints to be expressed independently of router configuration lan-
guages. As configuration languages evolve and new ones emerge, only the parser must be
modified. It also facilitates testing network-wide properties, since all of the information
related to the network’s BGP configuration can be summarized in a handful of tables. A
relational structure is natural because many sessions share common attributes (e.g., all ses-
sions to the same neighboring AS often have the same policies), and many policies have
common clauses (e.g., all eBGP sessions may have a filter that is defined in exactly the same
way). Table 4-1 summarizes these tables; Section 4.4.1 details how rcc populates them.

SECTION 4.1. RCC DESIGN 79

� 4.1.1 Applying the Correctness Specification to BGP Configuration

rcc’s correctness specification uses the properties from Chapter 3 as a starting point.
rcc checks two aspects of the correctness specification outlined in Chapter 3: path visibility
and route validity. rcc finds path visibility and route validity violations in BGP configuration
only. To make general statements about path visibility and route validity, rcc assumes that
the internal routing protocol (i.e., interior gateway protocol, or “IGP”) used to establish
routes between any two routers within a AS is operating correctly. BGP requires the IGP to
operate correctly because iBGP sessions may traverse multiple IGP hops and because the
“next hop” for iBGP-learned routes is typically several IGP hops away.

rcc detects faults that cause persistent failures. Both Chapter 3 and previous work
(e.g., [61]) have studied conditions on the relationships between iBGP and IGP configu-
ration that must be satisfied to guarantee that iBGP converges; rcc does not yet parse IGP
configuration, so it does not check for violations of these constraints. The correctness spec-
ifications and constraints assume that, given stable inputs, the routing protocol eventually
converges to some steady state behavior.

Currently, rcc only detects faults in the BGP configuration of a single AS (a network
operator typically does not have access to the BGP configuration from other ASes). For-
tunately, because an AS’s BGP configuration explicitly controls both dissemination and
filtering, many configuration faults, including partitions, route leaks, etc., can be detected
by analyzing the BGP configurations of set of the routers in a single AS.

� 4.1.2 Deriving Correctness Constraints and Detecting Faults

Deriving constraints on the configuration itself that guarantee that the correctness specifi-
cation is satisfied is challenging. We reason about how the aspects of configuration from
Section 2.3.1 affect each correctness property and derive appropriate constraints for each
of these aspects. Table 4-2 summarizes the correctness constraints that rcc checks, which
follow from determining which aspects of configuration affect each aspect of the correct-
ness specification (from Section 4.1.1). These constraints are an attempt to map the path
visibility and route validity specifications to constraints on BGP configuration that can be
checked against the actual configuration.

Ideally, operators would run rcc to detect configuration faults before they are deployed.
Some of rcc’s constraints detect faults that would most likely become active immediately
upon deployment. For example, a router that is advertising routes with an incorrect next-
hop attribute will immediately prevent other routers that use those routes from forward-
ing packets to those destinations. In this case, rcc can help a network operator diagnose
configuration faults and prevent them from introducing failures on the live network.

Many of the constraints in Table 4-2 concern faults that could remain undetected even
after the configuration has been deployed because they remain masked until some se-
quence of messages triggers them. In these cases, rcc can help operators find faults that
could result in a serious failure. Section 4.2 describes one such path visibility fault involv-
ing dissemination in iBGP in further detail. In other cases, checking constraints implies
some knowledge of high-level policy (recall that route validity, as defined in Definition 3.7,
concerns a path that conforms to some high-level policy). In the absence of a high-level pol-
icy specification language, rcc must make inferences about a network operator’s intentions.

80 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

Problem Possible Active Fault
Path Visibility

Dissemination Problems
Signaling partition: Router may learn a suboptimal route

- of route reflectors or none at all.
- within a RR “cluster”
- in a “full mesh”

Routers with duplicate: Routers may incorrectly drop routes.
- loopback address
- cluster ID

iBGP configured on one end Routers won’t exchange routes.
iBGP not to loopback iBGP session fails when one interface fails.

Route Validity
Filtering Problems
transit between peers Network carries traffic “for free”.
inconsistent export to peer Violation of contract.
inconsistent import Possible unintentional “cold potato” routing.
eBGP session:

- w/no filters
- w/undef. filter
- w/undef. policy

filter:
- w/missing prefix

policy:
- w/undef. AS path
- w/undef. community
- w/undef. filter

• leaked internal routes
• re-advertising bogus routes
• accepting bogus routes from neighbors
• unintentional transit between peers

Dissemination Problems
prepending with bogus AS AS path is no longer valid.
originating unroutable dest. Creates a blackhole.
incorrect next-hop Other routers may be unable to reach the routes for a

next-hop that is not in the IGP.
Determinism

Ranking Problems
nondeterministic MED
age-based tiebreaking Route selection depends on message order.

Table 4-2: BGP configuration problems that rcc detects and their potentially active faults.

Section 4.3 describes several route validity faults where rcc must make such inferences.

� 4.1.3 Completeness and Soundness

rcc’s constraints are neither complete nor sound; that is, they may not find all problem-
atic configurations, and they may complain about harmless deviations from best common
practice. However, practical static analysis techniques for program analysis are typically
neither complete nor sound, either [94]. Figure 4-3 shows the relationships between classes
of configuration faults and the class of faults that rcc detects. Latent faults are faults that
are not actively causing any problems but nonetheless violate the correctness constraints.
A subset of latent faults are potentially active faults, for which there is at least one input se-
quence that is certain to trigger the fault. For example, an import policy that references an
undefined filter on a BGP session to a neighboring AS is a potentially active fault, which

SECTION 4.1. RCC DESIGN 81

Potentially Active Faults

End−to−End
Failures

Faults found by

Latent Faults

rcc

Figure 4-3: Relationships between faults and failures.

will be triggered when that neighboring AS advertises a route that ought to have been
filtered. When deployed, a potentially active fault will become active if the corresponding
input sequence occurs. An active fault constitutes a routing failure for that AS.

Some active faults may ultimately appear as end-to-end failures. For example, if an AS
advertises an invalid route (e.g., a route for a prefix that it does not own) to a neighboring
AS whose import policy references an undefined filter, then some end hosts may not be
able to reach destinations within that prefix. Note that a potentially active fault may not
always result in an end-to-end failure if no path between the sources and destinations
traverses the routers in the faulty AS.

rcc detects a subset of latent (and hence, potentially active) faults. In addition, rcc may
also report some false positives: faults that violate the constraints but are benign (i.e., the
violations would never cause a failure). Ideally, rcc would detect fewer benign faults by
testing the BGP configuration against an abstract specification. Unfortunately, produc-
ing such a specification requires additional work from operators, and operators may well
write incorrect specifications. One of rcc’s advantages is that it provides useful information
about configuration faults without requiring any additional work on the part of operators.

Our previous work [29] presented three properties in addition to path visibility and
route validity: information flow control (this property checks if routes “leak” in violation
of policy), determinism (whether a router’s preference for routes depends on the presence
or absence of other routes), and safety (whether the protocol converges) [56]. Our defini-
tions of route validity (Definition 3.7), policy (Definition 3.5), and policy-conformant paths
(Definition 3.6) incorporate the notion of information flow control. With a couple of ex-
ceptions (see Table 4-2), rcc does not check for faults related to determinism and safety.
Many aspects of determinism depend on the route selection process that are inherent in
today’s practices (e.g., the fact that MED is only comparable across routes received from
the same neighboring AS) and cannot be effectively checked using static analysis. Safety is
a property of the global routing system that, in practice, requires access to configurations
from multiple ASes to check. In Chapter 6, we derive constraints that guarantee safety
with access to configurations of only a single AS and find that these conditions are quite
restrictive.

82 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

PSfrag replacements

Route r1 to d

Route r2 to d

RR1

RR2W X

Y

Figure 4-4: In this iBGP configuration, route r2 will be distributed to all the routers in the AS, but r1 will
not. RR2 and Y will not learn of r1, leading to a network partition that won’t be resolved unless another
route to the destination appears from elsewhere in the AS.

� 4.2 Path Visibility Faults

Recall that path visibility specifies that every router that has a usable path to a destination
learns at least one valid route to that destination (Definition 3.9). It is an important prop-
erty because it ensures that, if the network remains connected at lower layers, the routing
protocol does not create any network partitions. Table 4-2 shows many conditions that
rcc checks related to path visibility; in this section, we focus on iBGP configuration faults
that can violate path visibility and explain how rcc detects these faults.

Ensuring path visibility in a “full mesh” iBGP topology (as described in Section 2.3.1)
is reasonably straightforward; rcc checks that every router in the AS has an iBGP session
with every other eBGP-speaking router. If this condition is satisfied, every router in the AS
will learn all eBGP-learned routes.

A route reflector may itself be a client of another route reflector. Any router may also
have iBGP sessions with other routers. Recall from Section 3.3 that we use the set of
reflector-client relationships between routers in an AS to define a graph I , where each
router is a node and each session is either a directed or undirected edge: a client-reflector
session is a directed edge from reflector to client, and other iBGP sessions are undirected
edges. An edge exists if and only if (1) the configuration of each router endpoint specifies
the loopback address of the other endpoint1 and (2) both routers agree on session options
(e.g., MD5 authentication parameters). I should also not have partitions at lower layers.
We say that I is acyclic if I has no sequence of directed and undirected edges that form a
cycle.

1If a router establishes an iBGP session with a router’s loopback address, then the iBGP session will remain
active as long as that router is reachable via any IGP path between the two routers. If a router establishes
an iBGP session with an interface address of another router, however, the iBGP session will go down if that
interface fails, even if an IGP path exists between those routers.

SECTION 4.3. ROUTE VALIDITY FAULTS 83

Even a connected directed acyclic graph of iBGP sessions can violate path visibility. For
example, in Figure 4-4, routers RR2 and Y do not learn route r1 to destination d (learned via
eBGP by router RR1), because X will not readvertise routes learned from its iBGP session
with RR1 to other iBGP sessions. We call this path visibility fault an iBGP signaling partition:
a path exists, but neither RR2 nor Y has a route for it. Note that simply adding a regular
iBGP session between routers RR1 and RR2 would solve the problem.

In addition to causing network partitions, iBGP signaling partitions may result in sub-
optimal routing. For example, in Figure 4-4, even if RR2 or Y learned a route to d via eBGP,
that route might be worse than the route learned at RR1. In this case, RR2 and Y would
ultimately select a suboptimal route to the destination, an event that an operator would
likely fail to notice.

rcc detects iBGP signaling partitions. It determines if there is any combination of eBGP-
learned routes such that at least one router in the AS will not learn at least one route to
the destination, by performing a check based on the following result, which we proved in
Section 3.3.

Theorem 3.4. Suppose that the graph defined by an AS’s iBGP relationships, I , is acyclic. Then,
I does not have a signaling partition if, and only if, the eBGP-speaking routers that are not route
reflector clients form a clique.

rcc checks this condition by constructing the iBGP signaling graph I from the sessions
table (Table 4-1). It assumes that the IGP graph is connected, then determines whether I is
connected and acyclic and whether the routers at the top layer of I form a clique.

� 4.3 Route Validity Faults

BGP should satisfy route validity, as defined formally in Chapter 3 (Definition 3.7). Ta-
ble 4-2 summarizes the route validity faults that rcc checks. The biggest challenge for
checking route validity is that the definition says that the routes the routers in an AS select
should induce only policy-conformant paths (see Definition 3.6), but rcc operates without
a specification of the intended policy. This section focuses on rcc’s approach to detecting
potential policy-related problems.

Requiring operators to provide a high-level policy specification would require design-
ing a specification language and convincing operators to use it, and it provides no guar-
antees that the results would be more accurate, since errors may be introduced into the
specification itself. Instead, rcc forms beliefs about a network operator’s intended policy
in two ways: (1) assuming that intended policies conform to best common practice and
(2) analyzing the configuration for common patterns and looking for deviations from those
patterns. (The idea of forming beliefs about intended protocol behavior is inspired from
similar ideas in systems [25].) rcc then finds cases where the configuration appears to vi-
olate these beliefs. It is noteworthy that, even in the absence of a policy specification, this
technique detects many meaningful configuration faults and generates few false positives.

� 4.3.1 Violations of Best Common Practice

We can derive some notions of high-level policy from our knowledge of best common
practice (i.e., the manner in which many ASes tend to configure their networks). In par-

84 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

ticular, rcc looks for two violations of best common practice: (1) advertising a route from
one “peer” to another (i.e., a violation of the common business practices defined in Ta-
ble 2-3 (Section 2.3.1); and (2) not advertising routes in a consistent manner at all peering
points [35]. In this section, we explain both of these practices in more detail.

A route that an AS learns from one of its “peers” should not be readvertised to another
peer. Checking this condition requires determining how a route propagates through an
AS. Figure 4-5 illustrates how rcc performs this check. Suppose that rcc is analyzing the
configuration from AS X and needs to determine that no routes learned from AS B are
exported to AS A. First, rcc determines all routes that AS X exports to AS A, typically
a set of routes that satisfy certain constraints on their attributes. For example, router R1
may export to AS A only routes that are “tagged” with the label “1000”. As described in
Section 2.3, ASes often assign such “community” labels to a route to control how other
routers rank or filter it. rcc then checks the import policies for all sessions to AS B, ensuring
that no import policy will set route attributes on any incoming route that would place it
in the set of routes that would be exported to AS A. To perform this check, rcc must know
which of an AS’s neighboring ASes are peers; thus, this check requires this additional input
from the network operator.

Additionally, an AS should advertise routes with equally good attributes to each peer
at every peering point. An AS should not advertise routes with inconsistent attributes,
since doing so may prevent its peer from implementing “hot potato” routing: If ASes 1
and 2 are peers, then the export policies of the routers in AS 1 should export routes to AS
2 that have equal AS path length and MED values. If not, router X could be forced to send
traffic to AS 1 via router Y (“cold potato” routing). This behavior typically violates peering
agreements. Recent work has observed that this type of inconsistent route advertisement
sometimes occurs in practice [35].

An AS’s policies may violate this best common practice for two reasons. First, an AS
may apply different export policies at different routers to the same peer. Checking for
consistent export involves comparing export policies on each router that has an eBGP ses-
sion with a particular peer. Static configuration analysis is useful because it can efficiently
compare policies on many different routers. In practice, this comparison is not straightfor-
ward because differences in policy definitions are difficult to detect by direct inspection of
the distributed router configurations. rcc facilitates comparing export policies across sets
of routers by normalizing all of the export policies for an AS, as described in Table 4-1
(Section 4.1). Second, an iBGP signaling partition can create inconsistent export policies
because routes with equally good attributes may not propagate to all peering routes. For
example, consider Figure 4-4 again. If routers W and Z both learn routes to some destina-
tion d, then route W may learn a “better” route to d, but routers Y and Z will continue to
select the less attractive route. If routers X and Y readvertise their routes to a peer, then
the routes advertised by X and Y will not be equally good. Thus, rcc also checks whether
routers that advertise routes to the same peer are in the same iBGP signaling partition (as
described in Section 4.2, rcc checks for all iBGP signaling partitions, but ones that cause
inconsistent advertisement are particularly serious).

SECTION 4.4. IMPLEMENTATION 85

1. Determine the set of routes that routers 2. Determine how import policies set route
 attributes on incoming routes from AS B. would export to AS A.

PSfrag replacements

AS A AS B

AS X

R1

Figure 4-5: How rcc computes route propagation.

Router
Configurations

(offline)
ParserPreprocessor

Representation
Normalized

Constraint
Checker

Figure 4-6: Overview of rcc implementation.

� 4.3.2 Configuration Anomalies

When the configurations for sessions at different routers to a neighboring AS are the same
except at one or two routers, the deviations are likely to be mistakes. This test relies on the
belief that, if an AS exchanges routes with a neighboring AS on many sessions and most of
those sessions have identical policies, then the sessions with slightly different policies may
be misconfigurations. Of course, this test could result in many false positives because there
are legitimate reasons for having slightly different import policies on sessions to the same
neighboring AS (e.g., outbound traffic engineering), but it does provide a useful sanity
check.

� 4.4 Implementation

rcc is implemented in Perl and has been downloaded by over seventy network operators.
The parser is roughly 60% of the code. Much of the parser’s logic is dedicated to policy
normalization. Figure 4-6 shows an overview of rcc, which takes as input the set of con-
figuration files collected from routers in a single AS using a tool such as “rancid” [113].
rcc converts the vendor-specific BGP configuration to a vendor-independent normalized
representation. It then checks this normalized format for faults based on a set of correct-
ness constraints. rcc’s functionality is decomposed into three distinct modules: (1) a pre-
processor, which converts configuration into a more parsable version; (2) a parser, which
generates the normalized representation; and (3) a constraint checker, which checks the
constraints.

86 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

gw1 10.1.2.3 3

router neighbor AS import

...

0:1000

1 0

2 1

clause permit

...

...

AS regexp comm. localpref

80

^65000
^3

neighbor 10.1.2.3 route−map IMPORT_CUST in

 match as−path 99
route−map IMPORT_CUST deny 10

route−map IMPORT_CUST permit 20
 match as−path 88

 set localpref 80
ip as−path access−list 99 permit ^65000

neighbor 10.1.2.3 remote−as 3

ip as−path access−list 88 permit ^3
ip community−list 10 permit 0:1000

 match community 10
Policies

Sessions

Communities
AS Paths

Normalized Representation:Configuration on router "gw1":

Figure 4-7: BGP configuration in normalized format.

� 4.4.1 Preprocessing and Parsing

The preprocessor adds scoping identifiers to configuration languages that do not have ex-
plicit scoping (e.g., Cisco IOS) and expands macros (e.g., Cisco’s “peer group”, “policy
list”, and “template” options). After the preprocessor performs some simple checks to
determine whether the configuration is a Cisco-like configuration or a Juniper configura-
tion, it launches the appropriate parser. Many configurations (e.g., Avici, Procket, Zebra,
Quarry) resemble Cisco configuration; the preprocessor translates these configurations so
that they more closely resemble Cisco syntax.

The parser generates the normalized representation from the preprocessed configura-
tion. The parser processes each router’s configuration independently. It makes a single
pass over each router’s configuration, looking for keywords that help determine where in
the configuration it is operating (e.g., “route-map” in a Cisco configuration indicates that
the parser is entering a policy declaration). The parser builds a table of normalized poli-
cies by dereferencing all filters and other references in the policy; if the reference is defined
after it is referenced in the same file, the parser performs lazy evaluation. When it reaches
the end of a file, the parser flags any policies references in the configuration that it was un-
able to resolve. The parser proceeds file-by-file (taking care to consider that definitions are
scoped by each file), keeping track of normalized policies and whether they have already
appeared in other configurations.

Figure 4-7 shows rcc’s normalized representation for a fragment of Cisco IOS. In rcc, this
normalized representation is implemented as a set of mySQL database tables correspond-
ing to the schema shown in Table 4-1. This Cisco configuration specifies a BGP session to
a neighboring router with IP address 10.1.2.3 in AS 3. This statement is represented
by a row in the sessions table. The second line of configuration specifies that the import
policy (i.e., “route map”) for this session is defined as “IMPORT CUST” elsewhere in the
file; the normalized representation represents the import policy specification as a pointer
into a separate table that contains the import policies themselves. A single policy, such as
IMPORT CUST, is represented as multiple rows in the policies table. Each row represents
a single clause of the policy. In this example, IMPORT CUST has two clauses: the first re-
jects all routes whose AS path matches the regular expression number “99” (specified as
“ˆ65000” elsewhere in the configuration), and the second clause accepts all routes that
match AS path number “88” and community number “10” (i.e., 0:1000) and sets the “lo-

SECTION 4.5. EVALUATING OPERATIONAL NETWORKS WITH RCC 87

cal preference” attribute on the route to a value of 80. Each of these clauses is represented
as a row in the policies table; specifications for regular expressions for AS paths and com-
munities are also stored in separate tables, as shown in Figure 4-7.

rcc’s normalized representation does not store the names of the policies themselves (e.g.,
“IMPORT CUST”, AS regular expression number “88”, etc.). Rather, the normalized format
only stores a description of what the route policy does (e.g., “set the local preference value
to 80 if the AS path matches regular expression ˆ3”). Two policies may be written using
entirely different names, regular expression numbers, or even in different languages, but
if the policies perform the same operations, rcc will recognize that they are in fact the same
policy.

� 4.4.2 Constraint Checking

rcc implements constraints that detect each problem in Table 4-2 by executing SQL queries
against the normalized format and analyzing the results of these queries in Perl.

rcc checks many constraints by executing simple queries against the normalized rep-
resentation. Checking constraints against the normalized representation is simpler than
analyzing distributed router configurations. Consider the test in Table 4-2 called “iBGP
configured on one end”; this constraint requires that, if a router’s configuration specifies
an iBGP session to some IP address, then (1) that IP address should be the loopback ad-
dress of some other router in the AS, and (2) that other router should be configured with an
iBGP session back to the first router’s loopback address. rcc tests this constraint as a single,
simple “select” statement that “joins” the loopbacks and sessions tables. Other tests, such
as checking properties of the iBGP signaling graph, require reconstructing the iBGP signal-
ing graph using the sessions table, a task that is much easier than examining dependencies
across a large set of router configuration files.

As another example, to check that no routing policy in the AS prepends any AS number
other than its own, rcc executes a “select” query on a join of the sessions and policies tables
that returns the ASes that each policy prepends (if any) and the routers where each policy
is used. rcc then checks the global table to ensure that for each router, the AS number
configured on the router matches the ASes that any policy on that router prepends.

� 4.5 Evaluating Operational Networks with rcc

Our goal is to help operators move away from today’s mode of stimulus-response reason-
ing by allowing them to check the correctness of their configurations before deploying them
on a live network. rcc has helped network operators find faults in deployed configurations;
we present these findings in this section. Because we used rcc to test configurations that
were already deployed in live networks, we did not expect rcc to find many of the types of
transient misconfigurations that Mahajan et al. found [85] (i.e., those that quickly become
apparent to operators when the configuration is deployed). If rcc were applied to BGP
configurations before deployment, we expect that it could prevent more than 75% of the
“origin misconfiguration” incidents and more than 90% of the “export misconfiguration”
incidents described in that study.2

2rcc detects the following classes of misconfiguration described by Mahajan et al.: reliance on upstream
filtering, old configuration, community, forgotten filter, prefix-based config, bad ACL or route map, and typo.

88 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

� 4.5.1 Analyzing Real-World Configurations

We made rcc available to operators, hoping that they would run it on their configurations
and report their results. As a result, we were able to use rcc to evaluate the configurations
from 17 real-world networks, including BGP configurations from every router in 12 ASes.

Network operators are reluctant to share router configuration because it often encodes
proprietary information. Also, many ISPs do not like researchers reporting on mistakes
in their networks. (Previous efforts have enjoyed only limited success in gaining access to
real-world configurations [134].) We learned that providing operators with a useful tool or
service increases the likelihood of cooperation. When presented with rcc, many operators
opted to provide us with configurations, while others ran rcc on their configurations and
sent us the output.

rcc detected over 1,000 configuration faults. The size of these networks ranged from
two routers to more than 500 routers. Many operators insisted that the details of their
configurations be kept private, so we cannot report separate statistics for each network
that we tested. Every network we tested had BGP configuration faults, and operators
were usually unaware of the faults in their networks.

� 4.5.2 Fault Classification and Summary

Table 4-3 summarizes the faults that rcc detected. rcc discovered potentially serious config-
uration faults as well as benign ones. The fact that rcc discovers benign faults underscores
the difficulty in specifying correct behavior. Faults have various dimensions and levels
of seriousness. For example, one iBGP partition indicates that rcc found one case where a
network was partitioned, but one instance of unintentional transit means that rcc found two
sessions that, together, caused the AS to carry traffic in violation of high-level policy. The
absolute number of faults is less important than noting that many of the faults occurred at
least once.

Figure 4-8 shows that many faults appeared in many different ASes. We did not observe
any significant correlation between network complexity and prevalence of faults, but con-
figurations from more ASes are needed to draw any strong conclusions. The rest of this
section describes the extent of the configuration faults that we found with rcc. We survey
faults related to path visibility, route validity, and determinism, respectively.

� 4.5.3 Path Visibility Faults

The path visibility faults that rcc detected involve iBGP signaling and fall into three cate-
gories: problems with “full mesh” and route reflector configuration, problems configuring
route reflector clusters, and incomplete iBGP session configuration. Detecting these faults
required access to the BGP configuration for every router in the AS.

iBGP signaling partitions. iBGP signaling partitions appeared in one of two ways:
(1) the top layer of iBGP routers was not a full mesh; or (2) a route reflector cluster had two
or more route reflectors, but at least one client in the cluster did not have an iBGP session
with every route reflector in the cluster. Together, these accounted for 9 iBGP signaling
partitions in 5 distinct ASes, one of which was benign. While most partitions involved
route reflection, we were surprised to find that even small networks had iBGP signaling
partitions. In one network of only three routers, the operator had failed to configure a full

SECTION 4.5. EVALUATING OPERATIONAL NETWORKS WITH RCC 89

Problem Latent Benign
Path Visibility

Dissemination Problems
Signaling partition:

- of route reflectors 4 1
- within a RR “cluster” 2 0
- in a “full mesh” 2 0

Routers with duplicate:
- loopback address 13 120

iBGP configured on one end 420 0
or not to loopback

Route Validity
Filtering Problems
transit between peers 3 3
inconsistent export to peer 231 2
inconsistent import 105 12
eBGP session:

- w/no filters 21 —
- w/undef. filter 27 —
- w/undef. policy 2 —

filter:
- w/missing prefix 196 —

policy:
- w/undef. AS path 31 —
- w/undef. community 12 —
- w/undef. filter 18 —

Dissemination Problems
prepending with bogus AS 0 1
originating unroutable dest. 22 2
incorrect next-hop 0 2

Determinism
Ranking Problems
nondeterministic MED 43 0
age-based tiebreaking 259 0

Table 4-3: BGP configuration faults in 17 ASes.

mesh; he told us that he had “inadvertently removed an iBGP session”. rcc also found two
cases where routers in a cluster with multiple route reflectors did not have iBGP sessions
to all route reflectors in that cluster.

rcc discovered one benign iBGP signaling partition. The AS in question had a group of
routers that did not exchange routes with the rest of the iBGP-speaking routers, but the
routers that were partitioned introduced all of the routes that they learned from neigh-
boring ASes into the IGP, rather than readvertising them via iBGP. The operator of this
network told us that these routers were for voice over IP (VoIP) traffic; presumably, these
routers injected all routes for this application into the IGP to achieve fast convergence after
a failure or routing change. In cases such as these, BGP configuration cannot be checked
in isolation from other routing protocols.

Route reflector cluster problems. In an iBGP configuration with route reflection, mul-
tiple route reflectors may serve the same set of clients. This group of route reflectors and
its clients is called a “cluster”; each cluster should have a unique ID, and all routers in the
cluster should be assigned the same cluster ID. If a router’s BGP configuration does not

90 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

 0

 2

 4

 6

 8

 10

ro
ut

e
re

fle
ct

or
 p

ar
tit

io
n

R
R

 c
lu

st
er

 p
ar

tit
io

n
fu

ll-
m

es
h

pa
rti

tio
n

du
pl

ic
at

e
lo

op
ba

ck
s

iB
G

P
 c

on
f.

on
 o

ne
 e

nd

tra
ns

it
be

tw
ee

n
pe

er
s

in
co

ns
is

te
nt

 e
xp

or
t t

o
pe

er
in

co
ns

is
te

nt
 im

po
rt

pr
ep

en
di

ng
 w

/b
og

us
 A

S
or

ig
. u

nr
ou

ta
bl

e
de

st
.

se
ss

io
n

w
/o

 n
ex

t-h
op

 re
ac

h.
eB

G
P

 s
es

si
on

 w
/n

o
fil

te
rs

se
ss

io
n

w
/u

nd
ef

in
ed

 fi
lte

rs
se

ss
io

n
w

/u
nd

ef
in

ed
 p

ol
ic

y
fil

te
r w

/m
is

si
ng

 p
re

fix
po

lic
y

w
/u

nd
ef

in
ed

 A
S

 p
at

h
po

lic
y

w
/u

nd
ef

. c
om

m
un

ity
po

lic
y

w
/u

nd
ef

. f
ilt

er

ro
ut

er
 w

/o
 d

et
er

m
. m

ed
no

nd
et

er
m

in
is

tic
 ti

eb
re

ak

N
um

be
r o

f A
S

es
Visibility Validity Det.

Figure 4-8: Number of ASes in which each type of fault occurred at least once.

specify a cluster ID, then typically a router’s loopback address is used as the cluster ID. If
two routers have the same loopback address, then one router may discard a route learned
from the other, thinking that the route is one that it had announced itself. rcc found 13
instances of routers in distinct clusters with duplicate loopback addresses and no assigned
cluster ID. Often, these apparent mistakes may be benign: different physical routers in
the same AS may legitimately have identical loopback addresses. For example, routers in
distinct IP-layer virtual private networks may route the same IPv4 address space.

Incomplete iBGP sessions. rcc discovered 420 incomplete iBGP sessions (i.e., a configu-
ration statement on one router indicated the presence of an iBGP session to another router,
but the other router did not have an iBGP session in the reverse direction). Many of these
faults are likely benign. The most likely explanation for the large number of these faults is
that network operators may disable sessions by removing the configuration from one end
of the session without ever “cleaning up” the other end of the session.

� 4.5.4 Route Validity Faults

In this section, we discuss route validity faults. We first discuss filtering-related faults;
we classify faults as latent unless a network operator explicitly told us that the fault was
benign. We also describe faults concerning undefined references to policies and filters.
Some of these faults, while simple to check, could have serious consequences (e.g., leaked
routes), if rcc had not caught them and they had been activated. Finally, we present some
interesting route validity faults related to route dissemination, all of which were benign.

SECTION 4.5. EVALUATING OPERATIONAL NETWORKS WITH RCC 91

Filtering Problems

Decomposing policies across configurations on different routers can cause faults, even for
relatively simple policies. rcc discovered the following problems:

Transit between peers. rcc discovered three instances where routes learned from one
peer or provider could be readvertised to another; typically, these faults occurred because
an export policy for a session was intended to filter routes that had a certain community
value, but the export policy instead referenced an undefined community.

Obsolete contractual arrangements can remain in configuration long after those ar-
rangements expire. rcc discovered one AS that appeared to readvertise certain prefixes
from one peer to another. Upon further investigation, we learned that the AS was actu-
ally a previous owner of one of the peers. When we notified the operator that his AS was
providing transit between these two peers, he told us, “Historically, we had a relationship
between them. I don’t know what the status of that relationship is these days. Perhaps it
is still active—at least in the configs!”

Inconsistent export to peer. We found 231 cases where an AS advertised routes that
were not “equally good” at every peering point. It is hard to say whether these incon-
sistencies are benign without knowing the operator’s intent, but roughly twenty of these
inconsistencies were certainly accidental. For example, one inconsistency existed because
of an undefined AS path regular expression referenced in the export policy; these types of
inconsistencies have also been observed in previous measurement studies [35].

Inconsistent import policies. A recent measurement study observed that ASes often
implement policies that result in late exit (or “cold potato”) routing, where a router does
not select the BGP route that provides the closest exit point from its own network [126].3

rcc found 117 instances where an AS’s import policies explicitly implemented cold potato
routing, which supports this previous observation. In one network, rcc detected a different
import policy for every session to each neighboring AS. In this case, the import policy was
labeling routes according to the router at which the route was learned.

Inconsistent import and export policies were not always immediately apparent to us
upon casual inspection, even after rcc detected them. In one case, two sessions applied
policies with the same name, and both policies were defined with verbatim configuration
fragments. The difference resulted from the fact that the difference in policies was three
levels of indirection deep. For example, one inconsistency occurred because of a difference
in the definition for an AS path regular expression that the export policy referenced (which,
in turn, was referenced by the session parameters).

rcc also detected filtering problems on single-router configurations:
Undefined references in policy definitions. Several large networks had router config-

urations that referenced undefined variables and BGP sessions that referenced undefined
filters. These faults can sometimes result in unintentional transit or inconsistent export
to peers or even potential invalid route advertisements. In one network, rcc found four
routers with undefined filters that would have allowed a large ISP to accept and readver-
tise any route to the rest of the Internet (such a failure actually occurred in 1997 [121], as

3Inconsistent import policy technically concerns how configuration affects ranking, and it is more often in-
tentional than not. Nevertheless, this test occasionally highlights anomalies that operators are interested in
correcting, and it serves as a useful sanity check when looking for other types of anomalies (such as dynami-
cally detecting inconsistent route advertisements from a neighboring AS [35]).

92 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

we described in Section 1.2.2); this potentially active fault could have been catastrophic
if a customer had (unintentionally or intentionally) announced invalid routes, since ASes
typically do not filter routes coming from large ISPs. This misconfiguration occurred even
though the router configurations were being written with scripts; an operator had appar-
ently made a mistake specifying inputs to the scripts.

Non-existent or inadequate filtering. Filtering can go wrong in several ways: (1) no
filters are used whatsoever, (2) a filter is specified but not defined, or (3) filters are defined
but are missing prefixes or otherwise out-of-date (i.e., they are not current with respect to
the list of private and unallocated IP address space [21]).

Every network that rcc analyzed had faults in filter configuration. Some of these faults
would have caused an AS to readvertise any route learned from a neighboring AS. In one
case, policy misconfiguration caused an AS to transit traffic between two of its peers. Ta-
ble 4-3 and Figure 4-8 show that these faults were extremely common: rcc found 21 eBGP
sessions in 5 distinct ASes with no filters whatsoever and 27 eBGP sessions in 2 ASes that
referenced undefined filters. Every AS had partially incorrect filter configuration, and
most of the smaller ASes we analyzed either had minimal or no filtering. Only a handful
of the ASes we analyzed appeared to maintain rigorous, up-to-date filters for private and
unallocated IP address space. These findings agree with those of our recent measurement
study, which also suggests that many ASes do not perform adequate filtering [34].

The reason for inadequate filtering seems to be the lack of a process for installing and
updating filters. One operator told us that he would be willing to apply more rigorous
filters if he knew a good way of doing so. Another operator runs sanity checks on filters
and was surprised to find that many sessions were referring to undefined filters. Even
a well-defined process can go horribly wrong: one operator intended to use a feed of
unallocated prefixes to automatically install filters, but instead ended up readvertising
them. Because there is a set of prefixes that every AS should always filter, some prefixes
should be filtered by default.

Dissemination Problems

rcc found only benign faults involving dissemination.
Unorthodox AS path prepending practices. An AS will often prepend its own AS num-

ber to the AS path on certain outbound advertisements to affect inbound traffic. However,
we found one AS that prepended a neighbor’s AS on inbound advertisements in an appar-
ent attempt to influence outbound traffic. One network operator also mentioned that ASes
sometimes prepend the AS number of a network that they want to prevent from seeing a
certain route (i.e., by making that AS discard the route due to loop detection), effectively
“poisoning” the route. We did not witness this poisoning in any of the configurations we
analyzed.

iBGP sessions with “next-hop self”. We found two cases of iBGP sessions that violated
common rules for setting the next-hop attribute, both of which were benign. First, rcc de-
tected route reflectors that appeared to be setting the “next hop” attribute. Although this
practice is not likely to create active faults, it seemed unusual, since the AS’s exit routers
typically set the next-hop IP address, and route reflectors typically do not modify route at-
tributes. Upon further investigation, we learned that some router vendors do not allow a
route reflector to reset the next-hop attribute. Even though the configuration specified that

SECTION 4.6. TAKE-AWAY LESSONS 93

the session would reset the next-hop attribute, the configuration statement had no effect
because the software was designed to ignore it. The operator who wrote the configuration
specified that the next-hop attribute be reset on these sessions to make the configuration
appear more uniform. Second, routers sometimes reset the next-hop on iBGP sessions to
themselves on sessions to a route monitoring server to allow the operator to distinguish
which router sent each route to the monitor.

� 4.5.5 Determinism Faults

rcc discovered more than two hundred routers that were configured such that the arrival
order of routes affected the outcome of the route selection process (i.e., these routers had
either one or both of the two configuration settings that cause nondeterminism). Although
there are occasionally reasonably good reasons for introducing ordering dependencies
(e.g., preferring the “most stable” route; that is, the one that was advertised first), oper-
ators did not offer good reasons for why these options were disabled. In response to our
pointing out this fault, one operator told us,“That’s a good point, but my network isn’t
big enough that I’ve had to worry about that yet.” Nondeterministic features should be
disabled by default.

� 4.6 Take-away Lessons

In recent years, much work has been done to understand BGP’s behavior, and much has
been written about the wide range of problems it has. Some argue that BGP has outlived
its purpose and should be replaced; others argue that faults arise because today’s configu-
ration languages are not well-designed. We believe that our evaluation of faults in today’s
BGP configuration provides a better understanding of the types of errors that appear in
today’s BGP configuration and the problems in today’s configuration languages. We now
briefly explore how our findings may help inform the design of Internet routing systems
in the future.

First, operational networks—even large, well-known, and well-managed ones—have
faults. Even the most competent of operators find it difficult to manage BGP configuration.
In particular, iBGP is misconfigured often. In fact, in the absence of a guideline such as
Theorem 3.4, it is hard for a network operator to know what properties the iBGP signaling
graph should have. Ideally, network operators should be able to configure an AS without
having to worry about whether these types of constraints are satisfied in the first place;
in other words, a network operator should not be allowed to express a configuration that
violate properties such as path visibility and route validity. In Chapter 7 (Section 7.3.4), we
discuss a system for disseminating BGP routes within an AS called the Routing Control
Platform (RCP) [13, 31], which could explicitly enforce properties such as route validity
and path visibility.

Second, we found that route filters are poorly maintained. Routes that should never be
seen on the global Internet (e.g., routes for private addresses) are rarely filtered, and the
filters that are used are often misconfigured and outdated. We can make significant strides
towards fixing these types of problems simply by changing the default behavior of router
filters. For example, because private address space (i.e., as specified in RFC 3330 [71])
should not be advertised on the global Internet, routers could, by default, prevent routes

94 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

for this address space from leaking across AS boundaries. Of course, network operators
who required routes for this address space to be advertised across AS boundaries (e.g., in
cases where a single administrative domain comprises multiple ASes) could configure that
behavior as an exception, but the default behavior would reduce the likelihood of erroneous
route leaks.

Third, the majority of the configuration faults that rcc detected resulted from the fact
that an AS’s configuration is distributed across its routers. Maintaining network-wide pol-
icy consistency appears to be difficult; invariably, in most ASes there are routers whose
configuration appears to contradict the AS’s desired policy. A routing architecture or con-
figuration management system that enabled an operator to configure the network from a
centralized location with a high-level language would likely prevent many serious faults.

Finally, although operators use tools that automate some aspects of configuration, these
tools are not a panacea. In fact, we found cases where the incorrect use of these tools caused
configuration faults. This observation suggests that static configuration analysis will play
an important role in the configuration workflow, regardless of future improvements in
configuration languages or routing architectures. As long as the routing protocol offers
flexible configuration, the potential for incorrect behavior exists. Our work has demon-
strated that detecting incorrect behavior proactively using static configuration analysis is
not only surprisingly effective, but it is also necessary for detecting faulty configurations
before they introduce erroneous behavior on a live network.

� 4.7 Summary

Despite the fact that BGP is almost 10 years old, operators continually make the same
mistakes as they did during BGP’s infancy. Our work takes a step towards improving this
state of affairs by making the following contributions:

• We use the correctness specification from Chapter 3 to design and implement rcc, a
static analysis tool that detects faults by analyzing the BGP configuration across a
single AS. With rcc, network operators can find many faults before deploying con-
figurations in an operational network. rcc has been downloaded by over seventy
network operators.

• We use rcc to explore the extent of real-world BGP misconfigurations. We have ana-
lyzed real-world, deployed configurations from 17 different ASes and detected more
than 1,000 BGP configuration faults that had previously gone undetected by opera-
tors.

In light of our findings, we suggest two ways to make interdomain routing less prone
to configuration faults. First, protocol improvements, particularly in intra-AS route dis-
semination, could avert many BGP configuration faults. The current approach to scaling
iBGP should be replaced. Route reflection serves a single, relatively simple purpose, but it
is the source of many faults, many of which cannot be checked with static analysis of BGP
configuration alone [61]. The protocol that disseminates BGP routes within an AS should
enforce path visibility and route validity; the Routing Control Platform offers one possible
solution.

SECTION 4.7. SUMMARY 95

Second, BGP should be configured with a centralized, higher-level specification lan-
guage. Today’s BGP configuration languages enable an operator to specify router-level
mechanisms that implement high-level policy, but the distributed, low-level nature of the
configuration languages introduces complexity, obscurity, and opportunities for miscon-
figuration rather than design flexibility or expressiveness. For example, rcc detects many
faults in implementation of some high-level policies in low-level configuration; these faults
arise because there are many ways to implement the same high-level policy, and the low-
level configuration is unintuitive. Ideally, a network operator would never touch low-level
mechanisms (e.g., the community attribute) in the common case. Rather than configuring
routers with a low-level language, an operator should configure the network using a lan-
guage that directly reflects high-level policies.

96 CHAPTER 4. RCC: DETECTING BGP CONFIGURATION FAULTS WITH STATIC ANALYSIS

There are three types of baseball players: those who make it happen,
those who watch it happen, and those who wonder what happens.
- Tommy Lasorda

CHAPTER 5
Predicting BGP Routes with Static

Analysis

T
o control the flow of traffic through their networks, operators need to know how con-
figuration changes affect the routes that each router in the network selects. The out-

come of this route selection depends on the routes advertised by neighboring domains, the
internal topology, the interdomain routing policies, and the intradomain link weights. To
avoid costly debugging time and catastrophic mistakes, operators must be able to quickly
predict the routes that each router selects. Our approach to solving this problem is to
develop a network-wide model of BGP route selection that enables fast, efficient compu-
tation of these routes. In this chapter, we present efficient algorithms for computing the
routing decision at each router in an AS. Ordinarily, such computation would require a
complex simulation of routing protocol dynamics that might not reflect the outcome on a
live network anyhow if the routing system oscillates or has multiple stable outcomes. Us-
ing the correctness specification from Chapter 3 and a tool like rcc (Chapter 4) to check that
the properties of the correctness specification hold, however, we can exploit the fact that
a routing protocol that satisfies some of these properties makes computing the network-
wide outcome of BGP route selection much simpler.

In designing these route prediction algorithms, we grapple with two features of the
BGP: violations of determinism (Definition 3.12), and limited visibility into the available
routes for each destination. This chapter presents three main contributions.

1. Algorithms for predicting BGP route selection. Rather than analyzing BGP dy-
namics, we present efficient algorithms to compute the outcome of the distributed
route-selection process using only static inputs. Our algorithms exploit the follow-
ing observation: when a routing system converges, the outcome does not depend on
the order and timing of the messages, allowing our algorithms to model a message
ordering that efficiently computes the outcome of BGP route selection.

Section 5.3 presents practical constraints that enable efficient computation of
network-wide BGP route selection and describes an overview of the algorithms pre-
sented in the rest of the chapter. After we introduce some notation (Section 5.4),
Section 5.5 presents an algorithm that computes the outcome of BGP route selection

97

98 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

for the simple case where every router in the AS receives every router’s best eBGP-
learned route for a destination (which corresponds to a full mesh iBGP configuration)
and where determinism is satisfied (which corresponds to a routing protocol where
all route attributes can be compared across all routes; i.e., without MED1). This algo-
rithm turns out to be quite simple.

The balance of the chapter deals with route prediction in networks that employ MED,
route reflection, or both. We first present algorithms that handle MED and route re-
flectors in isolation. We then discuss why the interaction between these two features
precludes efficient route prediction. Section 5.6 focuses on algorithms that capture
the effects of the MED attribute, assuming a full-mesh iBGP configuration. In Sec-
tion 5.7, we consider iBGP configurations that use route reflection.

2. Prototype implementation. We describe a prototype implementation of a tool based
on our prediction algorithms. This tool provides fast, accurate answers to “what if”
questions about the effects of configuration changes on the flow of traffic through
the network. We tested this prototype on a large tier-1 ISP to demonstrate that our
prediction algorithms are fast and accurate enough to be used in practice. Section 5.8
summarizes the design, evaluation, and validation of this tool [37].

3. Proposed improvements to BGP. Two features—the MED attribute and route
reflection—complicate route prediction and create difficulties for the operation of
BGP itself. Section 5.9 suggests ways to improve the design and operation of BGP to
avoid the harmful effects without sacrificing the policy semantics of MEDs and the
scalability provided by route reflectors.

� 5.1 Motivation and Overview

This section briefly reviews the BGP route selection process (Table 2-2 and Section 2.2.2
provide coverage in greater depth) and discusses why network operators need algorithms
to efficiently compute the outcome of this route selection process.

Recall from Section 2.2.2 that the route selected by each router depends on the interac-
tions between three routing protocols, as shown in Figure 5-1. First, routers in the AS use
external BGP (eBGP) to receive route advertisements from neighboring ASes. For example,
the routers W, X, and Y each have eBGP sessions with neighboring ASes. As described in
Section 2.3.1, to influence the route selection process, a router may apply an import policy
to modify the attributes of the routes learned from a neighbor.

Second, the routers use internal BGP (iBGP) to disseminate the routes to the rest of the
AS. In the simplest case, each router has an iBGP session with every eBGP-speaking router,
forming an “full mesh” configuration. If two routes are equally good through the first four
steps in Table 2-2, the router favors an eBGP-learned route over an iBGP-learned one. In
Figure 5-1, router Z receives three iBGP routes, from routers W, X, and Y. If the routes that
Z learns have equal local preference, AS path length, origin type, and MED values, it uses
the IGP to break ties between the remaining routes 2-2.

1Throughout the chapter, we often describe BGP “without MED”. Network configurations “without MED”
could also be viewed as a configuration that compares the MED attributes across all routes (e.g., in Cisco IOS,
this behavior can be enabled with always-compare-med setting).

SECTION 5.1. MOTIVATION AND OVERVIEW 99

4
1

1

2

iBGP
session

destination

eBGP
session

PSfrag replacements

W X Y

Z

I

AS A AS B

Figure 5-1: Network with three egress routers connecting to two neighboring ASes: Solid lines correspond
to physical links (internal links are annotated with IGP link weights) and dashed lines correspond to BGP
sessions. Thick lines illustrate the shortest path from one router to its closest egress point for reaching the
destination.

Third, the routers run an Interior Gateway Protocol (IGP) to learn how to reach each
other. Two common IGPs today are OSPF [91] and IS-IS [104], which compute shortest
paths based on configurable link weights; the routers also use the IGP path costs in the
sixth step in Table 2-2. In Figure 5-1, router Z selects the route with the smallest IGP path
cost of 2, learned from router X.2

After selecting a route to each destination, each router combines the BGP and IGP in-
formation to construct a forwarding table that maps the destination prefix to the outgoing
link along the shortest path. In Figure 5-1, the forwarding path consists of the thick lines
from the ingress link at router Z to the egress link at router X.

If the link from X to AS B becomes persistently congested, the network operator may
need to adjust the configuration of the routing protocols to direct some of the traffic to
other egress routers. For example, the operator could modify the import policy at router
X for the routes it learns from AS A and AS B to make the BGP routes for some desti-
nations look less attractive than the routes received at other routers [32]. Changing the
import policy in this way causes the route that X readvertises via iBGP to carry a smaller
local preference, which influences the routes that other routers in the network select. For
example, changing the import policy at X has the indirect effect of directing some of the
traffic entering at router Z to egress router Y (the next-closest egress point, in terms of the
IGP path costs), thereby alleviating the congestion on the link connecting X to AS B. Net-

2If two routes have the same IGP path cost, the router performs an arbitrary tiebreak in the seventh step in
Table 2-2.

100 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

work operators make similar kinds of configuration changes for a variety of other reasons,
such as exploiting new link capacity, preparing for maintenance on part of the network, or
reacting to equipment failures.

Operators must predict the effects of changes to the routing protocol configuration be-
fore modifying the configuration on a live network. Human intuition is not sufficient
for understanding the complex interactions between three routing protocols running on
a large, dynamic network. Experimenting on a live network runs the risk of making dis-
ruptive configuration changes that degrade performance. Instead, we believe that opera-
tors should have an accurate and efficient tool that computes the effects of configuration
changes on the flow of traffic through the network. This tool should allow a network op-
erator (or an automated optimization algorithm) to efficiently explore the large space of
possible configurations.

� 5.2 Problem Statement and Challenges

Our goal is to compute the outcome—the routing decision for each router—once the routing
protocols have converged. Accordingly, we present algorithms that accurately and quickly
determine how the network configuration and the routes learned via eBGP affect the flow
of traffic through an AS. While some existing tools simulate BGP’s behavior [7, 16, 127],
this work is the first to develop algorithms that determine the outcome of the BGP route
selection process at each router in an AS without simulating the dynamics of the protocol.

Efficiently predicting the route that each router in an AS ultimately selects is challenging
because the route selected by one router often depends on the routes selected by other
routers in the AS. Consider Figure 5-2. In this example, router R1 receives two routes via
eBGP, while R2 receives a single route via eBGP. To determine the route that each one of
these routers ultimately selects, we must first determine the candidate routes available
to each router. Of course, the set of candidate routes available to each of these routers
depends on the route that the other selects! This circular dependency seems to imply
some “back and forth” reasoning (i.e., determining the route that R1 selects depends on the
route that R2 selects, which in turn depends on the route that R1 selects, etc.). Efficiently
resolving these types of circular dependencies is the focus of this chapter.

Problem: Given only a static snapshot of the routing configuration for the
routers in an AS and the eBGP-learned routes received by the routers in the
AS, determine the route that each router in an AS selects for each destination,
while considering each AS’s available candidate routes only once.

Solving this problem would be easy if (1) the decision process in Table 2-2 allowed
each router to form a ranking of the candidate routes that satisfied determinism (Defi-
nition 3.12); and (2) the dissemination of routes in iBGP ensured each router received the
best route for a destination from every eBGP-speaking router. If these two properties held,
then a simple algorithm that simply considered which route each router would select from
all of the eBGP-learned routes would correctly compute the outcome of BGP route selec-
tion without having to revisit any routers. Unfortunately, two features of BGP cause these
properties to be violated, thus making route prediction more challenging:

SECTION 5.2. PROBLEM STATEMENT AND CHALLENGES 101

PSfrag replacements R1 R2

a b
c

Figure 5-2: Route prediction requires resolving circular dependencies. Determining the route that R2 ul-
timately selects (i.e., a, b, or c) first requires determining whether R1 selects route a or b. Ultimately, R1’s
selected route could depend on whether it learns route c from R2, which requires revisiting R1.

First, in practice, each router’s ranking function violates determinism; the violation is
caused by BGP’s MED attribute. An eBGP neighbor can set the MED attributes of route ad-
vertisements on different BGP sessions to influence the behavior of the routers that receive
these routes in a neighboring AS. For example, in Figure 5-1, AS B may send a route with a
MED of 10 to router Y and a route with a MED of 20 to router X; as a result, Z would select
the route from Y with the smaller MED, even though the IGP path to X is shorter. The
MED comparison in step 4 of the decision process applies only to routes learned from the
same next-hop AS. When MEDs are used in this fashion, however, each router’s ranking
function violates determinism (see Figure 3-10). In other words, the choice of one route
over another may depend on the presence or absence of a third route [18].

In Chapter 3, we described how violations of determinism can cause safety problems.
Determinism problems also complicate route prediction, because each router’s rankings
among a set of candidate routes may depend on the routes that other routers in the network
select. An efficient route prediction algorithm must resolve these dependencies.

Second, routers in an AS may not receive every eBGP-speaking router’s best route
for a destination. The quadratic scaling of a full-mesh iBGP configuration forces large
networks to distribute routes in a hierarchical fashion. A router configured as a route
reflector selects a single best route and forwards the route to its clients (see Section 2.3.1 for
details). Using route reflectors reduces the number of iBGP sessions, as well as the number
of routes the clients need to receive and store. Because each route reflector forwards only
its best route to its iBGP neighbors, however, the candidate routes available at one router
depend on decisions at other routers. In particular, a route reflector may make a different
choice in step 6 of the route selection process (i.e., shortest IGP path to the next-hop IP
address) than its clients would have because it is located at a different place in the IGP
topology than its clients.

In general, these two features of BGP cannot be ignored because operators use them
often. To illustrate the extent to which these artifacts of BGP complicate route prediction,
we present the “ideal” route prediction algorithm in Section 5.5, before considering more
complicated algorithms that capture the effects of these two artifacts.

102 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

� 5.3 Modeling Constraints and Algorithm Overview

In this section, we impose three constraints that the routing system must satisfy to enable
efficient and accurate route prediction.

Next, we describe how these constraints enable us to decompose the algorithm into
three stages—applying the import policy to eBGP-learned routes, selecting the best BGP
route at each router, and computing the forwarding path. The algorithm takes as input the
router configuration and a static snapshot of the routes learned via eBGP and outputs the
route that each router in the AS selects, for each destination. Because the first and third
stages of the algorithm are relatively simple, the rest of the chapter focuses on the second
stage of computing the best BGP route at each router for each destination prefix.

� 5.3.1 Modeling Constraints

Efficiently computing the effects of a configuration or topology change is possible when
three important conditions hold. These constraints include the various correctness prop-
erties specified in Chapter 3 that can be verified with static configuration analysis (Chap-
ter 4). Specifically, we assume that safety, and the second condition of determinism are
satisfied. Imposing these constraints free our prediction algorithms from needing to con-
sider whether different orderings of routing will produce different results. This property
allows us to focus on designing algorithms that emulate a particular message ordering that
prevents the algorithm from having to revisit routers where it has already made a predic-
tion. The rest of this section explains how these constraints and others help simplify the
prediction algorithms.

First, the inputs to the algorithm must be stable. In particular,

Constraint 5.1 (Slowly changing inputs) The eBGP-learned routes change slowly with respect
to the timescale of network engineering decisions.

If the eBGP-learned routes change frequently, the internal routing system does not have
time to propagate the effects of one eBGP advertisement before the next one arrives. In
practice, most BGP routes are stable for days or weeks at a time [79], and the vast majority
of traffic is associated with these stable routes [120]. This allows the routing algorithm to
operate on a static snapshot of the eBGP routes. Any eBGP routing change can be treated
as a separate problem instance.

Second, the routers in the AS must ultimately reach a stable outcome. In particular,

Constraint 5.2 (Safety and uniqueness) Given stable eBGP-learned routes and fixed iBGP and
IGP topologies, each router inside the AS converges to a unique routing decision.

If the routers continually change the routes that they select, accurately predicting how
the flow of data traffic becomes significantly more challenging. Fortunately, previous
work [61] has identified sufficient conditions for an internal routing configuration to sat-
isfy Constraint 5.2. We describe these conditions in more detail in Section 5.7 when we
address the challenges introduced by route reflectors.

Third, the routing decisions at each router should not depend on message ordering or
timing:

SECTION 5.3. MODELING CONSTRAINTS AND ALGORITHM OVERVIEW 103

Constraint 5.3 (Determinism, Condition #2) The routing decision at each router depends only
on the routes received from its neighbors and not the order or timing of these routing messages.

Some router vendors have an additional step in the BGP decision process that favors the
“oldest” route before the final tie-breaking step of comparing the router IDs. The “age-
based tie-breaking” favors more stable routes, making the outcome of the BGP decision
process dependent on the order the router receives the advertisements (and, hence, violat-
ing determinism). Disabling age-based tie-breaking forces a deterministic selection based
on the smallest router ID, as in Figure 2-2; other BGP features, such as route flap damp-
ing [137], can help reduce the likelihood of selecting unstable routes.

Constraint 5.2, which guarantees that the routing system will converge to a unique
outcome, and 5.3, which guarantees that this outcome does not depend on the ordering of
routing messages, allow us to make the following observation:

Observation 5.1 If a routing system is guaranteed to converge to a unique out-
come, that outcome is independent of the order in which routers exchange routes and
apply the decision process.

This observation implies that the algorithm can consider the evolution of the routing sys-
tem under any particular message ordering, without the risk of arriving at the wrong answer.

It is worth noting that our algorithms do not require the routing system to satisfy route
validity or the first condition of determinism (recall that determinism is only a sufficient
condition for iBGP to satisfy safety but is not necessary). The algorithms in this chapter
are only concerned with predicting the outcome of BGP selection process, not whether
the resulting routes induce paths that violate route validity. In Sections 5.6 and 5.7, we
permit routers’ selection functions to violate the first condition of determinism because
these violations capture BGP’s default behavior (i.e., this condition is violated whenever
routers only compare the MED attribute across routes received from the same neighbor-
ing AS). The algorithms do not explicitly require path visibility; rather, the algorithms in
Sections 5.5 and 5.6 implicitly assume path visibility is satisfied (i.e., they assume a “full
mesh” iBGP configuration).

� 5.3.2 Overview: Decomposing BGP Route Selection into Three Stages

Following the approach applied in other recent work [33, 47], the algorithms in this chap-
ter compute the effects of a particular message ordering using an activation sequence, an
offline analysis technique that “activates” one or more routers at each discrete step. When
activated, a router applies the decision process in Table 2-2 and propagates the best route
to its iBGP neighbors. Our algorithms are based on an activation sequence that allows us
to decompose route prediction into three distinct stages, as shown in Figure 5-3:

1. Receiving the eBGP routes and applying import policy. This stage takes as input
all of the eBGP-learned routes at each router and applies the appropriate import policies at
each router before exchanging any iBGP update messages and outputs the set of eBGP-learned

104 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

(per session)
router ID

(per prefix & ingress)

import policies

(per prefix)

(per eBGP session)

(per router & prefix)

IGP weights
(router pairs) (per link)

forwarding path

iBGP sessions

eBGP routes
(per prefix)

egress routermodified routes

policy

Compute

path
import

route

Compute
best BGP

Apply
forwarding

Figure 5-3: Our algorithms decompose network-wide BGP route selection into three independent stages.
The algorithms take as input the eBGP-learned routes from neighboring ASes, the router IDs of each BGP
session, and the routing configurations from all of the routers in the AS, which provide information about
the IGP topology, the iBGP topology, and the import policies (i.e., rankings) of each router.

routes after these import policies have been applied. This stage activates all of the edge
routers at the same time.

Each eBGP-learned route has attributes (such as the destination prefix and the AS path)
and is associated with an eBGP session. The import policy may filter the route or set certain
attributes such as local preference, origin type, and multiple-exit discriminator (MED),
according to attributes in the advertised route (e.g., based on ASes in the AS path). Because
applying the import policy is a local operation for each eBGP-learned route at each router,
the first stage emulates the operations a real router would perform upon receiving each of
the eBGP routes. These routes, with modified attributes, are the input to the second stage.

2. Computing the best BGP route at each router. When iBGP satisfies path visibility,
many routes from the first stage could never be selected by any router as the best route.
For example, an eBGP-learned route with a local preference of 90 would never be selected
over another route with a local preference of 100. In addition, different routers in the
AS may select different best BGP routes because they have different IGP path costs to
the egress router. Also, a router can only consider the routes advertised by its iBGP and
eBGP neighbors, which may influence the final decision at that router. This stage takes
as input the set of eBGP-learned routes after the import policies of each router have been
applied and outputs a single best egress router for each ingress router and destination
prefix. Constructing an efficient activation sequence for this stage is challenging, and is
the focus of the next four sections of the chapter.

Using Observation 5.1, our goal is to devise an activation sequence, which “activates” one
or more routers at any given phase. When activated, a router r applies the BGP decision
process to compute a best route from its available candidate routes, which it then may
propagate to other routers via iBGP. In an actual network, routers may be activated in any
order and may change their best route many times before the network converges. This
chapter focuses on devising activation sequences that allow us to efficiently compute the
final routing decision.

3. Computing the forwarding path through the AS: The third stage of the algorithms
compute the effects of the IGP link weights on the construction of the forwarding path
through the AS from an ingress router toward a destination prefix. Given the selected BGP
route, the ingress router forwards packets along the outgoing link (or links) along shortest
paths to the egress router, and the process repeats at the next router. Ideally, the traffic

SECTION 5.4. PRELIMINARIES 105

Symbol Description Section
FUNCTIONS ON ROUTES

λr Takes a set of routes received at router r and outputs the best route
at router r, according to the BGP decision process applied at router
r

5.4

γ Takes a set of routes and extracts the subset whose attributes are
equally good up through the first four steps of the decision process

5.4

σ Takes a set of routes and extracts the subset whose attributes are
equally good up through the first three steps of the decision pro-
cess

5.6.2

SETS OF ROUTES OR ROUTERS (INITIAL INPUTS)
R routers in the AS 5.4
A routers that have been activated 5.7.2
E eBGP-learned routes 5.4
Er eBGP-learned routes at router r 5.4
N number of eBGP-learned routes (i.e., |E|) 5.4

SETS OF ROUTES (INTERMEDIATE AND FINAL OUTPUTS)
Ir iBGP-learned routes at router r 5.4
Pr All routes learned at router r 5.4
br The best route that router r selects. 5.4
C The set of candidate routes at some intermediate activation. A

subset of E.
5.5

Cr The set of candidate routes at router r at some intermediate acti-
vation. A subset of Er.

5.6.2

B The set of best routes computed by the algorithm. A subset of C. 5.5
L The set of routes eliminated at some activation step. 5.6.2

IBGP TOPOLOGY
S iBGP sessions. 5.7.2
G iBGP session graph. G = (R, S). 5.7.2

Table 5-1: Description of the notation used in this chapter, and the sections where each piece of notation is
introduced.

flows along the shortest path (or paths) all the way from the ingress router to the selected
egress router. However, in practice, routers along the shortest path may have selected a
different egress router, thus violating route validity (Definition 3.7). These violations can
occur if the iBGP session configuration limits the BGP routing options at the routers [61].
By considering one router at a time, the third stage can compute an accurate view of the
forwarding path(s) even when deflections occur.

While all three steps are necessary for determining the flow of traffic through a network
from a static snapshot of the network state, the rest of this chapter focuses on the second
step (i.e., computing the best BGP route at each router), since performing this step correctly
and efficiently is considerably more difficult than either of the other two steps.

� 5.4 Preliminaries

We first introduce some notation. Table 5-1 lists the notation we use for the remainder of
this chapter and summarizes where this notation is introduced. We assume that the AS
has a set of N eBGP-learned routes, E, for a given destination prefix, which it learns at

106 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

R routers. E contains the eBGP-learned routes after each router in the AS has applied its
local import policy (which may filter some set of the routes it receives and set or modify the
route attributes of others). For convenience, we define Er ⊆ E as the set of eBGP-learned
routes at router r ∈ R. At any given time, a router r also has zero or more iBGP-learned
routes Ir ⊆ E. We define two useful functions:

• λr, which takes a set of routes at router r and produces the best route at router r
according to the BGP decision process in Table 2-2. The subscript on λr is necessary
because different routers can apply the BGP decision process to the same set of routes
and obtain different results based on the BGP session from which they learn the route
and their location in the topology. For example, in Figure 5-1, router X would treat
the route learned from AS B as an eBGP-learned route with the router ID of the eBGP
session with B. On the other hand, Z sees an iBGP-learned route with an IGP path
cost of 2 and the router ID associated with the iBGP session to X.

• γ, which takes a set of BGP routes, C, and produces C ′ ⊆ C, such that routes in C′ are
the network-wide best routes based on the first four steps in Table 2-2.

Unlike λr, γ has global (i.e., network-wide) context; that is, its context is not router-
specific. When the routers’ selection functions do not satisfy determinism, each
router’s best route is not guaranteed to be in the set ∪rλr(Er). In Sections 5.6 and 5.7,
we will apply γ to a set of routes when it is safe to eliminate all routes that could
never be the best route at any router. In these sections, we will see that as long as
all routers have either complete visibility of the routes that the AS learns via eBGP
or selection functions that satisfy determinism, every router will ultimately select a
route from γ(E).

� 5.5 Simple Case: BGP with Determinism and Full Visibility

In this section, we describe an algorithm that predicts the outcome of BGP route selection
when a network employs a full mesh iBGP topology and the MED attribute is compared
across all routes (which we also refer to as “no MED” or “without MED”). This algorithm
works as long as routers compare the MED attribute across all candidate routes and when
the network does not use route reflection. This scenario may be the case for many small
stub ASes that do not have customers of their own: a network that does not have many
routers will typically configure its iBGP topology as a full mesh, and a stub AS typically
does not receive (or honor) MEDs from the ASes from which it buys transit. In practice,
some transit ISPs even configure their routers to compare the MED attribute across all
candidate routes (often to avoid problems with oscillation), and most small networks do
not use route reflection.

After describing the route prediction algorithm and proving its correctness, we explain
two basic properties that hold in this case that make the prediction algorithm quite sim-
ple and explain why two artifacts of BGP—MED and route reflection—can cause these
properties to be violated.

A full mesh iBGP topology provides full visibility of BGP routes at each router: every
router learns the set of routes selected by every eBGP-speaking router in the AS. Further-
more, when the MED attribute is compared across all routes (as opposed to just those from

SECTION 5.5. SIMPLE CASE: BGP WITH DETERMINISM AND FULL VISIBILITY 107

Algorithm: Full Mesh, No MED
SELECTBEST EBGP(E, R)

// Build the set of locally best routes at each router.
// This set is the set of candidate best eBGP routes.
C←∪rλr(Er)

// Eliminate all routes from C that
// do not have highest local preference,
// shortest AS path length, lowest origin type, lowest MED
B← γ(C)

Figure 5-4: Algorithm for computing the best route at eBGP routers, assuming that MED is compared across
all routes (i.e., that there exists a total ordering of routes at each router).

the same neighboring AS) a router’s ranking over the set of routes it learns form a total
ordering, which implies that the first condition of determinism (Definition 3.12) is satis-
fied. These characteristics allow us to devise a relatively simple algorithm to compute the
outcome of BGP route selection at each router in the AS.

In this case, the algorithm for computing the best route at every eBGP-speaking router
is shown in Figure 5-4. The algorithm takes as input the set of all eBGP-learned routes, E,
and the set of all eBGP-speaking routers, R, and produces the set of best eBGP routes, B. Er
refers to all eBGP-learned routes learned by router r, and C represents the set of candidate
routes after each router selects the best route from the set of its eBGP-learned routes. The
output of this algorithm is B = γ(C), the set of all best routes to this destination, such that
br = λr(B). The algorithm proceeds in two steps. The first step computes the locally best
BGP route at each eBGP-speaking router; this step guarantees that each router selects no
more than one eBGP-learned route. The second step eliminates any route from this set for
which a router would select another router’s iBGP route over its own locally best route.

The first step of the algorithm scans all N eBGP-learned routes and selects the best
eBGP-learned route at each router, if any; at most |R| routes remain after this step. The
second step selects, for each router r ∈ R, the best route from R. Thus, the running time will
be O(N + |R|2), where N is the number of eBGP-learned routes, and |R| is the number of
routers in the system (a full mesh iBGP configuration will have |R|(|R| − 1) iBGP sessions).
When |R| > N, the N term is dominated, so the running time is O(|R|2). When N > |R|,
however, a simpler approach to the algorithm would simply be to apply λr(E) at each
router, which has O(N|R|) running time. Thus, the computational complexity for route
prediction is proportional to the total number of routes in the system.

To prove that this algorithm is correct, we must show that this algorithm accurately
emulates one activation sequence; Observation 5.1 guarantees that as long as the algorithm
correctly emulates some activation, it will correctly emulate BGP route selection.

Theorem 5.1 When each router can produce a total ordering over all possible candidate routes, the
algorithm in Figure 5-4 correctly computes the outcome of the decision process for all routers that
select an eBGP-learned route as their best route.

Proof. We prove this theorem constructively, by showing that the algorithm correctly em-

108 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

§ MED RR Running Time Prop. 5.1 Prop. 5.2
5.5 No No O(N + |R|2) • •

5.6.2 Yes No O(N log N + N|R|) •
5.7.2 No Yes O(N + |S|) • •
5.7.3 Yes Yes O(N log N + N|R|+ N|S|)

Table 5-2: Properties of the BGP route prediction algorithms in each of the four cases (with and without
MED, and with and without route reflection).

ulates an activation sequence and message ordering that could occur in BGP. Consider the
following ordering:

1. All routers receive routes to the destination via eBGP. Then, every router is activated
simultaneously.

2. Every router advertises its locally best route via iBGP. After all iBGP messages have
been exchanged, every router is activated simultaneously.

In the first phase, each router r computes λr(Er), resulting in a set of candidate routes
C = ∪rλr(Er), as in the first line of the algorithm in Figure 5-4. Then, each router learns
these routes. Note that B ⊆ C by definition, which means that each router that learns a
route to the destination via eBGP has either zero or one route in B. We consider both cases.
If a router r has a route in C but not in B, then r’s eBGP-learned route br = λr(Er) must
have been worse according to the first four steps of the decision process than some other
route, bs = λs(Es) in C (otherwise, γ(C) would not have eliminated it). But in a full mesh
iBGP topology, r would learn a route via iBGP that is at least as good as bs, so br would
also be eliminated in phase 2 of the activation. Of course, if a router has a route in C, then
that must be the route that it would select after phase 2 of activation: it is equally good as
all routes in γ(C) through the first 4 steps of the decision process (by construction), and it
prefers its own best route over any iBGP-learned route (by step 5 of the decision process).
�

This simple algorithm works because two properties hold. First, when MED is com-
pared across all routes, every router that selects a route from the set of eBGP-learned routes
will select its locally best route. Second, when the iBGP topology is a full mesh, each BGP-
speaking router ultimately selects a route in γ(E); that is, every router ultimately selects
a route that has the maximum local preference, minimum AS path length, lowest origin
type, and lowest MED (assuming MEDs are compared across all routes). Table 5-2 sum-
marizes when these two properties hold, for all possible combinations of MED and route
reflection (the rest of this section treats defines these two properties more formally). The
table also indicates the computational complexity for computing the best route at each
router, for each scenario. We now formalize these two properties, explain why they make
route prediction simple, and present cases where BGP violates each of them.

� 5.5.1 Property #1: Every best route is some router’s best eBGP route.

This property holds only if every router’s selection function satisfies determinism. We
now formalize this property, prove that determinism is required to ensure that it holds,

SECTION 5.5. SIMPLE CASE: BGP WITH DETERMINISM AND FULL VISIBILITY 109

Router ID: 2
MED: 20Router ID: 1

MED: 20

PSfrag replacements R1 R2

a
b c

Figure 5-5: With MED, a router may select a route that is no router’s best eBGP route, thus violating Prop-
erty 5.1.

and show an example where this property is violated if BGP does not satisfy determinism.

Property 5.1 If determinism is satisfied, then each router ultimately either selects its own best
eBGP-learned route or some iBGP-learned route. Formally, br ∈ Er⇒ br = λr(Er).

Proof. By definition, each router r applies the route selection process to the union of the
routes it learns via eBGP and iBGP: br = λr(Er ∪ Ir). Therefore, either br ∈ Er or br ∈ Ir.
Furthermore, because the first condition of determinism is satisfied, the router r’s prefer-
ences over routes in Er ∪ Ir form a total ordering, so either br = λr(Er) or br = λr(Ir). But, if
br 6= λr(Er), then br = λr(Ir), so br ∈ Ir and br 6∈ Er. �

Property 5.1 makes it possible to propagate the effects of route selection at each router
only once, because each router ultimately selects its locally best eBGP-learned route or
some other router’s locally best route.

Unfortunately, when the MED attribute is only compared among routes from the same
AS, BGP does not satisfy determinism, so this property no longer holds. Figure 5-5 shows
an example where this property is violated. In this example, router R1’s ranking between
a and b depends on whether it learns route c. Thus, even though route a is R1’s locally best
route (by the router ID tiebreak), R2 ultimately selects route b (c eliminates a due to MED
due to MED, and R1 selects b over a because b is learned via eBGP), which is no router’s
best eBGP route. As such, the simple algorithm that selects each router’s best route from
the set of best eBGP routes does not work: a naı̈ve algorithm would result in precisely the
“back and forth” behavior described in Section 5.2. Section 5.6 describes an alternate route
prediction algorithm that handles this case.

� 5.5.2 Property #2: Every best route is in γ(E).

This property states that every router selects a route that is equally good up through the
MED comparison step of the decision process. Intuitively, it might seem that this property
would always hold—why would a router ever select a route with a lower local preference,
longer AS path, higher origin type, or higher MED value if it had a better route available?

110 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

In fact, in certain iBGP configurations, a route reflector can prevent a router from learning
an eBGP-learned route with a lower MED value than the one it selects. Property 5.2 holds
if either the iBGP topology is a full mesh or determinism is satisfied. We now formally state
the conditions when this property holds, show an example where a BGP configuration can
violate this property, and briefly discuss its implications for route prediction.

Property 5.2 If (1) every router in the AS receives the best eBGP-learned route from every other
router in the AS or (2) all route attributes are compared across all routes (i.e., it is possible to
construct a total ordering over all routes) and every router receives at least one route in γ(E), then
every router r will ultimately select a route, br ∈ γ(E), where E is the set of all eBGP-learned routes.

Proof. Define Pr ⊆ E, the set of routes that router r learns (i.e., Pr = Er ∪ Ir). Assume that
some router r selects br = λr(Pr) /∈ γ(E). This property implies that Pr ∩ γ(E) = φ (i.e., that
Pr contains no routes in γ(E); otherwise, br would be better than all routes in γ(E), which
contradicts the definition of γ. But, if Pr ∩ γ(E) = φ, then the iBGP topology is such that r
does not learn all routes, because at least one router s ∈ R selects a route from γ(E), and
router r would have learned that route from s. If path visibility is satisfied and br 6∈ γ(E),
this also implies that some route attribute is not compared across all routes (i.e., it is not
possible to form a total ordering): otherwise, given a total ordering, if one router selects a
route from γ(E), then every router either learns that route and selects it, or selects its own
route (which must be in γ(E), by total ordering) and propagates that route. �

Property 5.2 makes it possible to compute the route that each router r selects by applying
λr to the set of all locally best routes, B (i.e., br = λr(B)), thus eliminating other routes.

Unfortunately, this property is not guaranteed when determinism is violated and ev-
ery router does not learn every eBGP-learned route. Consider the example shown in Fig-
ure 5-6. The network learns routes to some destination at routers X, Y, and Z that are
equally good up to MED comparison. All three routers are clients of the route reflector
RR. The routes at X and Y are learned from the same next-hop AS, and rY has a lower
MED value. One might think that router X would never select route a, since, after all, it
has a higher MED value than route b, but that is not the case in this figure: RR learns routes
a, b, and c, and selects route c as its best route, because c has the shortest IGP path cost. As
a result, X never learns route b.

When Property 5.2 is not satisfied, route prediction must essentially resort to simula-
tion. The problem in this case is that it is impossible to know when activating any given
router that it is safe to eliminate any route that it learns via eBGP. We discuss this problem
in more detail in Section 5.7.

� 5.6 Route Computation without Determinism

In this section, we present how to model path selection when the MED attribute is com-
pared only across routes learned from the same AS, rather than across all routes for a des-
tination prefix. MED prevents each router from having a total ordering over all possible
candidate routes, so it is actually possible to have br ∈ Er without br = λr(Er). In Sec-
tion 5.6.1, we describe this problem in more detail and describe why the simple approach

SECTION 5.6. ROUTE COMPUTATION WITHOUT DETERMINISM 111

2 4 1

MED:10MED:20

PSfrag replacements

a b c

RR

W X Y Z

Figure 5-6: When an AS’s iBGP topology uses route reflectors and MED, a router may not always select a
route in γ(E).

presented in Section 5.5 fails; then, we present an algorithm that accurately computes the
outcome of BGP path selection when MED is compared only across routes from the same
AS.

� 5.6.1 Problems Introduced by MED

The algorithm from Section 5.5 assumes that each router’s ranking between two routes
is independent of whether other routes are present (i.e., λr({a, b}) = a ⇒ λr({a, b, c}) 6=
b, ∀a, b, c). When MED is only compared across routes from the same AS, the algorithm
cannot simply select the locally best route at each router, because a router may ultimately
select a best route that it learned via eBGP that was not its locally best route. This point
has serious implications, because we can no longer assume that if a router selects an eBGP-
learned route to a destination, that eBGP-learned route will be that router’s locally best
route; rather, the route that the router ultimately selects may be worse than the “best”
route at that router when compared only against routes learned via eBGP at that router.
Thus, the approach from Section 5.5, which computes br by taking the locally best route at
each router from γ(E), may not compute the correct result. Using the example in Figure 5-7,
we explain why two seemingly-natural approaches to computing the routes do not work:

• Local route elimination is not correct. The algorithm in Figure 5-4 would first apply
λr(Er) at each router. In Figure 5-7, given the choice between the two eBGP-learned
routes a and c, router X prefers c, because c has a smaller router ID. Between routes
a, c, and d (which it learns via Y), however, router X prefers route a, because route d
eliminates route c due to its lower MED value. Thus, router X’s preference between
routes a and b depends on which route Y selects. The algorithm in Figure 5-4 would
compute λX({a, c}) = c and λY({b, d}) = d (resulting in C = {c, d}), and ultimately
compute B = {d} because d has a smaller MED value than c. In reality, though, router
X would select route a over d, because a is an eBGP-learned route from a different
neighboring AS.

• Global route elimination is not correct. It might also seem reasonable to apply γ globally,
followed by applying λr locally at each router. In Figure 5-7, a global comparison of

112 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

AS 2AS 1

Router ID: 2
MED: 1 MED: 10

Router ID: 2
MED: 20MED: 2

Router ID: 1 Router ID: 1

PSfrag replacements

X Y

a b c d

Figure 5-7: Interaction between MED and router ID in the BGP route selection process. X and Y are routers,
each with direct eBGP sessions to ASes 1 and 2. a, b, c, and d are routes learned via eBGP.

Algorithm: Full Mesh, MED
SELECTBEST EBGP MED(E, R)

// Eliminate all routes from C that
// do not have highest local preference,
// shortest AS path length, lowest origin type
C← σ(E)
B0← φ; i← 0
do

Bi+1←∪rλr(Cr ∪ Bi); i← i + 1
while Bi+1 6= Bi
return Bi

Figure 5-8: Algorithm for computing the best route at eBGP routers, assuming that MED is only compared
across routes from the same neighboring AS.

the routes (i.e., applying γ({a, b, c, d})), would first eliminate a and c based on MED,
and then router X would select route d (because d is preferred to b based on the router
ID comparison applied at router Y). This conclusion is incorrect, because X would
always prefer route a over route d, because a is learned via eBGP (step 5) and a and d
are equally good up through step 4 (recall that a router does not compare the MEDs
of routes with different next-hop ASes).

The crux of the problem is that the MED attribute makes it impossible to produce an or-
dering of the routes at X that is independent of the presence or absence of other routes.

� 5.6.2 Algorithm: Full Mesh, MED

To correctly handle the interaction between the MED and router ID attributes, the algo-
rithm emulates a message ordering that propagates the effects of MED on each router’s
best route. Figure 5-8 summarizes this algorithm. For this algorithm, we define a new

SECTION 5.6. ROUTE COMPUTATION WITHOUT DETERMINISM 113

function, σ, which takes a set of routes and returns all routes equally good up through the
first three steps of the BGP decision process (i.e., local preference, AS path length, and ori-
gin type). When applied to the network in Figure 5-7, the algorithm starts with all routes
in σ(E) and proceeds as follows:

1. B1 gets the locally best routes from X and Y: c and d, respectively. That is, B1 = {c, d}.
2. On the second iteration, X compares the routes from C that it learns via eBGP, a and

c, along with route d from B1, so λX({a, c, d}) = a. Similarly, λY({b, c, d}) = d. Thus,
B2 = {a, d}.

3. On the third iteration, the process repeats, and B3 = {a, d}, at which point the algo-
rithm terminates.

This algorithm computes the correct routing decision for each router: a at router X and d
at router Y. At router Y, d is better than a (step 5), b (step 7) and c (step 4). At router X, a is
better than d (step 5); a is not better than b, but this does not matter because router Y does
not select b, and a is not better than c, but this does not matter because c is always worse
than d (step 4).

Theorem 5.2 When MED is compared only across routes from the same neighboring AS, the al-
gorithm from Figure 5-8 accurately emulates the results of one activation sequence and message
ordering for all routers that select an eBGP-learned route as their best route.

Proof. Computing σ(E) produces the set C, which is simply the set of eBGP-learned routes,
E, minus the routes that could never be the best route at any router (i.e., because they have
a lower local preference, longer AS path length, or higher origin type). Because the iBGP
topology forms a full mesh, as long as there is a route in E at any router that is better in the
first three steps of the decision process, no router will select a route that is not in σ(E). The
remainder of the algorithm evaluates a routing system with the routes in σ(E).

The remainder of the algorithm follows an activation sequence where each phase (or
iteration of the loop) activates all of the routers simultaneously. The proof proceeds by
induction. After the first iteration of the loop, B0 = φ and br = λr(Cr), where Cr is all of
the routes learned at router r via eBGP with the highest local preference, shortest AS path
length, and lowest origin type. By definition, λr(Cr) returns each router’s locally best route
according to the BGP decision process, which is the same as that which the BGP decision
process would select for each router after phase 1 of the activation sequence. In a network
with a full mesh iBGP configuration, each router r then sends its locally best route, br, to
every other router.

Suppose the algorithm correctly computes the outcome of the BGP decision process
for the first i iterations of the activation sequence. Suppose that there is some router r
for which the algorithm, at iteration i + 1, computes b ′r,i+1, the element in Bi+1 that is the
best route at router r, such that b′r,i+1 6= br,i+1. Then, it must be the case that br,i+1 6∈ Cr ∪ Bi;
otherwise, λr(Cr∪ Bi) would also have selected br,i+1. Either br,i+1 is an eBGP-learned route
or it is an iBGP-learned route. If it is eBGP-learned, then it must be in Cr, as we previously
established. If it is iBGP-learned, then it must be in Bi, because every iBGP-learned route
is the best route of some other router in the AS. But if either br,i+1 ∈ Cr or br,i+1 ∈ Bi, then
br,i+1 ∈ Cr ∪ Bi, which is a contradiction.

114 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

The algorithm terminates when Bi = Bi+1; that is, when activating all of the routers in
the AS does not cause any router to select a new best route and generate a new BGP update
message. We have shown that the algorithm correctly predicts the outcome of BGP route
selection after k iterations for any k. Further, we assumed that the routing system satisfies
safety; that is, given a stable topology, it is guaranteed to converge to a path assignment
where no router changes its best route. When the BGP routing system converges to this
path assignment, no router changes the route it selects and, hence, no new routing mes-
sages are generated. Since, after i iterations, the algorithm correctly predicts the outcome
of BGP route selection and the algorithm activates every router in the AS on every itera-
tion, then it will terminate precisely when it has reached the BGP path assignment when
no new BGP messages are generated (i.e., the unique solution). �

The algorithm in Figure 5-8 is correct, but it is not efficient: each iteration of the loop
repeatedly considers routes that have been “eliminated” by other routes. A more efficient
algorithm would eliminate routes from consideration at each iteration if we know that they
could never be the best route at any router—such is the spirit of applying σ(E) across the
initial set of routes. Unfortunately, because the MED attribute is not comparable across all
routes, it is possible for a route that is not in the set Bi to emerge in the set B j for some
j > i. We now formally define a condition under which routes may be eliminated, which
will allow us to devise a more efficient prediction algorithm.

Lemma 5.1 Suppose there exist two routes: (1) s ∈ Cr at router r and (2) t ∈ Cr′ at router r′ 6= r.
If t ∈ Bi, λr(s, t) = t, and router r learns route t (e.g., as in a full mesh iBGP configuration), then
s 6∈ B j ∀ j > i.

Proof. First, note that as long as t ∈ B j, then s 6∈ B j because route t is preferable to s Also
note that because all routes in C are equally good up the MED comparison and eBGP-
learned routes are preferred over iBGP-learned routes, we know that λr(s, t) = t because
MED(t) < MED(s). Now, suppose there exists some j > i for which t 6∈ B j. Call the best
route at router r′ at step i, v = λr′(Cr′) 6= t; again, we know that MED(v) < MED(t). But this
means that MED(v) < MED(s), λr(s, v) = v, and, thus, s 6∈ B j. �

We can use this result to devise a more efficient route prediction algorithm that elimi-
nates, at every iteration, a router’s locally best route if it has a higher MED value (and same
next-hop AS) than some other router’s locally best route. This algorithm is described in
Figure 5-9 and shown conceptually in Figure 5-10; it can also be thought of in terms of an
activation sequence: (1) each router learns routes via eBGP, selects a locally best route, and
readvertises via iBGP; (2) each router compares its locally best route with all other routes
learned via iBGP, and eliminates its own locally best route from the system if it is worse than
some other locally best route at another router; (3) the system is restarted (from phase 1)
with the eliminated routes removed. This algorithm is computationally more efficient than
the one in Figure 5-8; we now analyze its running time complexity.

Computational Complexity. Understanding the running time of the algorithm in Fig-
ure 5-9 is easiest when we consider the implementation of the algorithm shown in Fig-
ure 5-10. In this figure, the eBGP-learned routes at each router are represented as a stack
and are sorted locally (i.e., compared only to other routes learned at the same router). The

SECTION 5.7. ROUTE COMPUTATION WITHOUT FULL VISIBILITY 115

Algorithm: Full Mesh, MED (Efficient Algorithm)
SELECTBEST EBGP MED(E, R)

// Eliminate all routes from C that
// do not have highest local preference,
// shortest AS path length, lowest origin type
C← σ(E)

// Keep track of the best routes at each router.
do

B←∪rλr(Cr)
L← B \ γ(B)
C← C \ L

while L 6= φ

Figure 5-9: Computationally efficient algorithm for computing the best route at eBGP routers, assuming
that MED is only compared across routes from the same AS (i.e., that there is no total ordering of routes).

top of the stack represents the best route learned at that router; the route that is second
from the top is the second best route, and so forth. Then, the algorithm from Figure 5-9
can be interpreted as follows:

• B← ∪rλr(Cr) is the union of all of the elements at the top of the stack and does not
need to be computed explicitly, assuming each stack is sorted. The complexity of
sorting N routes distributed across |R| stacks is O(N log N). Each of N routes may
be inserted into as many as |R| stacks, so the complexity of this step is O(N log N +

N|R|).
• L← B\ γ(B) marks a route at the top of a stack if that route is worse than any route at

the top of another stack, according to the first four steps of the BGP decision process.
This process takes at most two scans of the routes at the top of the |R| stacks, so the
running time is O(|R|).

• C← C \ L “pops” the marked routes from the top of the stacks, where appropriate.
This process requires a single scan through |R| stacks and at most |R| pop operations,
so the running time is O(|R|).

In the worst case, the above three steps repeat until N− 1 routes are popped from the
stacks, and each iteration only pops a single route. Thus, in the worst case, the running
time for the algorithm is O(N log N + N|R|).

� 5.7 Route Computation without Full Visibility

A full mesh iBGP topology does not scale to large networks because a network of |R|
routers requires O(|R|2) iBGP sessions. Network operators use a technique called route
reflection, which improves scalability by introducing hierarchy but complicates route pre-
diction. First, we define an iBGP signaling topology, expound on problems introduced by
route reflection, and describe constraints on iBGP configuration that must hold for model-
ing to be possible. Next, we propose an algorithm that efficiently computes the outcome

116 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

routers

PSfrag replacements
LL

|R|

Bi

Figure 5-10: Implementation of the route computation algorithm from Figure 5-9. Each stack represents
one of |R| total routers, and each stack element represents one of L routes. The top elements of the |R|
stacks represent Bi, the elements marked L represent routes that are worse than the routes at the top of
the remaining stacks according to the first four steps of the decision process (i.e., local preference, AS path
length, origin type, MED), and the shaded routes represent Bi+1. The algorithm terminates when no routes
are marked L.

over

updown
PSfrag replacements

RR1 RR2

W X Y Z

Figure 5-11: Example iBGP signaling graph.

of BGP path selection in a network with route reflection; we then present a minor modifi-
cation to the algorithm that is necessary if MED is only compared across routes from the
same neighboring AS.

� 5.7.1 Problems Introduced by Route Reflection

A router does not normally forward iBGP-learned routes over other iBGP sessions, but
it can be configured as a route reflector (RR), which forwards routes learned from one of
its route-reflector clients to its other clients. The routers in an AS form a directed graph,
G = (R, S), of iBGP sessions called a signaling graph. Each edge a = (u, v) ∈ S where u, v ∈ R
corresponds to an iBGP session between a pair of routers. We then define three classes of
edges: (1) a ∈ down if v is a route-reflector client of u; (2) a ∈ up if u is a route-reflector client
of v; and (3) a ∈ over if u and v have a regular iBGP session between them. Figure 5-11
shows an example signaling graph. In a full-mesh configuration, every eBGP-speaking
router has an edge in over with every other router in the AS, and both the up and down

SECTION 5.7. ROUTE COMPUTATION WITHOUT FULL VISIBILITY 117

sets are empty.
Previous work has shown that iBGP satisfies safety as long as the structure of the signal-

ing graph satisfies certain sufficient conditions [61]. Accordingly, we refine Constraint 5.2
in terms of these sufficient conditions to guarantee that an iBGP topology with route re-
flection satisfies safety (at least when the MED attribute is not used or compared across all
routes):

Constraint 5.4 (1) ∀ u, v, w ∈ R, ((u, v) ∈ down and (u, w) 6∈ down) ⇒ λu({ρv, ρw}) = ρv,
where ρv represents any route learned from v and ρw is any route from w; and (2) the edges in up
are acyclic.

Part (a) is satisfied when routers do not change the attributes of iBGP-learned routes and
each router has a lower IGP path cost to its clients than to other routers. The common
practices of applying import policies only on eBGP sessions and placing route reflectors
and their clients in the same point-of-presence (i.e., “PoP”) ensure that these conditions
hold. Part (b) states that if a is a route reflector for b, and b is a route reflector for c, then c
is not a route reflector for a, consistent with the notion of a route-reflector hierarchy (rather
than an arbitrary signaling graph).

Even a route reflector configuration that converges can wreak havoc on the algorithms
from Sections 5.5 and 5.6. A route reflector hides information by advertising only a single
best route to its iBGP neighbors. For example, in Figure 5-11, if W and Z have eBGP-learned
routes, router Y learns a single route from its route reflector RR1. Suppose that RR1 selects
the eBGP route advertised by Z. Then, Y would pick Z’s route as well, even if Y would
have preferred W’s route over Z’s route. Note that Y makes a different routing decision
than it would if it could select its best route from all the eBGP routes (i.e., from both W and
Z). In large networks, route reflection reduces the number of routing messages and iBGP
sessions, which helps scalability, but it complicates route prediction in the following ways:

1. A router will not typically learn every route that is equally good up through the first
four steps of the decision process. That is, it is possible (and likely) that some routers
will not learn every route in γ(B). In Section 5.7.2, we describe an algorithm that
handles this case.

2. If a network uses route reflectors, and MED is only compared across routes from
the same AS, the routes that some routers ultimately select may be worse than some
eBGP-learned routes, according to the first four steps of the decision process. That
is, it may be the case that br 6∈ γ(E) for some router r. This characteristic creates
problems not only for efficient route prediction, but also for safety. We discuss this
case in Section 5.7.3.

� 5.7.2 Algorithm: Route Reflection, No MED

Route reflection obviates the need for routers in an AS to form a full mesh topology, but
it also means that some routers may not learn all routes in γ(B). This artifact has two
implications. First, the algorithm cannot simply assign a non-eBGP-speaking router the
route from the “closest” eBGP-speaking router, because the former router may never learn
the route. Thus, applying br ← λr(B) may not always be correct. For example, consider

118 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

eBGP

5

4

2 3

1

PSfrag replacements

RR

W X Y Z

Figure 5-12: When an AS’s iBGP topology uses route reflectors, a router may not always discover the route
corresponding to its closest egress router.

the network shown in Figure 5-12. W, X, and Y are clients of route reflector RR, and Z
is a regular iBGP peer of Y. X and Y have a short IGP path between them, but they are
not directly connected by an iBGP session. Routers W, X, and Z have eBGP routes that
are equally good through the first four steps of the route selection process, and have thus
selected their own eBGP-learned routes. In this network, Y’s closest egress point is X, but
Y selects W, because RR’s closest egress router is W.

Second, often there is no consistent ranking of possible egress routers from some non-eBGP-
speaking router; in other words, egress determinism (Definition 3.13) is violated. For ex-
ample, in Figure 5-12, RR prefers egress router W because its IGP path cost to W is the
shortest. Router Y’s preferences over possible egress routes depends on the presence or
absence of other routes. If the AS learns routes for some destination via eBGP sessions at
routers X and Z, then router Y prefers using X as an egress router. On the other hand, if
the AS learned routes at W, X, and Z, then Y prefers using Z, which implies that Y prefers
egress Z over X and is inconsistent with Y’s choice when only X and Z are available egress
routers.

To account for the fact that some routes are not visible at some routers, we design an
algorithm that emulates a certain activation sequence, making route assignments at each
router where possible and propagating the effects of these decisions to other routers, with-
out ever having to revisit any assignment. This algorithm is shown in Figure 5-13. The
algorithm first activates the routers from the bottom of the route reflector hierarchy up-
wards, which guarantees that each router selects a down route where possible, as required
by Constraint 5.4(a). Because the algorithm moves upwards from the bottom of the hi-
erarchy, it performs computations for each route reflector after all of the routes from its
clients become known; computations for these routers never need to be revisited, since, by
Constraint 5.4, a router always prefers routes from its “children” (i.e., clients) over routes
from its peers or parents. Visiting the routers in the down direction ensures that the al-
gorithm performs computations for the remaining routers using all available routes from
the up and over sets. The algorithm defines two partial orderings of the routers based on
the elements of the up and down sets. We can define these two partial orderings because
Constraint 5.4(b) requires that the signaling graph does not have any cycles of these edges,

SECTION 5.7. ROUTE COMPUTATION WITHOUT FULL VISIBILITY 119

Algorithm: Route Reflection, No MED
SELECTBEST EBGP RR(E, R)

// Proceed up the hierarchy, assigning best routes.
// Find a router for which all children are activated.
A← φ
while ∃r ∈ R s.t. r 6∈ A and c ∈ A ∀c ∈ DOWN(r)

Ir←∪c∈DOWN(r)bc
br← λr(Ir ∪ Er)
A← A∪ r

// Proceed down the hierarchy.
// Find a router for which all parents are activated.
A← φ
while ∃r ∈ R s.t. r 6∈ A and c ∈ A ∀c ∈ UP(r)

Ir←∪c∈UP(r)∪OVER(r)bc
br← λr(Ir ∪ br)
A← A∪ r

Figure 5-13: Algorithm for computing the best route at each router in a network with route reflection but
no MED.

so each partial ordering must have a top and bottom element.
Applying this algorithm to the example in Figure 5-12, the shaded routers select best

routes in the first step, because each of those routers is at the bottom of the hierarchy and,
thus, all of their neighbors in down have been activated (because they have none). Y is
activated, but it does not select a route at this point because it has no neighbors in down.
Because these four routers are at the same level in the hierarchy, they can be activated in
any order. Then RR is activated; it applies λRR({rW , rX}) and selects rW because it has the
smallest IGP path cost. The routers are all activated again in the downward direction; Y
receives rW from RR and compares it with rZ, which is its best route to the destination.
X and Z also receive rW but continue to select their own route, because λr prefers eBGP
routes over iBGP routes. We now prove that the algorithm shown in Figure 5-13 is correct.

Theorem 5.3 If each router can form a total ordering over the set of all candidate routes, then the
algorithm in Figure 5-13 correctly computes the outcome of the BGP decision process, br, for all
routers r ∈ R.

Proof. Assume that some router r selects a route, br, that is different from the route assigned
by the algorithm in Figure 5-13, b′r. The mismatch can occur in one of two cases: (1) when
br is learned from a session in down, or (2) when br is learned from a session not in down
(i.e., in either up or over).

Consider Case 1, where br is learned from a session in down. Call b′r the first case of
an incorrect computation (i.e., the algorithm has correctly computed the best route for all
routers below r in the hierarchy); because we examine the first such mismatch, Ir is correct.
If b′r is also in down, then b′r = λr(Ir ∪ Er) when the algorithm proceeds up the hierarchy,
which implies that b′r is better than br according to the BGP decision process, and r would

120 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

eBGP−learned routesN

sessions

PSfrag replacements

sl

Figure 5-14: Running time analysis of an iBGP graph walk for the algorithm in Figure 5-13.

have actually selected b′r. If b′r is in up or over, then it must have been the case that it was
better, according to the BGP decision process, than the displaced route br in down. But
then, by definition of λr, router r would have also selected b′r in BGP. Thus, the algorithm
correctly computes br for all routers r that select a best route from down.

Consider Case 2, where br is learned from a session in up or over. From the first half
of the proof, we know that the algorithm correctly computes br for all routers that select a
route from down, so call b′r the first instance of a mismatch for some router that selects a
best route from up or over (i.e., the algorithm correctly assigns br for all routers higher in
the hierarchy than r). Again, because we consider the first such mismatch, we know that Ir
is correct. If the route that the algorithm selects, b ′r, is in down, then, by Constraint 5.4(a),
BGP could not have selected br, so we have a contradiction. If both br and b′r are learned
from sessions in up and over, then both are in Ir, and, according to the λr(Ir ∪ br) step in the
algorithm and by definition of λr, both the algorithm and the BGP decision process would
select the same route. �

This theorem relates to one from earlier work [47] on sufficient conditions for stable BGP
routing at the AS level; this work provides a constructive proof showing that the sufficient
conditions guarantee safety. In subsequent work, Griffin et al. discovered that the suffi-
cient conditions for stable eBGP routing were analogous to those for stable iBGP routing
with route reflection [61]. The algorithm from this section applies the iBGP analog of the
constructive proof from the work on stable interdomain routing to develop an algorithm
for computing that stable path assignment.

Computational Complexity. This algorithm traverses the route reflector hierarchy ex-
actly twice. The running time of this algorithm is O(N + |S|), where N is the number of
eBGP-learned routes, and |S| is the number of iBGP sessions. To see why this is the case,
consider the l-level route reflector hierarchy pictured in Figure 5-14. Starting from the bot-
tom of the hierarchy, the algorithm must perform comparisons over N routes to determine
the routes that the M routers at the bottom of the hierarchy select (the number of routers
at the bottom of the hierarchy is inconsequential: these comparisons can be performed by

SECTION 5.7. ROUTE COMPUTATION WITHOUT FULL VISIBILITY 121

MED:20
Router ID: 1

2

MED:10

41

Router ID: 2

PSfrag replacements

a

b c
d

RR

W
X Y Z

(a) When Y is closer to RR than X, the routing
system satisfies safety.

MED:20
Router ID: 1

MED:10

4

Router ID: 2

1
2

PSfrag replacements

a

b c
d

RR

W
X Y Z

(b) When X is closer to RR than Y, the rout-
ing system violates safety and the algorithm
in Figure 5-13 is incorrect.

Figure 5-15: A BGP configuration where the algorithm in Figure 5-13 may the incorrect result, depending
on the IGP topology and the MED attributes of the routes received via eBGP.

constructing a subset of M routes from the original N routes, which can be performed in
a single scan of the N routes). The algorithm then propagates the selection of these M
routes to the next level of the hierarchy, where s l comparisons must be performed across
the routers at the next highest level, where s l is the number of iBGP sessions at level l.
Repeating this process up the hierarchy yields a total running time of O(N + |S|).

Recall from Section 5.5 that the running time for the algorithm in the case of full-mesh
iBGP, was O(N + |R|2), or O(N + |S|). Note that the algorithm for the case with route
reflection has the same running time complexity as before; the running time for comput-
ing the outcome of BGP route selection is no more complex, even though the process for
computing the outcome is more involved. In an iBGP topology with route reflection, the
number of sessions, |S|, will actually be less than |R|2; thus, the running time of the algo-
rithm benefits from the fact that route reflectors reduce the number of sessions in the iBGP
topology.

� 5.7.3 Algorithm: Route Reflection, MED

When a network uses both route reflection and MED, the graph walk algorithm in Fig-
ure 5-13 no longer works, because it relies on the fact that all routers will ultimately select
a route in γ(E). In a network with route reflection and MED, this is not always true, be-
cause when a router selects a locally best route, a route with a lower MED value might not
be visible to that router. As a result, some router in the AS might select an eBGP-learned
route that is worse, according to the first four steps of the BGP route selection process, than
eBGP-learned routes selected by other routers! Figure 5-15 shows an example of exactly
this scenario.

Note that applying the algorithm from Figure 5-13 does not always correctly compute
the outcome of the BGP decision process. Consider the operation of the algorithm from
Figure 5-13 on the topology and route announcements shown in Figure 5-15(a). Proceeding
up the hierarchy: (1) routers X, Y, and Z would select routes a, b, and c, respectively;
(2) RR selects route b because b has a lower MED value than a and a shorter IGP path to

122 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

the egress than c. Proceeding down the hierarchy, X selects b because it has a lower MED
value than a. At this point, the algorithm in Figure 5-13 would terminate in the case of
Figure 5-15(a), but, in fact, depending on the IGP topology X’s selection of d could have
caused RR to select a new best route. Suppose, instead, that the IGP topology were such
that RR were closer to X than to Y, as in Figure 5-15(b). In this case, proceeding up the
route reflector hierarchy a second time would cause RR to change its selected route from
b to d; subsequently proceeding down the hierarchy would cause X to change its selected
route from d to a. In fact, as described in a similar example in Section 3.4, BGP does not
satisfy safety in this example—therefore, no number of progressions up and down the iBGP
hierarchy would cause the algorithm to predict the correct outcome.

In this situation, any router in the AS might ultimately select a route that is not in γ(E);
as a result, the route prediction algorithm cannot eliminate a route from the set of candidate
routes Cr at any router r, as was done in the case where determinism did not hold but every
router was guaranteed to learn every eBGP-learned route (Section 5.6, Figure 5-9). As we
have seen, the fact that a router may select a route that is not in γ(E) as its best route, the
algorithm (and BGP route selection, for that matter) is no longer guaranteed to terminate.

It might initially seem reasonable to impose constraints on the iBGP and IGP topologies
that guarantee safety and can easily be checked with a tool like rcc (Chapter 4). Unfortu-
nately, as the example in Figure 5-15 shows, any condition that guarantees safety would
require knowledge of the MED attributes of every eBGP-learned route to a destination,
not just the iBGP and IGP topologies. Further, the simplicity of this example demonstrates
that any condition that guarantees safety for any combination of eBGP routes would be
overly restrictive (i.e., it would essentially require not using route reflectors). Thus, in the
case where a BGP configuration uses route reflection and only compares the MED attribute
across routes from the same AS, the most efficient algorithm for determining the outcome
of BGP route selection (and detecting safety violations) is actually a simulator. In other
words, there are no conditions on the topology that can be enforced to guarantee that an
algorithm would never have to visit each router in the AS more than once, or even that
BGP would satisfy safety.

� 5.8 Implementation: The Routing Sandbox

In this section, we describe a prototype, the routing sandbox, that incorporates BGP route
prediction algorithms described in this chapter. Our current prototype separates the com-
putation of egress routers for a given destination from the assignment of other routers to
those egress routers. This separation of functionality requires that br ∈ γ(E), which does not hold
when both MED and route reflection are used (as shown in Section 5.7.3).

� 5.8.1 Design Overview

We now highlight the high-level design of the prototype, shown in Figure 5-16. We briefly
describe the necessary inputs for driving the prototype, the decomposition of functional-
ity into three distinct modules and the relationships of those modules to the algorithms
described in this chapter, and optimizations that reduce computational complexity.

The prototype has three inputs:

SECTION 5.8. IMPLEMENTATION: THE ROUTING SANDBOX 123

BGP tables

known routes

route maps

import

MODIFIED ROUTES

BGP Neighbor Info

router ID

EGRESS POINTS

iBGP topology

RR clients

IGP configuration

IGP Path Costs

PREDICTED ROUTES

Apply import policy
Compute best

eBGP routes
Compute best route

Figure 5-16: Data flow in the prototype. Fonts specify raw inputs, input tables, and DERIVED TABLES. In
practice, operators might collect raw inputs once a day.

• BGP routing tables: The BGP tables for the eBGP-speaking routers provide the first
stage of the algorithm with a snapshot of the routes advertised by neighboring ASes.
We ignore the router’s current view of the best route and the current setting of the
local preference attribute, since these relate to the existing network configuration
rather than the scenarios we might want to emulate.

• Router configuration files: The configuration files are used to (1) determine the im-
port policies (i.e., “route maps”, as described in Section 2.3.2) for each eBGP session,
(2) determine the iBGP signaling graph, and (3) compute the IGP path costs between
each pair of routers. The import policies are used to manipulate attributes of the
eBGP routes in the first stage of the algorithm, and the iBGP and IGP information are
needed for the third stage.

• BGP neighbor information: Because BGP route selection (Table 2-2) depends on the
router ID associated with the BGP session announcing the route, our algorithms re-
quire knowing the router ID associated with each BGP session. The second stage
uses the router IDs of the eBGP sessions, while the third stage uses the router IDs for
the iBGP sessions.

We note that these inputs are easy to either obtain or approximate. First, a network opera-
tor can capture all of the necessary data with telnet or ssh access to each router. Second,
many aspects of the input data do not change very often; as such, the prototype is useful
even if all of the input data is collected infrequently (e.g., once a day). Finally, because cer-
tain inputs can be approximated (e.g., a BGP session’s router ID is typically the loopback
IP address3 of the router on the opposite end of the session), the prototype can be effective
even with limited input.

The prototype uses a database back-end, which provides efficient access to small sub-
sets of the configuration data and routes and also stores intermediate results, which allow

3A router’s loopback address is an IP address on the router that is reachable via any of the router’s interfaces.

124 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

us to validate each part of the algorithm separately. Figure 5-16 summarizes how the pro-
totype uses the inputs and intermediate results to generate a table of predicted routes. The
three modules shown in Figure 2 correspond to the first two stages from Section 5.3.2; as-
suming that br ∈ γ(E) allows us to break the second stage into two simpler modules. The
prototype performs three operations:

Applying import policy to eBGP-learned routes: This operation corresponds to the first
step described in Section 5.3.2. Each row of the import table specifies how a particular set
of rows in the known routes table should be modified; the prototype performs the actual
modifications on the MODIFIED ROUTES table. For each row in the import table, the first
operation applies the policy by (1) finding the appropriate routes by selecting the set of
routes learned at the corresponding router on that BGP session that match the specified AS
path regular expression and (2) setting the other attributes (e.g., local preference) according
to the values specified in that row of the import table.

Computing the egress routers for a destination: This operation generates the set of best
eBGP-learned routes, B, using the algorithm from Section 5.6.2, corresponding to the first
half of stage 2 in Section 5.3.2. This part of the algorithm performs “select” statements on
the MODIFIED ROUTES table to successively refine the set of candidate routes. The router ID
table contains the router ID for every BGP session at each router, which is needed for step
7 of the decision process. As the method from Section 5.5 marks “best” routes, these routes
are inserted into the EGRESS POINTS table for use by the third operation.

Computing the predicted routes: This operation uses the iBGP signaling graph, IGP path
costs, and algorithm from Section 5.7.2 to determine the best BGP route for each prefix
at each router. The module uses the iBGP signaling graph to determine which routes are
advertised to each router, the IGP path costs between each pair of routers to determine the
closest eBGP-speaking router to each ingress router (used in step 6 of the decision process),
and the router ID of each iBGP session (step 7) to determine the egress router that each
ingress router will select. The RR clients table represents the iBGP signaling graph and IGP
path costs represents the shortest IGP path between each pair of routers in the AS. Each
row of RR clients specifies a route reflector client for a particular cluster; this provides the
partial ordering needed by the algorithm. When applying the IGP tiebreaking step at an
ingress router, IGP path costs is used to determine the egress router with the shortest IGP
path.

To ensure that the prototype operates on reasonable timescales, even with a large num-
ber of routes and eBGP sessions, we made the following optimizations: (1) because many
routes have the same AS path attribute, store the AS paths in a separate table to accelerate
lookups based on AS path regular expressions; (2) because many prefixes are advertised
in exactly the same manner (i.e., at the same set of egress routers and with the same at-
tributes), compute the best BGP routes only once for each group of prefixes; and (3) upon an
incremental policy change, only recompute the routes for prefixes affected by that change.

In the next two sections, we analyze the performance and correctness of our algorithms
on real data from a large tier-1 ISP. The analysis focuses on a snapshot of the network state
during early morning (EST) on February 4, 2003. We validate the prediction algorithm
for the 91,554 prefixes whose eBGP routes are learned at peering points to other large
providers, since we have routing tables from all of these locations; we excluded prefixes
that were learned at other routers. (Recall that the prediction algorithm relies on knowing

SECTION 5.8. IMPLEMENTATION: THE ROUTING SANDBOX 125

all of the potential egress routers where routes to a prefix are learned.) The initial BGP
routing data consists of 1,620,061 eBGP-learned routes with 43,434 distinct AS paths. We
apply the tool to these inputs and check whether it produces the same answers that the
operational routers selected. In addition to collecting BGP routing tables from the peering
routers (where the eBGP routes are learned), we also collect BGP tables from several route
reflectors and access routers to verify the results.

� 5.8.2 Performance Evaluation

In this section, we evaluate the performance of our implementation of the BGP emulator.
We do not attempt to perform a complete performance analysis of the prototype. Rather,
we conduct experiments that demonstrate the practicality of the prediction algorithm.

While our evaluation is preliminary, our performance tests demonstrate that the emula-
tor can operate on timescales that could allow an operator to use a BGP emulator based on
our algorithms in a practical setting. Our evaluation demonstrates the following points:

• The emulator computes the best routes for one prefix throughout a large tier-1 ISP
network in about one second. Although predicting the best route for all prefixes at
all routers in such a network takes several hours, this type of computation does not
need to be performed all that frequently in practice.

• Exploiting commonalities among route advertisements to eliminate redundant com-
putation reduces the running time of the emulator by approximately 50%.

• Using the emulator to evaluate the effects of an incremental change to router config-
uration typically takes only a few seconds. Thus, we believe that the emulator can
be practical for tasks such as interdomain traffic engineering.

After briefly discussing the evaluation framework, we examine the emulator’s perfor-
mance. First, we discuss the emulator’s performance when it computes the routes for every
prefix in the routing table from scratch, without any performance optimizations. We then
examine how insights from the BGP decision process and previous measurement studies
can improve performance. Finally, we describe how the emulator can quickly predict the
effects of incremental configuration changes.

Evaluation Framework

We ran the emulator on a Sun Fire 15000 with 192 GB of RAM and 48 900 MHz Ultrasparc-
III Copper processors. Because this is a time-shared machine, we ran each of our experi-
ments several times to ensure the accuracy of our measurements. Except where noted, the
prototype used only two 900 MHz processors (one for the database process and one for the
emulator itself); the combined memory footprint of the database process and the emulator
never exceeded 50 MB. Because the emulator did not use more resources than a standard
PC, the results of our evaluation should reasonably reflect the emulator’s performance on
commodity hardware.

Because the emulator’s running time depends on many interdependent factors—
including the number of neighbor ASes, the number of eBGP sessions, the number of
prefixes, and the number of routers—running independent benchmarks for each of these

126 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

factors with realistic routing and configuration data is extremely difficult. For example, it is
difficult to run an experiment that controls every other factor that affects running time
while varying the number of eBGP sessions. Similarly, determining a precise running time
for the emulator to process an incremental configuration change is difficult because the
running time depends on how many routes must be recomputed as a result of that change.

Rather than isolating individual factors that affect performance, which is difficult and
may not accurately reflect realistic network conditions, we evaluated the BGP emulator’s
running time using the actual routing tables and configuration data from a large tier-1 ISP
with several hundred routers; we present absolute performance numbers, as well as appro-
priate averages, to give a rough estimate of the emulator’s running time for an arbitrary-
sized network. We also use the averages to estimate the running time for computing the
effects of incremental routing changes. Most networks have fewer prefixes in their routing
tables, fewer routers, and fewer BGP sessions per router. Therefore, the running times we
report can be considered conservative: the emulator should have a shorter running time
for most other networks.

Route Prediction from Scratch

To get a baseline performance estimate for the algorithm, we first ran the emulator without
any performance optimizations. Before the emulator can begin executing the route predic-
tion algorithm, it must load the input data into the database. Loading the configuration
data has three separate steps: (1) parsing and loading the routing tables, (2) parsing and
loading the import policies, (3) building the database indexes. The first two steps can be
parallelized by router since the tables and configuration for each router can be parsed and
loaded independently. When loading each routing table in sequence, the prototype parsed
and loaded all 1,620,061 eBGP-learned routes from a large tier-1 ISP in just over 90 min-
utes, at a rate of about 280 routes per second. When loading up to 20 tables in parallel, the
emulator finished loading the routing tables in about 520 seconds. The speed of this oper-
ation is not critical, since it is likely only performed once per day. The time to parse and
load the import policies and router ID information was negligible: the emulator parsed
and loaded this information in just over 1 second.

Once all of the data was parsed and loaded into the database, the emulator applied
the 486 import policy operations to the eBGP-learned routes in a total of 1,576 seconds, or
about 0.31 operations per second (it does not make sense to give a per-prefix performance
number for this module, since one import policy applies to many prefixes). The second
module computed the set of best eBGP routes at a rate of about 3 prefixes per second, and
the third module computed the best route for each prefix and ingress router at approxi-
mately 7.3 milliseconds per prefix per router.

Although the emulator takes a total of about 5 hours to compute all routes for all routers
in a large ISP network, running the emulator is likely to be much faster in most cases.
First, depending on the task, a network operator may not need to perform route predic-
tion for every prefix. For example, it is well known that the majority of network traffic is
destined for a relatively small fraction of the total prefixes [32]; thus, a network operator
would likely to be able to perform effective traffic engineering by emulating route selec-
tion for only a small number of prefixes. Similarly, a network operator who is debugging a
reachability problem to a single prefix or small group of prefixes will only need to run the

SECTION 5.8. IMPLEMENTATION: THE ROUTING SANDBOX 127

emulator for those prefixes. Second, several performance optimizations can significantly
improve the efficiency of the emulator, as we discuss next.

Performance Optimizations

To ensure that the emulator operates on reasonable timescales, even with a large number
of routes and eBGP sessions, we designed the emulator around the inherent structure of
the input data. In particular, we make three observations that inspire aspects of the de-
sign: (1) many BGP routes have the same AS path attribute; (2) neighboring ASes often
advertise a large group of prefixes with the same attributes across all eBGP sessions, and
they often advertise a large group of prefixes to the same set of eBGP-speaking routers;
and (3) incremental router configuration changes typically only affect a small number of
routes. These observations allow the BGP emulator to scale to a large number of prefixes
and eBGP sessions and halve the emulator’s running time.

Store and manipulate each unique AS path only once: Modifying the eBGP-
learned routes according to import policies potentially involves sequentially scanning each
router’s BGP routing table for routes whose AS paths match a given regular expression;
performing this operation once per import policy would involve many table scans. Fortu-
nately, many eBGP-learned routes have the same AS path: in our BGP routing tables, each
unique AS path appears in twenty eBGP-learned routes, on average. We exploit this obser-
vation by having the known routes and MODIFIED ROUTES tables store a pointer (i.e., a foreign
key) into a separate table that contains the distinct AS paths. This level of indirection sig-
nificantly reduces the overhead of the first module, which repeatedly modifies attributes
for some set of routes that match a certain AS path regular expression. The first module
(1) searches the relatively small AS path table to find the AS path pointers associated with
a regular expression and (2) selects the subset of table entries that must be modified by
selecting the entries that have those AS path pointers (on which the table is indexed). By
operating on a table of 45,000 AS paths instead of more than 1 million eBGP-learned routes,
the first module can apply 1.02 import policy operations per second—more than a factor
of 3 improvement over the 0.31 operations per second reported in Section 5.8.2.

Group prefixes with the same eBGP routing choices: The emulator must compute
the set of best eBGP-learned routes for each prefix; because an Internet routing table of-
ten has more than 100,000 prefixes, performing this prediction once per prefix could be
computationally expensive. Fortunately, because a neighboring AS typically advertises a
large group of prefixes over the same set of peering sessions, many prefixes are advertised
in exactly the same fashion across all eBGP sessions with neighboring ASes [32]. This pattern
of advertisements typically happens when a single institution announces several prefixes
from a single location or a single peer advertises various prefixes with the same AS path
length. As such, for many prefixes, the process for computing the set of best routes is
exactly the same. For example, if two prefixes have an identical set of MODIFIED ROUTES

(i.e., the same attributes for the route from each eBGP neighbor), the second module of
the emulator would produce the same egress set. In fact, this is true as long as the two
prefixes have routes with the same AS path length from each neighbor, since the BGP de-
cision process only considers the length of the path. To exploit this observation, the known
routes and MODIFIED ROUTES tables store the length of the AS path, along with the pointer
to the table of unique AS paths. We group prefixes that have routes with the same AS path

128 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

length, local preference, origin type, and MED, reducing the total number of predictions
from 91,554 (i.e., one per prefix) to 8,291 (i.e., one per group of prefixes). Identifying these
groups of prefixes required 1,420 seconds (this time is proportional to the total number of
eBGP-learned routes). After grouping the prefixes, the computation in the second module
requires only 15,753 seconds, rather than the 30,212 seconds needed when performing the
computation separately for each prefix. The speed-up is somewhat limited because of the
overhead required to determine whether a new computation can be avoided.

Group prefixes with the same egress set: The best route that the emulator predicts
at a particular ingress router ultimately depends on the set of routers in the egress set
for that prefix. In theory, the number of distinct sets of egress routers is exponential in
the number of routers. Fortunately, because many prefixes are advertised in exactly the
same fashion, and because an AS usually applies the same local policies to manipulate
and select these routes, many prefixes have exactly the same set of egress routers; the
emulator can thus select the best route for each group of prefixes with the same egress set,
rather than for each prefix. In our routing data, the 91,554 prefixes have only 290 distinct
egress sets. We exploit this observation by applying the algorithm in Section 5.7 only once
per ingress router and set of egress routers, rather than once for each ingress router and
prefix. Determining whether a prediction has already been computed for an ingress router
and a set of egress routers requires an additional database query. Despite this additional
overhead, this optimization reduces the running time of the third module from 7.3 to 4.3
milliseconds per prefix per ingress router.

Compute small differences after incremental changes: We envision that network op-
erators would use the BGP emulator as a traffic engineering tool, in order to predict how a
configuration change would affect the flow of traffic. These kinds of configuration changes
typically only affect some small subset of the total number of routes. Thus, in cases of incremen-
tal configuration change, the emulator avoids unnecessary recomputation by determining
which prefixes are affected by the policy change and recomputing the best routes only for
these prefixes. The first phase of the algorithm only reapplies the import policy for the
routes learned on the associated eBGP session. The first phase keeps track of the prefixes
that are affected by the policy change, which allows the second phase to reevaluate the
BGP decision process only for these prefixes. Then, the third phase evaluates the selection
of the egress router for these destination prefixes only. In fact, some of these prefixes might
have a set of egress routers that the third phase has evaluated before, allowing the emula-
tor to reuse the result of the earlier computation. Together, these optimizations allow the
emulator to quickly answer “what if” questions about incremental changes to the network
configuration. We find that recomputing the best routes after a single import policy change
takes less than one second on average.

� 5.8.3 Validation

To verify that the emulator produces correct answers, we perform validation using com-
plete routing protocol implementations on production routers in a large operational net-
work. Network simulators do not capture the full details of the standard routing proto-
cols, so it is not useful to compare the emulator’s results with those of a simulator. In
addition, we may be unaware of vendor-specific variations that could affect the accuracy
of our results. Since we cannot make arbitrary changes to deployed configurations on a

SECTION 5.8. IMPLEMENTATION: THE ROUTING SANDBOX 129

Number Attribute
Mismatch

Unusual
Configuration Total Errors

AS Paths 43,434 3 9 12 (0.028%)
Routes 1,620,061 36 277 313 (0.019%)

Table 5-3: Summary of errors in applying import policy.

live network, we run the emulator on individual snapshots derived from daily dumps of
the router configuration files, BGP routing tables, and BGP neighbor information and com-
pare the emulator’s route predictions to what was seen in practice. For each phase of the
algorithm, we compare our results to actual BGP tables and present a breakdown of any
mismatches we encounter. To isolate the sources of inaccuracy, we evaluate each phase
in Figure 5-16 independently, assuming perfect inputs from the previous module; we also
perform an end-to-end validation.

The emulator generates correct results for more than 99% of the prefixes. Most mis-
matches can be attributed to the fact the data sets were collected at slightly different times.
The analysis focuses on a snapshot of the network state from early morning (EST) on
February 4, 2003. We validate the prediction algorithm for the 91,554 prefixes whose eBGP
routes are learned at peering points to other large providers, since we have routing tables
from all of these locations; we excluded prefixes that were learned at other routers. (Recall
that the prediction algorithm relies on knowing all of the potential egress routers where
routes to a prefix are learned.) The initial BGP routing data consists of 1,620,061 eBGP-
learned routes with 43,434 distinct AS paths. We applied the tool to these inputs and
checked whether the emulator produced the same answers that the operational routers
selected. In addition to collecting BGP routing tables from the peering routers (where the
eBGP routes are learned), we also collected BGP tables from several route reflectors and
access routers to verify the results.

Applying Import Policy

To verify that the first phase correctly emulates the application of import policy, we need
only compare the route attributes (i.e., local preference, MED, etc.) in the MODIFIED ROUTES

table to the actual BGP routing tables. The MODIFIED ROUTES table contains the routes with
attributes modified by applying the import policies specified in the import table to the initial
known routes table. Because the prototype uses routing tables to approximate the actual
routes received at each router in the AS, we cannot determine what routes were discarded
by the import policy. Thus, the emulator cannot emulate the filtering policies specified by
import policies, but it can still determine the effects of import policy configurations that
set or manipulate route attributes (e.g., for traffic engineering).

We compared the route attributes between the known routes and modified routes tables for
all 1,620,061 eBGP routes with 43,434 distinct AS paths. Table 5-3 summarizes the results of
our validation. The emulator’s results matched the route attributes seen in the BGP tables
for all but 313 eBGP-learned routes on 12 distinct AS paths. We observed 36 attribute
mismatches over 3 AS paths, which can likely be attributed to actual policy changes, since
the routing tables and the configuration files were captured at slightly different times of
day; we verified this conclusion by inspecting the configuration data for the next day. The
remaining mismatches involved 9 unique AS paths because the prototype did not handle

130 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

Number Different Missing Total Errors
AS Paths 43,434 66 187 253 (0.582%)

Prefixes 91,554 120 483 603 (0.659%)

Table 5-4: Mispredictions in the set of best eBGP routes.

a complex configuration scenario permitted on Cisco routers. This accounted for 277 of the
313 route mismatches. Overall, the first phase produced successful results for more than
99.97% of the cases.

Computing the Set of Best eBGP Routes

To verify that the second phase correctly computes the set of best eBGP routes, we check
that the best route at each eBGP-speaking router as specified by the EGRESS POINTS table
corresponds to the route that appears in the routing table of that router’s route reflec-
tors. These routes match the vast majority of the time. However, in a few cases, the two
routers had different routes (i.e., with different AS paths), even though one router appar-
ently learned the route directly from the other; these results are summarized in the “Differ-
ent” column in Table 5-4. The “Missing” column highlights cases where the route reflector
did not have any route for that prefix. Timing inconsistencies can explain both scenarios,
which together account for just over 0.5% of the cases.

To verify that the emulator does not incorrectly exclude routes from the set of best eBGP
routes, we check that, for each prefix, the best route at each route reflector appears in the
set of best eBGP routes as computed by the emulator4. In other words, we consider cases
where a route reflector’s best route would have directed traffic towards some egress router
that was not contained in the EGRESS POINTS table. Only 1.11% of best routes at route
reflectors for 2% of prefixes fell into this category. Routing dynamics can explain these
inconsistencies—through manual inspection, we found that, in many cases, the best route
at the RR was clearly worse than the routes in the set of best eBGP routes (e.g., the route
reflector’s best route had the same local preference but a higher AS path length).

Computing the Best Route at Each Router

To verify that the emulator correctly predicts the best egress router, we examined the best
routes in BGP tables at several routers and compared the (destination prefix, next-hop)
pair from the routing table with the results in the PREDICTED ROUTES table entry for that
router. We performed these comparisons at two access routers that connected directly
to customers in different geographic locations to verify that the emulator makes correct
predictions at ingress routers. We also analyzed the emulator’s predictions at two route
reflectors to verify that the algorithm makes correct route predictions as it traverses the
signaling graph. The best route matched our prediction for 99.5-99.7% of the cases, as
summarized in Table 5-5. At each router, we excluded prefixes if the best egress router was
not one of the peering routers included in the known routes table (recall that we excluded
routers for which we did not have routing tables). In these cases, we cannot evaluate

4The reverse is not necessarily true. An egress point may have a larger IGP path cost to each of the top-level
route reflectors for certain sets of eBGP routes.

SECTION 5.8. IMPLEMENTATION: THE ROUTING SANDBOX 131

Router # Predictions Case 1 Case 2 Case 3 Total Errors
RR1 88,865 33 322 21 376 (0.423%)
RR2 88,164 33 185 5 223 (0.253%)
AR1 88,165 38 178 5 221 (0.251%)
AR2 76,547 151 170 37 358 (0.468%)

Table 5-5: Errors in predicting the best egress router. Prefixes predicted incorrectly by the second phase
and those where the “right” answer was not a peering router are excluded.

Router # Predictions Case 1 Case 2 Case 3 Total Errors
RR1 89,343 40 459 55 554 (0.620%)
RR2 88,647 39 314 41 394 (0.444%)
AR1 88,649 44 307 40 391 (0.441%)
AR2 76,733 157 283 71 511 (0.666%)

Table 5-6: Summary of errors for end-to-end validation.

whether the algorithm would have made the correct prediction because we didn’t have
the routes from that egress router in the first place.

We classify the errors among the remaining prefixes in terms of three cases: Case 1: The
route at the ingress router does not appear in the MODIFIED ROUTES table and, as such, does
not appear in the egress set. Case 2: The route at the ingress router appears in the MODIFIED

ROUTES table but does not appear in the EGRESS POINTS table. Case 3: The misprediction
has no obvious explanation.

Case 1 errors likely result from timing inconsistencies, where the best route at the
ingress router did not exist at the egress router when the routing tables were dumped.
Timing inconsistencies can also explain Case 2 errors: for example, an ingress router or a
route reflector could have a route that is no longer one of the best eBGP-learned routes,
which could happen if a better route arrived at an eBGP-speaking router but had not yet
propagated to other routers in the AS. We are unable to explain only 0.05% of the errors.

End-to-End Validation

We performed an end-to-end validation to study the effect of error propagation on the
best routes ultimately predicted by the emulator. We compared the emulator’s prediction
with the same four routing tables used for the validation of the third module, with the
exception that the input included the errors from the first two modules. At these four
routers, the emulator predicted the correct routes for more than 99% of all prefixes, as
summarized in Table 5-6. We hypothesized that the majority of the mispredicted routes
could be explained by the dynamics of the input data. For example, if the best route at
an eBGP-speaking router were temporarily withdrawn at the time that the route reflector
table was captured, inconsistencies between routing tables could arise5.

These results suggest that the algorithm we have proposed is accurate: prediction errors
are infrequent and result mainly the dynamics of the inputs. Since most prefixes whose

5To evaluate our hypothesis, we analyzed a feed of iBGP update messages collected on the same day. More
than 45% of the prefixes with incorrect predictions had a BGP routing change during the data collection period
at the same router where the apparent mismatch occurred, and 83% of the prefixes experienced an update at
some router in the AS during this period.

132 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

routes change frequently do not receive much traffic [120], these inconsistencies would
certainly not prevent the emulator from being used for traffic engineering tasks.

� 5.9 Proposed Improvements to BGP

Thus far, this chapter has focused on predicting BGP route selection inside a single AS.
Notably, two artifacts, the MED attribute and route reflection, complicate this process. Not
only do these attributes make route prediction difficult, they also create problems with the
operation of BGP itself. The use of MED, both with and without route reflection has been
shown to cause oscillation [4]; route reflection can also prevent convergence and cause for-
warding loops [61]. The MED attribute is intended to allow a neighboring AS to dictate
preferred exit points on routes advertised at multiple exit points, but it prevents a router
from forming a consistent ordering of preferences over routes. Route reflectors were intro-
duced to allow an iBGP topology to scale, but they do so in a way that prevents routers
from discovering the complete set of eBGP-learned routes.

In this section, we explore possible solutions to the problems introduced by MED and
route reflection. A major lesson one should draw from this section is that a system that
had visibility into an AS’s topology, configuration, and available BGP routes could actively
control the BGP route selection process, rather than simply trying to predict its outcome.
The Routing Control Platform (RCP) [13, 31], whose design we will discuss in Chapter 7,
can thus not only help ensure correctness (as discussed briefly in Section 4.6), but also
make Internet routing easier to control (and, hence, predict).

� 5.9.1 MED-ication for Late-Exit Semantics

The MED attribute causes problems because it is not comparable across routes from differ-
ent neighboring ASes, which prevents a router from producing a consistent total ordering
over all possible routes. Also, in networks without route reflection, inconsistent prefer-
ences between pairs of routes is based on the router ID attribute, an arbitrary tiebreak that
carries no meaningful semantics (as in Figure 5-7, for example).

Before we consider solutions to the problems introduced by MED, it is worth noting that
MED, as it operates today and when used with route reflection may not have the intended
effect on route selection. Consider the example shown in Figure 5-6. A neighboring AS
sending routes a and b with MED values 10 and 20, respectively, expects that the AS shown
would always prefer route a over route b, as long as both existed, causing router X to
perform late-exit routing (i.e., send its traffic via route b via router Y). Unfortunately, the
AS shown will not do so: RR prefers route c, so router X will never learn route b, and it
will continue to forward packets via route a.

We observe that if MED values are remapped into an explicit ranking across neighbor-
ing ASes, rather than arbitrary values, then the MED attribute can be compared across
all routes at step 4 of the route selection process (as it is today). Comparing an exit-rank
across all routes can sometimes result in different outcomes than BGP today, but in many
cases the differences do not affect the important semantics of BGP. For example, consider
Figure 5-7, but where the MED attribute is compared across all routes. Suppose that the
route selection process retains the MED comparison step, but that AS 2’s MED values of
10 and 20 are remapped to 1 and 2, and that the highest MED value of any eBGP-learned

SECTION 5.9. PROPOSED IMPROVEMENTS TO BGP 133

route, 2, is added to the MED value on every route learned via iBGP (this transformation
guarantees that comparing MEDs across all routes would not cause iBGP-learned routes
to be preferred over eBGP-learned routes). In this case, routers X and Y would ultimately
select routes c and d, respectively, as opposed to a and d in BGP today. Although X selects
c instead of a, its preference between these two routes was based on the arbitrary router
ID tiebreak; therefore, having router X select c instead does not destroy any meaningful
semantics.

The type of remapping we have described preserves MED’s semantics, but implement-
ing an exit-rank requires visibility into the set of available routes that is not available today.
Unfortunately, MED values are typically based on dynamic values (e.g., IGP path costs
across the network), so an AS that sends routes with MED values cannot simply configure
a static ranking. Given today’s architectures, neither the sending nor receiving AS could
perform a remapping of MED values into an exit-rank, since no single router learns the
complete set of routes advertised from a neighboring AS. Performing such a remapping
would require either the sending or receiving AS to have complete visibility over all routes
being sent or received for a destination. On the other hand, the Routing Control Platform
(RCP) [31] or similar recently proposed architectures [9] can perform such a remapping,
since RCP has full visibility of routes sent from a neighboring AS (as well as full control
over the routes that it sends to a neighboring AS). This modification allow the algorithm
from Figure 5-4 to correctly compute the outcome of BGP route selection, and it would also
eliminate intra-AS safety problems.

� 5.9.2 Scalability without Route Reflection

Route reflectors allow iBGP topologies to scale to large number of routers because they
obviate the need to have a “full mesh” topology with O(|R|2) sessions. Unfortunately, they
restrict route visibility because they only send a single best route from all of the routes
they have learned. In this chapter, we have explained how this restriction complicates
predicting the outcome of BGP route selection; previous work has also noted that it can
cause persistent oscillation and forwarding loops [4, 61].

To remedy the problems with persistent oscillation, Basu et al. proposed that route
reflectors forward all routes that are equally good up to and including the MED compari-
son. It turns out that this modification correctly emulates a full mesh iBGP topology; thus,
it is possible to model the outcome of their modified protocol with the algorithm from
Figure 5-9. Unfortunately, this proposal requires modifications to the routers, since each
router readvertises multiple routes instead of a single best route. Additionally, because
each router readvertises multiple routes to its neighboring routers, every router must se-
lect routes using a consistent selection criterion. Otherwise, given multiple routes, some
router along the path to an egress router might select a different route, violating route va-
lidity (Definition 3.7). This restriction precludes certain policies and configurations (e.g., a
router may not manipulate attributes on a route learned via iBGP).

Architectures such as RCP propose separating route selection from the routers and plac-
ing this functionality in a system that computes routes on behalf of all of the routers within
an AS [31]. Rather than returning only a single best route to all of its clients (as a route re-
flector does), RCP advertises to each router the route that it would have selected in a full mesh
iBGP configuration. This architecture allows the network to scale in the same way that route

134 CHAPTER 5. PREDICTING BGP ROUTES WITH STATIC ANALYSIS

reflectors do, but it provides some important additional advantages. First, because RCP
explicitly assigns routes to all routers in the network, it can guarantee that the route as-
signments satisfy route validity. Second, RCP allows for a more scalable network design.
Furthermore, RCP does not have to make the same routing decisions as its clients (as route
reflectors do today). As a result, unlike route reflectors, RCP nodes can be replicated at
arbitrary places in the IGP topology.

� 5.10 Summary

To perform everyday network engineering tasks effectively, efficiently, and with minimal
unnecessary changes to the live network, operators need a way to predict the behavior of
a routing protocol before deploying that configuration. This chapter has presented route
prediction algorithms that predict the outcome of BGP route selection based on only a
static snapshot of the network state.

In addition to helping network operators accomplish traffic engineering tasks, these al-
gorithms provide useful insight into the subtleties of network-wide BGP route selection
and suggest several directions for improvements to the Internet routing system. For in-
stance, network-wide BGP route prediction could be combined with traffic measurements
to help network operators select BGP configuration changes that achieve various traffic
engineering goals. In addition, the emulator could be combined with higher-level mecha-
nisms that spot misconfiguration or check that other constraints are satisfied [30].

Although the diagram in Figure 5-3 shows only three stages, we envision that network
operators could incorporate other phases. For example, another phase could combine the
predicted forwarding paths with traffic data to predict the load on each link in the net-
work. Using the model for traffic engineering assumes that traffic volumes are relatively
stable, and that they remain stable in response to configuration changes. In previous work,
we found that prefixes responsible for large amounts of traffic have relatively stable traffic
volumes over long timescales [32]. Operators could use the routing model to test con-
figuration changes on reasonably slow timescales that affect prefixes with stable traffic
volumes. A network operator could also combine measurements or estimates of the traffic
arriving at each ingress router for each destination prefix [40] with the link-level paths to
predict the load on each link in the network. Another phase might evaluate the optimality
of the these link-level paths in terms of propagation delay or link utilization and could
search for good configuration changes before applying them on a live network.

Finally, we note that modeling BGP routing is more difficult than it should be. In the
future, we hope that routing protocol designers will consider predictability as a design
goal; as we describe in Section 5.9, some of these simplifications that aid protocol modeling
also fix problems with protocol operation. Routing protocols that are easy to model and
reason about will make everyday network engineering tasks more tractable.

The clock doesn’t matter in baseball...
Theoretically, one game could go on forever. Some seem to.
- Herb Caen

CHAPTER 6
Local Conditions for Safe Internet

Routing

I
n Internet routing, independently operated autonomous systems (ASes) must cooperate
to exchange global information; nevertheless, this cooperation occurs in a landscape

where these independent networks compete to provide Internet service. BGP facilitates
this “competitive cooperation” by enabling network operators to express routing policies
that are consistent with desired economic, business, and performance goals.

Recall from Section 2.3.1 that ranking and filtering are the two main mechanisms that
operators use to implement their policies. Ranking determines which of many possible
routes to a destination should be used, thus providing an AS the flexibility to specify pref-
erences over multiple candidate paths to a destination (e.g., specifying a primary and a
backup path). Filtering allows an AS to selectively advertise routes to some ASes and
hide routes from others, thereby controlling which neighboring ASes send traffic over its
infrastructure.

There are two important characteristics of policy routing: autonomy and expressiveness.
Autonomy is the ability of each AS to set its rankings and filters independent of the others.
Expressiveness refers to the flexibility that the routing protocol provides an operator for
specifying rankings and filters. Ranking expressiveness determines what classes of rank-
ings over routes are permitted by the protocol, while filtering expressiveness determines
the range of route filters that are allowed.

The combination of expressiveness and autonomy has, in large part, been the reason
for the success of BGP over the past decade. We contend that both autonomy and filtering
expressiveness will be requirements for policy routing for the foreseeable future. Previous
studies of routing stability assume that ASes are willing to compromise some degree of au-
tonomy, filtering expressiveness, or both (see Section 6.1). However, autonomy preserves
each AS’s ability to set its policies without coordinating with any other AS. Filtering ex-
pressiveness gives an AS flexibility in how it establishes contracts with another AS, a task
that should be unconstrained.

Ideally, an interdomain routing system should preserve autonomy, filtering expressive-
ness, and ranking expressiveness. However, the ability to specify highly expressive rank-
ings comes at considerable cost to system robustness: as has been observed by Varadhan

135

136 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

1

2

3

0

1 3 0
1 0

2 1 0
2 0

3 2 0
3 0

Figure 6-1: Instability can arise when each AS independently specifies rankings [56, 135]. Each circle rep-
resents an AS. AS 0 is the destination. The listing of paths beside each node denotes a ranking over paths.

et al. and Griffin et al., among others, if there are no constraints on the rankings that an AS
can specify, BGP may violate safety (i.e., oscillate forever) [56, 135].

Example 6.1 Consider Figure 6-1 [56, 135]. ASes 1, 2, and 3 each prefer the indirect path
through their neighboring AS in the clockwise direction over the direct path to the destina-
tion, 0. All other paths are filtered. This configuration has no stable path assignment (i.e.,
a path assignment from which no node would deviate). For example, consider the path
assignment (10, 210, 30); in this case, AS 1 has a better path available, 130, so it switches
paths. This switch breaks the path 210, causing AS 2 to switch to its second choice, path 20.
The resulting path assignment, (130, 20, 30), is a permutation of the original path assign-
ment: this time, AS 3 has the path 320 available, so it switches. This oscillation continues
forever. �

As the previous example suggests, full autonomy and expressiveness can have unde-
sirable consequences. Routing protocol update messages should reflect actual reachability
changes in the network topology or policy. Unfortunately, in BGP, conflicting policies can
cause oscillations that produce endless streams of routing updates that are unrelated to
changes in topology or policy. This instability creates numerous performance problems,
may cause network partitions, and complicates diagnosis and debugging of problems in
the routing system. Worse yet, a network operator has no way to guarantee that any given
configuration of rankings and filters will not adversely interact with the policies of other
ASes. In light of these issues, developing rigorous conditions on policy expressiveness that
guarantee routing stability, while preserving autonomy, is crucial.

This chapter explores the following question: provided that each AS retains complete
autonomy and complete filtering expressiveness, how expressive can rankings be while
guaranteeing stable routing? This question is important because ranking autonomy and
filtering expressiveness reflect the realities of how ASes specify policies today, and little is
known (beyond the results surveyed in Section 6.1) about the tradeoffs between autonomy
and expressiveness as far as routing stability is concerned, particularly under filtering. In
particular, our work is the first to develop necessary conditions for stability under realistic
assumptions about autonomy and expressiveness and the first to derive necessary condi-
tions for stability in policy routing.

This chapter makes three main contributions. First, in Section 6.3.1, we show that rank-
ings based solely on the immediate next-hop AS en route to the destination may never

SECTION 6.1. BACKGROUND 137

reach a stable path assignment from an arbitrary initial state; i.e., next-hop rankings, which
are common in practice, are not safe. Moreover, under unrestricted filtering, a routing sys-
tem with next-hop rankings may have no stable path assignment. In addition to their
operational implications, these results are also somewhat surprising, because next-hop
rankings with no route filtering always have one stable path assignment. We also observe
that although rankings based on a globally consistent weighting of paths are safe under
filtering, even minor generalizations of the weighting function compromise safety (Sec-
tion 6.3.2).

Second, we define a dispute ring, a special case of the “dispute wheel” (a group of nodes
whose rankings have a particular form) of Griffin et al. [56], and show that any routing
protocol that has a dispute ring is not safe under filtering (Section 6.4). Using the dispute
wheel concept, Griffin et al. showed a sufficient condition for safety, proving that if a rout-
ing system is unsafe then it must have a dispute wheel. In contrast, to our knowledge, our
result is the first known necessary condition for safety under filtering.

Third, we show that, providing for complete autonomy and filtering expressiveness,
the set of allowable rankings that guarantee safety is effectively ranking based on variants
of weighted shortest paths. In Section 6.5, we prove that any routing system that permits
paths of length n + 2 to be ranked over paths of length n can have a dispute ring, and is
thus unsafe under filtering. We also prove that any routing system that permits paths of
length n + 1 to be ranked over paths of length n can have a dispute wheel. In summary, our
results indicate that stable policy routing with provider autonomy and expressive filtering
requires tight constraints on rankings.

Recent work has observed that routing protocols whose rankings are derived from a
“strictly monotonic” algebra are guaranteed to converge [57]; informally, a strictly mono-
tonic algebra is one where a path has a higher cost (i.e., is less preferred) than any of its
subpaths. In cases of unrestricted filtering, these strictly monotonic algebras represent a
generalization of shortest paths routing, which is consistent with our results. In Section 6.6,
we explain how both our results and this algebraic framework lend insight into the design
of future policy-based routing protocols.

Our findings may be interpreted in several ways. The optimist will note that checking a
set of rankings to ensure safety is trivial, because all it requires is that BGP routers modify
the decision process to consult a route’s “local preference” attribute only after considering
its AS path length. The pessimist, however, may conclude that guaranteeing safe routing
while preserving autonomy may yield constraints on expressiveness that are too constrain-
ing. In either case, the results proved in this chapter about the fundamental tradeoff be-
tween the expressiveness and autonomy may help guide the design of stable interdomain
routing protocols in the future; Section 6.6 explores some possibilities.

� 6.1 Background

Because Internet routing is policy-based, and each AS has the flexibility to define its
own policies independently of other ASes, the policies of one AS may interact with those
of another to cause the protocol to oscillate. Table 6-1 surveys previous and ongoing work
in this area.

138 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

Year Author Major Results
1996 Varadhan et al. [135, 136] Observed that policy-based routing protocols

may never converge (i.e., they may be “un-
safe”).

1999 Griffin et al. [56, 58] Showed NP-hardness of determining safety,
and derived sufficient global conditions for
safety.

2001 Gao and Rexford [47] Derived restrictions on routing configuration
and topology that guarantee safety, and ob-
served that these conditions are similar to com-
mon practice.

2003 Sobrinho [125] Developed an algebraic framework for general
path vector, policy-based protocols and derived
properties that the algebra must have to guar-
antee convergence.

2003 Griffin et al. [54] Laid out design tradeoffs in policy-based rout-
ing protocols: expressiveness, modularity, etc.

2004 Jaggard and Ramachandran [75] Designed tests for dispute wheels.
2005 Griffin and Sobrinho [57] Developed a framework called “metarouting”,

useful for constructing routing protocols that
are guaranteed to converge.

Table 6-1: Results from previous work on global routing stability. Chapter 6 builds on many of these
results.

A seminal paper by Varadhan et al. observed that policy-based interdomain routing
protocols could oscillate and defined the concept of safety [135, 136]. Varadhan et al. also
conjectured that routing systems that allow rankings other than those based on next-hop
rankings or shortest path routing may be unsafe [135, 136]. In fact, in Section 6.3, we show
that even routing systems that only allow next-hop rankings are not safe.

Griffin et al. asked how expressive an autonomous, robust routing system can be [54];
we address this question in this chapter. Varadhan et al. showed that a routing system with
an acyclic topology will have at least one stable path assignment if participants can only
express next-hop preferences [135, 136]. We show that when BGP’s protocol dynamics are
taken into account, restricting each AS to only next-hop rankings does not guarantee that
the routing system will be safe (even though the routing system always has at least one
stable path assignment).

Gao and Rexford derived sufficient constraints on rankings, filtering, and network
topology to guarantee routing stability; they also observe that these constraints reflect
today’s common practice [46, 47]. They showed that if every AS considers each of its
neighbors as either a customer, a provider, or a peer, and obeys certain local constraints on
rankings and filtering, and if the routing system satisfies certain topological constraints,
then BGP is stable.1 However, their model does not incorporate ranking autonomy, be-
cause their proposed topological constraints are global.

1Griffin et al. noted that analogous sufficient conditions apply to iBGP with route reflection [61], although
we show in Chapter 3 that these conditions are unnecessarily strong.

SECTION 6.1. BACKGROUND 139

VerioPSINet AboveNet

Internet
PSfrag replacements d1

d1d2

d2

d3

Figure 6-2: Constraints on filtering and topology are not enforceable.

Griffin’s sufficient conditions require global knowledge of rankings; those of Gao and
Rexford require global knowledge of the AS-level topology. Our goal is to derive con-
straints that must hold on the configuration of a single AS without any global knowledge.
Furthermore, Griffin’s work does not consider the effects of filtering; the conditions of Gao
and Rexford restrict quite severely. The example below illustrates why these restrictions
may sometimes be too strict.

Example 6.2 Figure 6-2 shows a situation that occurred in 2001 [10]. When PSINet termi-
nated its peering with AboveNet, AboveNet lost connectivity to PSINet’s customers, d1.
To restore connectivity, AboveNet bought “transit” service from Verio (already a peer of
PSINet), but only for routes to PSINet and its customers.

Verio does not filter d1 (or any of PSINet’s prefixes) from AboveNet, which is only pos-
sible if Verio treats AboveNet as a customer. The constraints imposed by Gao and Rexford
state that an AS must prefer customer routes over peering routes.2 This constraint requires
Verio to rank AboveNet’s route to d2 over any other available routes to d2 in order to
guarantee stability, which restricts Verio’s flexibility in how it can select routes. Establish-
ing a new business relationship (and, hence, altering its filtering policies) requires Verio to
change its rankings as well. �

The framework of Gao and Rexford is also too strict because it assumes that a pair of
ASes has only a single type of business relationship. For multinational ISPs, this assump-
tion is constantly violated: two ASes may have a peering relationship over sessions in
one geographic region, but one may purchase transit from the other in another geographic
region.

Example 6.3 Consider Figure 6-3; there are hundreds of similar real-world examples [10].
AS 1 and AS 2, two ISPs, peer in North America, but AS 1 buys service from AS 2 in Europe
(in practice, this arrangement may occur if AS 1 does not have a European backbone). AS 1
will typically learn all destinations (i.e., European and North American) over its customer
link, but just the North American destinations over its peering link. Suppose that AS 2
peers with AS 3 in North America, and AS 1 peers with AS 3 in Europe. The router in
AS 2 that has a peering relationship with AS 3 will advertise the European routes from its

2Gao and Rexford present a weaker constraint that allows an AS to rank routes learned from customers
and peers over those from providers, but does not require customer routes to be strictly preferred over routes
from peers. This relaxed condition requires that there are no instances where an AS’s customer is also a peer
of another one of the AS’s peers. Of course, the example shown in Figure 6-2 could also violate this constraint
on the topology: PSINet is Verio’s customer for d1, but it would be reasonable for PSINet to peer with another
of Verio’s peers, since all are “tier-1” ISPs.

140 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

AS 1 AS 3

Peering

Customer/
Provider

Peering

Peering

AS 2

Figure 6-3: Pairs of ASes may have different business relationships in different geographic regions.

customer link; AS 3 also learns those via its peering session with AS 1. This arrangement is
precisely the “peer-provider” cycle that is prohibited some of the convergence conditions
of Gao and Rexford (e.g., Guideline A, [47]). This scenario mandates that AS 2 prefer the
route to the destination via AS 1, rather than another peer through which it may have a
route to the same destination. �

Various previous work has studied global conditions to guarantee the safety of routing
systems; global conditions presume that the routing system does not preserve local choice
of rankings (i.e., ranking autonomy). Griffin et al. showed that, if the rankings of the ASes
in a routing system do not form a dispute wheel (a concept that describes global relationship
between the rankings of a set of ASes), then the routing system is safe [56]. Griffin et al. also
examined robustness, the property that safety is guaranteed even if arbitrary nodes or edges
are removed from the graph. We view robustness as a special case of filtering: removing
an edge can be achieved if the ASes incident to that edge filter all routes through that edge;
removing a node entails having all ASes filter all routes through that node.

Griffin et al. also showed how to modify a BGP-like path vector protocol to detect the
existence of a dispute wheel but left unspecified how the ASes should resolve the dispute
wheel [59]. Machiraju and Katz defined a new global invariant for determining safety
when at most one AS deviates from the conditions of Gao and Rexford [83]. Govindan
et al. proposed a routing architecture where ASes coordinate their policies [52, 53] using
a standardized policy specification language [2]. Jaggard and Ramachandran presented
global conditions that guarantee safety of routing systems that allow ASes to express only
next-hop preferences over routes, and designed centralized and distributed algorithms to
check these global conditions [75].

More recent work has attempted to design policy-based protocols that are guaranteed
to converge without imposing any global conditions. Sobrinho defined new concepts that
describe global relationships between preferences and incorporate several previous results
(including those of both Griffin et al. [56] and Gao and Rexford [47]) into a single algebraic
framework [125]. He examined requirements for convergence and asserted that any vec-
toring protocol that preserves a property called “strict monotonicity” is guaranteed to con-
verge. Recent work on “metarouting” exploits this algebraic framework to allow protocol
designers to specify new routing protocols that are guaranteed to converge by requiring
algebras that preserve strict monotonicity [57]. In this chapter, we will see that the set
of routing protocols that are guaranteed to converge is apparently not much more permis-
sive than shortest path routing, if ASes have complete liberty in setting filters. Metarouting
may allow the protocol designer to better explore the tradeoffs between filtering expres-

SECTION 6.2. ROUTING MODEL AND DEFINITIONS 141

siveness, ranking expressiveness, and safety (i.e., compromising filtering expressiveness to
allow for more expressive rankings).

In contrast to these studies of global conditions for safety, we study the conditions un-
der which a policy-based interdomain routing protocol can be safe if it preserves the au-
tonomy of each AS. Our results suggest that, allowing for complete autonomy and filtering
expressiveness, guaranteeing safety requires restricting ranking independence essentially
to preferences based on consistent weightings of the edges in the graph.

Gouda and Schneider study classes of routing protocol metrics for which each node in
a routing tree has its most preferred path, but do not address routing stability [51].

� 6.2 Routing Model and Definitions

We now define our routing model. After introducing some basic terminology, we formally
define two notions of good behavior for routing protocols: stability and safety. Finally, we
extend each of these two definitions to handle filtering expressiveness.

� 6.2.1 Preliminaries

We consider a model consisting of N ASes (nodes)3, labeled 1, . . . , N. Each of these nodes
wishes to establish a path (defined below) to a single destination, labeled 0.

Definition 6.1 (Path) A path from i to j is a sequence of nodes P = ii1i2 . . . im j with no repetition;
i.e., such that iu 6= iv if u 6= v, and iu 6= i, j for all u.

Note that we have slightly altered the definition of a path from Chapter 3 (Defini-
tion 3.1), although the concept is conceptually the same: we have eliminated commas and
subscripts for notational convenience, and we have defined that the path to be loop-free,
as BGP typically discards paths that have loops in the AS-level path. Definition 6.1 also
precludes the practice of AS-path prepending (described in Section 2.2.2), as it does not
affect the results in this chapter.

We denote the number of hops in a path P as length(P). In addition, given an AS k, we
will write k ∈ P if node k appears in P. For clarity, given a path P from i to j, we will often
denote P by iP j; furthermore, if P is a path from i to j, and Q is a path from j to k, then we
will denote the concatenation of P and Q by iP jQk.

We denote the set of all paths from i to 0 (i.e., all paths on the complete graph) using the
nodes 1, . . . , N by P N

i . Given the set of nodes {1, . . . , N}, each AS i will choose a ranking
≺i over the set of all paths P N

i , defined as follows.

Definition 6.2 (Ranking) A ranking≺i for node i is a total ordering over the set of all paths P N
i ;

thus, given any two paths P, Q ∈ P N
i , either P ≺i Q (i prefers Q to P) or P �i Q (i prefers P to

Q).

An AS may always choose the empty path, ε, which is equivalent to total disconnection
from the destination node 0. Thus, we have ε ∈ P N

i for all i and N. Furthermore, we
assume that every AS strictly prefers connectivity to disconnectivity, so that P � i ε for all
P ∈ P N

i .
3 In this chapter, we use the terms “AS” and “node” interchangeably.

142 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

All paths may not be available to node i, due to both topological constraints and filtering
by other nodes. We will use Fi ⊆ P N

i to denote the set of paths actually available for use
by node i. The empty path is always available; i.e., ε ∈ Fi.

A routing system is specified by the rankings of the individual nodes, together with the
paths available to the individual nodes. Observe that we have decoupled the “routing pol-
icy” of each AS i into two components: the rankings ≺i of AS i over route advertisements
received; and a determination of which paths are filtered from other ASes. The filtering
decisions of all nodes, together with physical constraints on the network, yield the sets
F1, . . . , FN. We thus have the following formal definition of a routing system.

Definition 6.3 (Routing system) A routing system is a tuple (N,≺1, . . . ,≺N, F1, . . . , FN),
where node i has ranking ≺i over the set P N

i , and Fi is the set of paths available to node i.

A routing system specifies the input to any interdomain routing protocol we might
consider. Given this input, the protocol should converge to a “routing tree”: that is, an
assignment of a path to each AS, such that the routes taken together form a spanning tree
rooted at 0. To formalize this notion, we must define path assignments and consistent
paths.

Definition 6.4 (Path assignment) A path assignment for the routing system (N,≺1, . . . ,≺N,

F1, . . . , FN) is a vector of paths P = (P1, . . . , PN) such that, for all i, Pi ∈ Fi.

Thus, a path assignment is an assignment of a feasible path to each node i, where fea-
sibility is determined by the set of paths Fi. Even though each node has a path assigned,
these paths may not be consistent: node i may be assigned a path Pi = i jP̂j0, where j is the
first node traversed on Pi, and where P̂j is a path from j to 0. However, the path P̂j may
not be the same as the path Pj assigned to j in the path assignment P; in fact, P̂j may not
even be in the set of feasible paths F j. For example, a node or link along the path P̂j may
experience a failure, causing the routing protocol to withdraw the path; if j has heard such
a withdrawal but i has not, then it is possible that Pi = i jP̂j0 until node i learns that P̂j no
longer exists. To formally capture such situations, we define consistent paths and consis-
tent path assignments. The definition of consistent path is a simplification of Definition 3.6
from Chapter 3, since we do not require the notion of an induced path in this chapter.

Definition 6.5 (Consistent path) Given a path assignment P, a path P̂i for node i is consistent
with P if one of the following holds:

1. P̂i = ε; or
2. P̂i = i0; or
3. P̂i = i jPj0, for some j 6= i.

Definition 6.6 (Consistent path assignment) A consistent path assignment for the routing
system (N,≺1, . . . ,≺N, F1, . . . , FN) is a path assignment vector P = (P1, . . . , PN) such that for
all i, Pi is consistent with P.

A routing protocol where packets are forwarded solely on destination should ultimately
assign paths that are consistent with each other.

SECTION 6.2. ROUTING MODEL AND DEFINITIONS 143

� 6.2.2 Stability and Safety

Informally, a path assignment is stable if it is consistent, and no node has a more preferred
consistent path available.

Definition 6.7 (Stable path assignment) Given a routing system (N,≺1, . . . ,≺N,

F1, . . . , FN), and a consistent path assignment P, we say that P is stable if for all nodes i,
and all paths P̂i ∈ Fi that are consistent with P, P̂i ≺i Pi.

Definition 6.8 (Stable routing system) The routing system (N,≺1, . . . ,≺N, F1, . . . , FN) is
stable if there exists at least one stable path assignment P.

The stability of a routing system does not indicate whether a routing protocol will con-
verge regardless of the initial path assignment. The safety property, which states that a
protocol eventually converges, regardless of the initial path assignment and ordering of
the routing messages, captures this notion.

In defining safety, we will consider a simplified abstraction of BGP. We model the pro-
cess by which nodes receive route advertisements from other nodes and subsequently up-
date their own route decisions. We will consider a protocol dynamic where at each time
step only a single AS is activated; when activated, an AS immediately processes all pending
incoming route advertisements, and then makes a route decision. Formally, this model will
translate into a path assignment sequence where exactly one node (the “activated” node)
changes its route at any given time step.

A routing system is safe if no oscillation occurs regardless of the order in which nodes
are activated.

Definition 6.9 (Fair activation sequence) The sequence i1, i2, . . . is a fair activation sequence
if each node i = 1, . . . , N appears infinitely often in the sequence.

This definition of fair activation sequence is similar to that presented by Gao and Rex-
ford [47], except that in our definition we only activate one node at a time. This distinction
is minor: we can interpret the Gao and Rexford dynamics as a model where outstanding
routing messages may be in flight when a particular node is activated.

We now define our simplified model of the routing protocol dynamics: that is, starting
from an initial path assignment P0, and given a fair activation sequence of nodes i1, i2, . . .,
what is the resulting observed sequence of path assignments P1, P2, . . .? To formalize the
dynamics of our model, we consider an abstraction of the BGP decision process described
in Figure 6-4. At each time t, a node it is activated, and chooses its most preferred available
path consistent with the path assignment Pt−1. All other nodes’ paths remain unchanged.
It is clear that this decision process yields a sequence of path assignments P1, P2,

After any given activation step t, the overall path assignment P t may not be consistent.
Inconsistencies reflect the fact that a node only updates its path assignment in response to
the receipt of a route advertisement. If, at time t0, a node i is using a path that traverses
some other node j that has since changed paths, then node i would obliviously continue to
use (and advertise) that inconsistent path until it receives a routing update that reflects that
the path through j has disappeared or changed. When activated, say, at time t > t0, node i
would discover that the path it was using was inconsistent with P t and would then select

144 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

Routing protocol dynamics
At time t− 1, the current path assignment is Pt−1; i.e., each node i has currently selected
path Pi,t−1 to the destination 0. At time t:

1. A given node it is activated.

2. Node it updates its path to be the most preferred path (according to≺ it) consistent with
Pt−1. That is,

(a) Pit,t ∈ Fit is consistent with Pt−1, and

(b) Pit,t �it P̂it ∀ P̂it ∈ Fit consistent with Pt−1.

3. All other nodes leave their paths unchanged.

Figure 6-4: The routing protocol dynamics, given an activation sequence i1, i2, The process starts from
an initial path assignment P0.

its highest-ranked path that was consistent with Pt. The activation of a node at some time
t corresponds to that node receiving all available routing information in the system up to
that time.

With the definition of our protocol dynamics in hand, we can define protocol safety.
Given a routing system and an activation sequence, we say that the system has converged
if, after some finite time, the path assignment remains invariant for all future time. A
protocol is safe if it converges to a stable path assignment, regardless of the initial path
assignment and fair activation sequence.

Definition 6.10 (Safety) A routing system (N,≺1, . . . ,≺N, F1, . . . , FN) is safe if for any initial
path assignment P0 and fair activation sequence i1, i2, . . ., there exists a finite T such that Pt = PT
for all t ≥ T.

Because the activation sequences are fair in the preceding definition, if a routing system
converges to Pt, then the resulting path assignment to which the system converges must
be both consistent and stable. If not, at least one node would change its path assignment
eventually.

� 6.2.3 Filtering

We are interested in the stability and safety of systems that result when nodes are allowed
to filter routes from other nodes. We thus require conditions stronger than stability and
safety, known as stability under filtering and safety under filtering. Informally, a routing sys-
tem is stable (respectively, safe) under filtering if, under any choices of filters made by the
ASes, the resulting routing system is always stable (respectively, safe).

Definition 6.11 (Stable under filtering) The routing system (N,≺1, . . . ,≺N, F1, . . . , FN) is
stable under filtering if, for all choices of available paths F̂i ⊆ Fi for i = 1, . . . , N, the routing
system (N,≺1, . . . ,≺N, F̂1, . . . , F̂N) is stable.

SECTION 6.3. RANKING CLASSES AND SAFETY 145

Definition 6.12 (Safe under filtering) The routing system (N,≺1, . . . ,≺N, F1, . . . , FN) is
safe under filtering if, for all choices of available paths F̂i ⊆ Fi for i = 1, . . . , N, the routing
system (N,≺1, . . . ,≺N, F̂1, . . . , F̂N) is safe.

We interpret these definitions as follows. The set of available paths Fi gives the set of
paths that are physically possible for node i to use, given the current network topology.
Once all nodes have chosen their route filters, F̂i gives the set of paths that can ever be
used by node i in route advertisements. Because we allow arbitrary choice of filters, the
resulting routing system should be stable and safe regardless of the choices of F̂1, . . . , F̂N
that are made.

� 6.3 Ranking Classes and Safety

In this section, we study two natural ranking classes under which ASes retain autonomy
in setting rankings over paths. First, in Section 6.3.1, we study the rankings where each
AS is allowed to rank paths solely based on the immediate next-hop AS, called “next-hop
rankings”. We show that (1) there are routing systems where each node has only a next-
hop ranking that are not safe; and (2) even though all routing systems where nodes have
next-hop rankings are stable, there exist some routing systems of this form that are not
stable under filtering.

In Section 6.3.2, we study the properties of routing systems where each node is allowed
to choose a weight for all its outgoing links, and rankings are derived from a “total” weight
associated to each path. The total weight of a path is defined as the weight of the first link
on that path, plus a discounted sum of the weights of all remaining links on that path. We
show that if the discount factor is anything other than 1 (which corresponds to shortest
path routing), then there exist weight configurations that yield a routing system that is not
safe.

� 6.3.1 Next-Hop Rankings

One natural set of rankings for a routing system is one where each AS can express rankings
over paths solely based on the next-hop AS in the path. Such a class of rankings makes
sense because an AS establishes bilateral contracts with its immediate neighbors and, as
such, will most often wish to configure its rankings based on the immediate next-hop AS
en route to the destination. For example, an AS will typically prefer sending traffic via
routes through its neighboring customer ASes over other ASes, since those customer ASes
are paying based on traffic volume. We formally define next-hop rankings as follows:

Definition 6.13 (Next-hop ranking) Given N, ≺i is a next-hop ranking if, for all nodes j, k
with i, j, k distinct, we have:

i jPj0 ≺i ikPk0 ⇒ i jP′j0 ≺i ikP′k0, (6.1)

for all Pj, P′j ∈ P N
j , and Pk, P′k ∈ P N

k . (Here we interpret P N
0 = {ε}.) Thus, ≺i ranks paths based

only on the first hop of each path.

Such a restriction on policy would still be sufficiently rich to achieve most traffic en-
gineering goals, since most policies are based on the immediate next-hop AS [32]. Addi-

146 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

3
0

3,0,2

1,0,3

1

2

2,0,1

(a) Routing system

Activate 1 2 3
— (1 0) (2 0) (3 2 0)
2 (1 0) (2 1 0) (3 2 0)
1 (1 3 2 0) (2 1 0) (3 2 0)
3 (1 3 2 0) (2 1 0) (3 2 1 0)
2 (1 3 2 0) (2 0) (3 2 1 0)
1 (1 0) (2 0) (3 2 1 0)
3 (1 0) (2 0) (3 2 0)

(b) Activation sequence

Figure 6-5: Next-hop rankings are not safe in this routing system. AS 1 prefers all paths through AS 3 over
the direct path to the destination 0 (with ties broken deterministically) and prefers the direct path over all
paths through AS 2. Similarly, AS 3 prefers all paths via AS 2, and so forth.

tionally, this class of rankings is expressive enough for most current policy goals, because
most current routing policies are dictated according to the AS’s business relationship with
its immediate neighbor. In this section, we show that while systems with next-hop rank-
ings are generally stable, there exist examples that are unsafe, as well as systems that are
unstable under filtering.

In the following proposition, we routing systems with next-hop rankings, provided
that no filtering is employed. The proof is straightforward, using a construction due to
Feigenbaum et al. [38].

Proposition 6.1 Suppose (N,≺1, . . . ,≺N, F1, . . . , FN) is a routing system such that≺i is a next-
hop ranking for each i, and Fi = Pi for all i. Then there exists a stable path assignment P for this
routing system.

We now show that there may exist F̂1 . . . F̂N, where F̂i ⊆ Fi for all i, such that even
though the system (N,≺1 . . . ≺N, F1 . . . FN) is stable, the filtered system (N,≺1 . . . ≺N
, F̂1 . . . F̂N) is unstable. That is, there exist routing systems with next-hop rankings for
which a stable path assignment exists, but introducing filtering can yield a system where
no stable path assignment exists.

Observation 6.1 A routing system where each node has only a next-hop ranking may not be safe.

Example 6.4 Consider Figure 6-5. In this example, each AS ranks every one of its neighbor-
ing ASes. For example, AS 1 prefers all paths that traverse AS 3 as the immediate next hop
over all paths that traverse AS 0 as the immediate next hop, regardless of the number of
ASes each path traverses; similarly, AS 1 prefers paths that traverse AS 0 as the immediate
next hop over paths that traverse AS 2. Each AS readvertises its best path to the destina-
tion to all of its neighbors (i.e., the system has no filtering). Now consider the activation
sequence in Figure 6-5(b); if infinitely repeated, this activation sequence would be fair, and
the routing system would oscillate forever. Thus, the routing system is not safe.

This system is not safe, but it is stable: for example, the path assignment (10, 210, 3210) is
stable. Nodes 2 and 3 are using paths through their most preferred nodes. Node 1’s most
preferred node, node 3, is using a path that already goes through node 1, so node 1 is also

SECTION 6.3. RANKING CLASSES AND SAFETY 147

0

Filter 1* from 3
1,0,3

2

33,0,2 1

Filter 2* from 1
2,0,1

Filter 3* from 2

Figure 6-6: This routing system is stable without filtering but unstable under filtering. The figure shows a
routing system with next-hop rankings and filtering that is equivalent to the unstable routing system with
the rankings over paths shown in Figure 6-1.

using its most preferred consistent path. As every node is using its most preferred con-
sistent path, no node will change paths when activated, so the path assignment is stable.

�

A routing system where each node has a next-hop ranking may not be safe, but Feigen-
baum et al. showed that there is always guaranteed to be at least one stable path assignment
for such routing systems [38]. However, allowing nodes to filter paths from each other can
create routing systems for which there is no stable path assignment.

Observation 6.2 There exist routing systems with next-hop rankings for which a stable path as-
signment exists, but introducing filtering can yield a system where no stable path assignment
exists.

Example 6.5 Consider Figure 6-6. As before, each AS ranks every one of its neighboring
ASes. Additionally, each AS may also declare arbitrary filtering policies. In this example,
each AS (other than the destination) does not readvertise any indirect path to the desti-
nation. For example, AS 1 does not advertise the path 130 to AS 2, and thus the path
2130 is not available to AS 2. Formally, we define F1 = {130, 10}, F2 = {210, 20}, and
F3 = {320, 30}.

The resulting routing system is equivalent to the system in Figure 6-1, once the filtered
paths are removed from each node’s ranking. Thus, the filtered routing system is unstable
by the same reasoning as that from the example shown in Figure 6-1: for any path assign-
ment in this routing system, at least one AS will have a higher ranked consistent path (and,
hence, has an incentive to deviate from the path assignment). �

Using a construction similar to that from the example in Figure 6-2, it is possible to
show how this example could arise in practice. The example demonstrates the complex
interaction between filtering and rankings—a class of rankings that guarantees stability
without filtering can be unstable under certain filtering conditions.

� 6.3.2 Edge Weight-Based Rankings

There exists at least one routing system that preserves autonomy and yet ensures safety
under filtering: if each provider is allowed to choose edge weights for its outgoing links,

148 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

1 2

3

0
PSfrag replacements w10 w20

w30

w12

w23w31

Figure 6-7: Routing system with edge weight-based rankings.

and each provider ranks paths based on the sum of edge weights, the resulting “short-
est paths” routing system is guaranteed to be safe [56]. Since this result holds for any
F1, . . . , FN, any routing system built in this way is guaranteed to be safe under filtering. In
this section, we will formulate a generalized model of such edge weight-based rankings, with
both next-hop rankings and shortest path routing as special cases. Such rankings do not
allow providers to directly specify their ranking; rather, the rankings of each provider are
derived from the strategic choices made by all providers, namely, the choices of outgoing
link weights that each provider sets. This notion of “derived” rankings is a potentially
useful method for ensuring autonomy in interdomain routing protocols.

Definition 6.14 (Edge weight-based rankings)
(N,≺1, . . . ,≺N, F1, . . . , FN) is a routing system with edge weight-based rankings if
there exists an assignment of edge weights wi j to each ordered pair of ASes i, j, together with
a parameter α ∈ [0, 1], such that for each AS i and paths Pi, P̂i ∈ P N

i with Pi = ii1 . . . in0 and
P̂i = i j1 . . . jm0, there holds:

Pi ≺i P̂i if and only if wii1 + α

(

n−1

∑
k=1

wikik+1
+ win0

)

> wi j1 + α

(

m−1

∑̀
=1

w j` j`+1
+ w jm0

)

.

The interpretation of this definition is as follows. Each node chooses edge weights for
all possible outgoing links; i.e., node i chooses a weight w i j for each node j. Next, node i
determines its rankings by ordering all paths Pi = ii1 . . . in0 in increasing order according
to their weight wii1 + α(∑n−1

k=1 wikik+1
+ win0), where α is a global parameter used to weight

the tail of the path. The parameter α allows us to compare two extreme points: α = 1,
corresponds to shortest path routing based on the matrix of edge weights w, while α = 0
corresponds to next-hop rankings. A natural question to ask is whether a routing system
using edge weight-based rankings can be safe for intermediate values of α. It turns out
that the only edge weight-based ranking class that can guarantee safety (and safety under
filtering), regardless of the weights chosen by each provider, is the scheme defined by
α = 1; i.e., shortest path routing.

Observation 6.3 A routing system with edge weight-based rankings may be unstable for any α
where 0 < α < 1.

SECTION 6.4. DISPUTE WHEELS AND DISPUTE RINGS 149

Example 6.6 Consider the routing system shown in Figure 6-7. If the system is such that
each node prefers the two-hop path to the destination, followed by the one-hop (i.e., di-
rect) path, followed by the three-hop path, then the system will be unstable because its
behavior will correspond to that shown in Figure 6-1. The routing system will be un-
stable if the following conditions are satisfied, for all i = 1, 2, 3: w i,i+1 + αwi+1,0 < wi,0 <
wi,i+1 + α(wi+1,i+2 + wi+2,0) (for addition modulo 3). If α = 1, these inequalities cannot be
simultaneously satisfied for any nonnegative choice of the edge weight vector w, which
is expected, since α = 1 corresponds to shortest path routing. On the other hand, if
0 < α < 1, then there are many vectors w that satisfy the inequalities above. For exam-
ple, we can choose w10 = w20 = w30 = 1, and let w12 = w23 = w31 = x, for any x such that
(1− α)/(1 + α) < x < 1− α. For this definition of w, all three inequalities above will be
satisfied, and thus the rankings of each node will lead to the same oscillation shown in
Figure 6-1. �

The results in this section imply that routing protocols maybe unstable if individual
nodes may rank paths in ways that deviate even slightly from rankings based on short-
est paths routing. Of course, the reader should not interpret these results as saying that
shortest paths routing is the only routing protocol that will converge, since there is a larger
class of routing protocols based on strictly monotonic algebras (of which shortest paths
routing is one instance) that are safe [57]. Rather, the results imply that a routing proto-
col where nodes may rank paths in ways that violate the monotonicity of shortest paths
routing—even if only slightly—are may be unstable.

� 6.4 Dispute Wheels and Dispute Rings

Our goal is to study the classes of rankings for which the routing system is guaranteed
to be safe under filtering. Griffin et al. have shown that checking whether a particular
routing system is safe is NP-hard [56]. To simplify our study of safety, we introduce a
useful concept developed by Griffin et al. [56], known as a dispute wheel. Informally, a
dispute wheel gives a listing of nodes, and two path choices per node, such that one path
is always preferred to the other. If a routing system oscillates, then it is possible to construct
a dispute wheel whereby each node in the wheel selects its more preferred path (via the
node in the clockwise direction) over its less preferred path. Griffin et al. showed that if a
routing system with no filtering does not have a dispute wheel, then it is safe.

The dispute wheel is a useful concept because it allows us to analyze dynamic proper-
ties such as safety by simply looking at the rankings of each node in the routing system.
In this section, we formally define a dispute wheel and show the relationship of Griffin’s
routing model, which simulates messages being passed between nodes, to the model we
use in this chapter, which uses fair activation sequences. This relationship allows us to
study safety in terms of the routing model in this chapter. We then introduce a special type
of dispute wheel called a dispute ring and show that, if any routing system has a dispute
ring, then it is not safe under filtering. Finally, we relate dispute wheels to dispute rings
and show that, although the presence of a dispute ring guarantees that a routing system
is not safe under filtering, it does not necessarily imply that a routing system is not safe
without filtering. Figure 6-8 summarizes the results of this section and how they relate to
results from previous work [56].

150 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

No Dispute Wheel

No Dispute Ring

Safe under Filtering

Safe

Figure 6-8: Relationships between safety and dispute rings and wheels. Previous work showed that a
routing system with no dispute wheel is safe [56]. Section 6.4 presents all other relationships shown in this
figure.

PSfrag replacements

0

Qk

Pkik

Pk+1

ik+1

Figure 6-9: Illustration of a dispute wheel. Dotted lines show preferred (indirect) paths to the destination.
The nodes i1, . . . , im are pivots.

� 6.4.1 Dispute Wheels and Safety

Definition 6.15 (Dispute wheel) Given a routing system (N,≺1, . . . ,≺N, F1, . . . , FN), a dis-
pute wheel is a collection of distinct nodes i1, . . . , im, called pivots, together with two sets of paths
P1, . . . , Pm and Q1, . . . , Qm, such that the following conditions all hold (where we define im+1 = i1
for notational convenience):

1. Pk ∈ Fik for all k = 1, . . . , m;
2. Qk is a path from ik to ik+1 for all k = 1, . . . , m;
3. The path P̂k = ik Qkik+1Pk+10 is feasible, i.e., P̂k ∈ Fik ,
4. P̂k �ik iPk0.

Thus, each node ik prefers the path ik Qkik+1Pk+10 to the path ik Pk0, as shown in Figure 6-9.
We now show that safety in the Simple Path Vector Protocol (SPVP) defined by Griffin

et al. [56] implies safety in our model, which allows us to use dispute wheels to analyze
safety.

SECTION 6.4. DISPUTE WHEELS AND DISPUTE RINGS 151

Proposition 6.2 Given a routing system, a fair activation sequence, and an initial path assign-
ment P0, let P1, P2, . . . be the resulting sequence of path assignments according to the dynamics
described in Figure 6-4. Then there exists a sequence of messages in the Simple Path Vector Protocol
(SPVP) such that the same sequence of path assignments is observed.

Thus, in particular, if a routing system is safe under SPVP, then it is safe according to Defini-
tion 6.10.

Proof Sketch. The key difference between SPVP and the dynamics we have defined is that
SPVP is asynchronous (i.e., at any time step, messages may be in flight), so different nodes
may have different assumptions about the global path assignment at any time. SPVP is
nondeterministic with respect to the timing of messages; the delay between a routing up-
date at node j and the receipt of the new route advertisement from node j at node i can
be arbitrary. We use this fact to construct, inductively, a sequence of messages such that
at time t, the current set of paths available to node it in SPVP corresponds exactly to Pt−1.
Furthermore, we time the delivery of routing updates to node i t in SPVP so that any up-
dates that occurred since the last time it was activated arrive exactly at the start of time
step t. In SPVP, this will initiate a routing update at node it, which corresponds exactly to
the activation of it in our model (see Figure 6-4).

Thus, the sequence of path assignments seen in this realization of SPVP matches the
sequence of path assignments seen in our dynamics. We conclude that if SPVP is guaran-
teed to be safe for the given routing system (i.e., if eventually no further routing updates
occur, regardless of the initial path assignment), then the routing system is safe according
to Definition 6.10 as well. �

Corollary 6.1 If a routing system (N,≺1, . . . ,≺N, F1, . . . , FN) has no dispute wheel, then it is
safe under filtering (and hence safe).

Proof. Choose subsets F̂i ⊆ Fi. Then, any dispute wheel for the routing system Ŝ = (N,≺1,
. . . ,≺N, F̂1, . . . , F̂N) is also a dispute wheel for the original routing system S = (N,≺1, . . . ,

≺N, F1, . . . , FN). Thus, the result follows from Proposition 6.2 and the results of [56]. �

If no dispute wheel exists, the routing system is safe under filtering, but, unfortunately,
this condition is not a necessary condition for safety, and thus not much can be said about
a system that does have a dispute wheel. Furthermore, there exist routing systems that
have a dispute wheel but which are safe under filtering.

Observation 6.4 The existence of a dispute wheel does not imply that the routing system is unsafe,
nor that the routing system is not safe under filtering.

Example 6.7 See Figure 6-10. The first two most preferred paths in each node’s ranking
form a dispute wheel, but the system is safe: the system converges to P = (10, 20, 30).
Furthermore, no combination of filters can create an oscillation. The two-hop paths are not
part of the stable path assignment, so filtering those paths has no effect on the protocol
dynamics. Filtering a three-hop path would simply result in a node selecting the direct

152 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

1

2

3

0

1 0

2 0

3 0

1 3 2 0

1 3 0 3 2 0

3 2 1 0

2 1 0

2 1 3 0

Figure 6-10: A routing system that is safe for any choice of filters.

path to the destination, and the node would never deviate from that path. If one direct
path is filtered, then the other two nodes will take direct paths to the destination and the
node whose direct path is filtered will take its most preferred three-hop path. If two direct
paths are filtered, then P is simply a chain to the destination: the node that has the direct
path takes it, and the other two nodes will take two and three-hop paths. �

� 6.4.2 Dispute Rings and Safety

In this section, we extend the dispute wheel notion to understand the relationship between
ranking expressiveness and safety under filtering. We define a relationship between rank-
ings called a dispute ring, a special case of a dispute wheel where each node appears at
most once. The dispute ring is a useful concept because it allows us to prove a necessary
condition for safety under filtering.

Definition 6.16 (Dispute ring) A dispute ring is a dispute wheel—a collection of nodes
i1, . . . , im and paths P1, . . . , Pm, Q1, . . . , Qm satisfying Definition 6.15—such that m ≥ 3, and
no node in the routing system appears more than once in the wheel.

Proposition 6.3 If a routing system has a dispute ring, then it is not safe under filtering.

Proof. Assume that a routing system has a dispute ring, defined by i1, . . . , im, and paths
Q1, . . . , Qm, P1, . . . , Pm. Then, construct filters such that Fi contains only the paths in that
dispute ring. Specifically, Fi contains the following paths from P N

i (where we define im+1 =

i1). (1) If i is not in the dispute ring, then Fi = ∅. (2) If i is a pivot node on the dispute ring,
say i = ik, then Fi contains exactly two paths: Pk, and ik Qkik+1 Pk+10. (3) If i is not a pivot
node, but i ∈ Qk for some k, then we can write Qk = ik Q1

kiQ2
kik+1. In this case Fi consists

of the single path iQ2
kik+1Pk+10. (4) If i is not a pivot node, but i ∈ Pk for some k, then we

can write Pk = ik P1
k iP2

k 0. In this case, Fi consists of the single path iP2
k 0. Since each node

appears at most once on the dispute ring, the preceding definition uniquely defines Fi for
all nodes i.

There exists at least one consistent path assignment Pt such that some pivot node ik−1
uses its most preferred path, ik−1Qk−1ik Pk0, every other pivot node i j uses path i j Pj0, and
every other non-pivot node i uses its only available path consistent with this assignment.
Then, the following activation sequence will result in an oscillation:

SECTION 6.4. DISPUTE WHEELS AND DISPUTE RINGS 153

Node Ranking
1 160 � 1240
2 240 � 2350
3 350 � 3160
4 43160 � 40
5 51240 � 50
6 62350 � 60

(a) Routing system

1

3

4

2

5

3

2

6
1

0

(b) Dispute wheel

Figure 6-11: System that (1) has no dispute ring and (2) is not safe.

1. Activate node ik. Node ik then switches to its more preferred path, ikQkik+1 Pk+10.
2. Activate nodes along Qk−1 in reverse order, from the node immediately preceding ik, to ik−1.

All nodes along Qk−1 switch to the empty path, ε.
3. Activate node ik−1. The path ik−1Qk−1ik Pk0 is now inconsistent, so ik−1 must switch to

the path ik−1 Pk−10.
4. Return to Step 1 with k replaced by k + 1, and iterate again.

By the fourth step of the iteration above, the new path assignment is “isomorphic” to the
initial configuration: now node ik is using the path ik Qkik+1Pk+10, and every other pivot
node i j is using path i j Pj0. Thus, as this iteration repeats, the dynamics will ultimately
reach node ik once again with the original path assignment. Note that all paths in this
activation sequence are guaranteed to be available and consistent, by the definition of Fi.
To make this activation sequence fair, we must also activate the nodes that are not in Pi∪Qi
for any i in the dispute ring; and the non-pivot nodes in Pi for all i in the dispute ring. The
nodes that are not in Pi ∪ Qi for any i have only the path ε available, and each non-pivot
node in Pi (for all i) has only one path to the destination available. Therefore, these nodes
will never change paths, and do not affect the oscillation. �

We emphasize that, for simplicity, we reduced the set of filters, Fi, to include only the
set of paths that are involved in an oscillation. We note that there will typically be more
permissive sets Fi that will also result in oscillation, because the dispute ring is present in
the underlying set of rankings. Our intent is to highlight the most basic case of filtering
that can cause an oscillation, given the existence of a dispute ring.

Despite the fact that systems that are safe under filtering are guaranteed not to have a
dispute ring, testing for a dispute ring is not sufficient to guarantee that the routing system
is safe, because of the following observation

154 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

Path Assignment
Act. 1 2 3 4 5 6
— (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 0)
5 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)
1 (1 6 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)
3 (1 6 0) (2 4 0) (3 1 6 0) (4 0) (5 1 2 4 0) (6 0)
4 (1 6 0) (2 4 0) (3 1 6 0) (4 3 1 6 0) (5 1 2 4 0) (6 0)
5 (1 6 0) (2 4 0) (3 1 6 0) (4 3 1 6 0) (5 0) (6 0)
3 (1 6 0) (2 4 0) (3 5 0) (4 3 1 6 0) (5 0) (6 0)
2 (1 6 0) (2 3 5 0) (3 5 0) (4 3 1 6 0) (5 0) (6 0)
6 (1 6 0) (2 3 5 0) (3 5 0) (4 3 1 6 0) (5 0) (6 2 3 5 0)
4 (1 6 0) (2 3 5 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
2 (1 6 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
1 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 0) (6 2 3 5 0)
5 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 2 3 5 0)
6 (1 2 4 0) (2 4 0) (3 5 0) (4 0) (5 1 2 4 0) (6 0)

Figure 6-12: Activation sequence for unsafe system from Figure 6-11.

Observation 6.5 Routing systems that have a dispute wheel but do not have a dispute ring may
not be safe.

Example 6.8 Consider the routing system described by Figure 6-11(a) and the correspond-
ing dispute wheel in Figure 6-11(b). Suppose that nodes 1, 2, and 3 prefer two-hop paths
over three-hop paths, and the only paths available to nodes are those depicted in the fig-
ure. This system is not safe; for example, suppose P0 = (1240, 240, 350, 40, 50, 60). The
system then oscillates as shown in Figure 6-12. However, the system has no dispute ring;
in particular, the dispute wheel depicted in Figure 6-11(b) cannot be reduced to a dispute
ring. �

� 6.5 Autonomy and Safety

In this section, we determine necessary and sufficient constraints on the allowable classes
of rankings, such that if each AS autonomously sets its ranking while filtering is unre-
stricted, the protocol is guaranteed to be safe. We do so by characterizing whether a rout-
ing system where rankings are independently specified by each AS can induce either a
dispute ring or a dispute wheel.

Any protocol’s configurable parameters implicitly constrain the rankings ASes can ex-
press. For example, in BGP, the set of protocol parameters is rich enough to allow providers
to express essentially any possible ranking over paths. In Section 6.5.1, we axiomatically
formulate two properties that should be satisfied by any protocol that respects autonomy:
permutation invariance and scale invariance. The first requires the rankings allowed by the
protocol to be independent of node labeling, while the second requires the allowed rank-
ings to scale gracefully as nodes are added to the system. We abstract protocols satisfying
these two conditions using the notion of an autonomous ranking constraint (ARC) function;

SECTION 6.5. AUTONOMY AND SAFETY 155

such a function takes the ranking of a single AS as input, and accepts it if that ranking
is allowed by the protocol. Observe that any protocol that respects the ability of ASes to
autonomously choose rankings can be represented by a corresponding ARC function.

In Section 6.5.2, we give two examples of such functions: the shortest hop count ARC
function (which only accepts rankings where shorter paths are preferred to longer paths),
and the next-hop ARC function (which only accepts next hop rankings). We then deter-
mine the class of ARC functions such that, as long as each node independently chooses
an acceptable ranking, the resulting global routing system will be safe under filtering. In
Section 6.5.3, we show that the only ARC functions that are safe under filtering are nearly
equivalent to the shortest hop count ARC function.

� 6.5.1 ARC Functions

In this section, we define an autonomous ranking constraint (ARC) function, which serves
as an abstraction of the protocol’s constraints on allowed rankings over routes. We start
by defining a local ranking constraint (RC) function, which takes as input the ranking of a
single AS i, ≺N

i and determines whether that ranking is allowable.

Definition 6.17 (Local RC function) Given N nodes, a local ranking constraint (RC) func-
tion π(≺i) takes as input the ranking of a single AS i over all paths in P N

i , and returns “accept”
if ≺i is allowed by π, and returns “reject” otherwise. If π(≺i) = “accept”, we will say that ≺i
is π-accepted. If we are given a routing system (N,≺1, . . . ,≺N, F1, . . . , FN) where each ≺i is
π-accepted, we will say the routing system is π-accepted.

Because we are restricting attention to protocols that respect the ability of ASes to
choose rankings autonomously, a first condition that must be satisfied is that constraints
on rankings should be “local”: that is, an AS should not face constraints on allowable
rankings due to the rankings chosen by other ASes. For this reason, local RC functions
act only on the ranking of a single AS. More generally, protocols might place system-wide
constraints on the vector of rankings chosen by all ASes; such protocols should be repre-
sented by “global” RC functions. Of course, such protocols do not respect autonomy, and
so we do not consider them here.

We now define two natural conditions any local RC function that preserves autonomy
should satisfy. First, the local RC function’s conditions on rankings should provide consis-
tent answers to different ASes, regardless of the labeling of the ASes. That is, for the local
RC function to preserve uniformity, each AS should be subject to the same constraints on
routing policies, and those constraints should not depend on the particular assignment of
AS numbers to ASes. For example, suppose the routing system consists of three ASes, and
AS 1 has an accepted ranking where it prefers 1230 over 120, and 120 over 10. Then we
expect the same ranking should be accepted, even if the labels of nodes are permuted. For
example, suppose we permute the node labels that 1→ 2, 2→ 3, and 3→ 1. Then node
2 should also have an accepted ranking where it prefers 2310 over 230, and 230 over 20
(because 2310, 230, and 20 are the new paths that result after applying the permutation to
1230, 120, and 10, respectively). If this property were not satisfied, then the set of accepted
rankings determined by a local RC function would depend on the global assignment of
AS numbers to nodes, not on the characteristics of the individual rankings themselves. We

156 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

call this notion permutation invariance; to define it precisely, we must proceed through a
sequence of definitions, starting with path permutation.

Definition 6.18 (Path permutation) Given N nodes, let σ be a permutation of the nodes
1, . . . , N. Then σ induces a path permutation on any path P = ii1i2 . . . im j from i to j, yield-
ing a new path σ(P) = σ(i)σ(i1)σ(i2) . . . σ(im)σ(j) from σ(i) to σ(j). We always define σ(0) = 0.

Definition 6.19 (Ranking permutation) Given N nodes, let σ be a permutation of the nodes
1, . . . , N. Then σ induces a ranking permutation on a ranking ≺i for node i over the paths in
P N

i , yielding a new ranking σ(≺i) over the paths in P N
σ(i), as follows: If P1, P2 ∈ P N

i , and P1 ≺i P2,
then σ(P1)σ(≺i)σ(P2) (where σ(Pi) is the path permutation of path Pi under σ).

Note that a permutation does not modify the routing system any substantive way, ex-
cept to relabel the nodes, and to relabel the paths and rankings and in a way that is consis-
tent with the relabeling of nodes.

Definition 6.20 (Permutation invariance) A local RC function π is permutation invariant if,
given N and a ranking≺i for an AS i over all paths in P N

i , the relation ≺i is π-accepted if and only
if σ(≺i) is π-accepted, for any permutation σ of 1, . . . , N.

Second, a local RC function should specify conditions for acceptance or rejection of
rankings that “scale” appropriately with the number of nodes in the system; we call this
property scale invariance. Suppose, for example, that a local RC function accepts a ranking
≺i over P N

i , when N nodes are in the system. Now suppose that we add nodes to the
system, so the total number of nodes is N̂ > N. As additional nodes are added to the sys-
tem, additional paths become available as well, and each node i must specify its rankings
over the larger set P N̂

i . Informally, scale invariance of the local RC function requires that i
should be able to “extend” the ranking ≺i to an accepted ranking over P N̂

i , without hav-
ing to modify its existing ranking over P N

i ; otherwise, the properties of allowed rankings
would depend on the number of nodes in the global system.

To formalize this concept, we first define a subranking.

Definition 6.21 (Subranking) Given N nodes, let ≺i be a ranking for AS i over all paths in P N
i .

Given N̂ > N, let ≺̂i be a ranking for AS i over all paths in P N̂
i . Note that P N

i ⊂ P N̂
i . We say that

≺i is a subranking of ≺̂i if P1 ≺i P2 implies P1≺̂i P2, for all P1, P2 ∈ P N
i .

We now define scale invariance.

Definition 6.22 (Scale invariance) A local RC function π is scale invariant if the following
condition holds: given any π-accepted ranking ≺i for AS i over P N

i , and given any N̂ > N, there
exists at least one π-accepted ranking ≺̂i over P N̂

i that has ≺i as a subranking.

Permutation invariance guarantees that relabeling nodes does not affect allowed rank-
ings; scale invariance ensures that even as the set of nodes in the network increases, the
rankings over previously existing paths should remain valid. Local RC functions that sat-
isfy both permutation invariance and scale invariance correspond to protocols that respect
the ability of ASes to autonomously choose rankings; we call such functions autonomous
ranking constraint functions.

SECTION 6.5. AUTONOMY AND SAFETY 157

Definition 6.23 (ARC function) A local RC function is an autonomous ranking constraint
(ARC) function if it is both permutation invariant and scale invariant.

We want to derive the conditions under which protocols are guaranteed to be safe under
filtering. Given that we use an ARC function as an abstraction of the constraints placed by
a protocol on rankings, we would thus like to characterize ARC functions that can ensure
safety under filtering of the entire routing system (a global property). For this reason, we
extend the definition of “safety under filtering” to cover local RC functions.

Definition 6.24 Let π be a local RC function. We say that π is safe under filtering if all π-
accepted routing systems are safe under filtering.

� 6.5.2 Examples of ARC Functions

We now present two simple examples of ARC functions: the shortest hop count ARC func-
tion, which is guaranteed to be safe, but is not expressive; and the next hop ARC function,
which is expressive, but not safe.

Example 6.9 Our first example is the shortest hop count RC function, π shc. Given the number
of nodes N, the RC function πshc accepts a ranking≺i for node i if and only if the relation≺i
strictly prefers shorter paths (in terms of hop count) over longer ones. Formally, it accepts
≺i, if, for any two paths Pi, P̂i ∈ P N

i such that length(Pi) < length(P̂i), Pi �i P̂i. Ties may be
broken arbitrarily.

It is not hard to verify that πshc is an ARC function. To check permutation invariance,
note that if ≺i is allowed for node i, then of course for any permutation σ, the ranking
σ(≺i) will also be allowed for node σ(i), as σ(≺i) will also prefer shorter paths to longer
paths. Scale invariance is natural: given any shortest hop count ranking ≺ i over P N

i , and
given N̂ > N, there obviously exists at least one shortest hop count ranking over P N̂

i that
has ≺i as a subranking. �

πshc forces all providers to use shortest AS path length, effectively precluding each AS
from having any policy expressiveness in choosing rankings (other than when breaking
ties). A more flexible set of rankings is allowed by the next hop RC function of the next
example.

Example 6.10 The next hop RC function, πnh, accepts a ranking ≺i for node i if and only if
≺i satisfies Equation (6.1) in Section 6.3.1; that is, if ≺i is a next hop ranking.

πnh is clearly permutation invariant: if ≺i is a next hop ranking for node i, then clearly
σ(≺i) is a next hop ranking for node σ(i). Furthermore, note that any next hop ranking
≺i is determined entirely by the rankings of node i over each possible next hop, together
with tiebreaking choices among routes with the same next hop. Thus, for N̂ > N,≺i can be
extended to a next hop ranking over P N̂

i , by extending node i’s rankings over each possible
next hop, and determining tiebreaking rules for any routes with next hop N + 1, . . . , N̂. We
conclude that πnh is scale invariant as well, and thus it is an ARC function.

πnh grants greater flexibility in choosing routing policies than under the shortest hop
count RC function, πshc, albeit at some cost. With πnh, each AS i will choose a next hop
ranking ≺i without any global constraints on the composite vector of next hop rankings

158 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

(≺1, . . . ,≺N) chosen by the nodes. We have shown earlier in Section 6.3.1 that there exist
configurations of next hop rankings that may not be stable or safe under filtering; thus, the
ARC function πnh can lead to a lack of safety. �

Next, we use dispute rings and dispute wheels to characterize the class of ARC func-
tions that are safe under filtering. We will prove that this class is closely related to the ARC
function πshc.

� 6.5.3 Impossibility Results

We prove two main results in this section. Informally, the first result can be stated as
follows: suppose we are given an ARC function and an accepted ranking such that some
n hop path is less preferred (i.e., ranked lower) than another path of length at least n + 2
hops. Then, we can construct an accepted routing system with a dispute ring; i.e., one that
is not safe under filtering. The second result states that if some n-hop path is less preferred
than another path of length at least n + 1 hops, then there exists a routing system with a
dispute wheel (though not necessarily a dispute ring). Note that this result is weaker than
our first result, because a dispute wheel does not necessarily imply that the system is not
safe under filtering.

We interpret these results as follows: if we are searching for ARC functions that are safe
under filtering, we are very nearly restricted to considering only the shortest hop count
ARC function, because all paths of n hops must be more preferred than paths of at least n + 2
hops to guarantee safety under filtering, and all paths of n hops must be more preferred
than paths of at least n + 1 hops to prevent dispute wheels.

Our first lemma, which is crucial to proving both of our results, uses permutation in-
variance to construct a dispute wheel from a single node’s rankings. We use a permutation
to “replicate” pieces of the dispute wheel until the entire wheel is completed.

To state the lemma, we will require the definition of period of a node with respect to
a permutation, as well as the period of a permutation. Given a permutation σ on the
nodes 1, . . . , N, let σk denote the permutation that results when σ is applied k times; e.g.,
σ2(j) = σ(σ(j)), where σ0 is defined to be σ.

Definition 6.25 (Period) Given a permutation σ on the nodes 1, . . . , N, we define the period of
i under σ as periodi(σ) = min{k ≥ 1 : σk(i) = i}.

Thus, the period of i is the minimum number of applications of σ required to return to i.

Definition 6.26 (Permutation period) Given a permutation σ on the nodes 1, . . . , N, we define
the period of the permutation σ as period(σ) = min{k ≥ 1 : σ k(i) = i for all i}.

Thus, period(σ) is the minimum number of applications of σ required to recover the original
node labeling, and can be computed as the least common multiple of periodi(σ), for 1 ≤ i ≤ N.

The following result establishes the conditions under which we can apply a permuta-
tion to a π-accepted ranking to obtain a dispute wheel. We use this lemma as a building
block for both of the theorems in this section.

Lemma 6.1 Let π be an ARC function. Suppose there exists a node i with a ranking ≺ i over
P N

i , two paths Ri, P̂i ∈ P N
i , and a permutation σ on 1, . . . , N such that: (1) ≺i is π-accepted; (2)

SECTION 6.5. AUTONOMY AND SAFETY 159

. . .

. . .

PSfrag replacements

0

i1 = i

i2 = σ(i)

im = σm−1(i)

P1 = P̂i

Q1 = Q̂i

P2 = σ(P̂i)

σ

Pk = σk−1(P̂i)

Pk+1 = σk(P̂i)

ik = σk−1(i)

ik+1 = σk(i)

Qk = σk−1(Q̂i)

Figure 6-13: Dispute wheel construction for Lemma 6.1.

Ri �i P̂i; (3) periodi(σ) = period(σ); and (4) there exists a path Q̂i from i to σ(i) such that:

Ri = iQ̂iσ(i)σ(P̂i)0. (6.2)

Then there exists a π-accepted routing system with a dispute wheel.
This dispute wheel is defined by pivot nodes i1, . . . , im, and paths P1, . . . , Pm and Q1, . . . , Qm,

where m = period(σ), and where for k = 1, . . . , m, we have ik = σk−1(i), Pk = σk−1(P̂i), and
Qk = σk−1(Q̂i).

Proof. Refer to Figure 6-13. The key idea of the proof is that, since periodi(σ) = period(σ),
we can repeatedly apply σ to the paths Q̂i and P̂i and apply permutation invariance to
construct a π-accepted routing system with a dispute wheel.

Let m = period(σ). Define the sequence i1, i2, . . . , im by ik = σk−1(i) for k = 1, . . . , m.
Since period(σ) = periodi(σ), the nodes i1, . . . , im are all distinct. For k = 1, . . . , m, define
≺ik= σk−1(≺i); since the nodes i1, . . . , im are all distinct, this assignment of rankings to
nodes is well defined (i.e., no node is assigned two different rankings). By permutation
invariance, since ≺i is π-accepted, we conclude ≺ik is π-accepted for all k. For all other
nodes j, choose any π-accepted ranking≺ j. Let F j = P N

j for all nodes j.
This permutation defines a π-accepted routing system (N,≺1, . . . ,≺N, F1, . . . , FN). We

now construct a dispute wheel for this system. Define Qk = σk−1(Q̂i), and Pk = σk−1(P̂i),
for k = 1, . . . , m. We claim that these definitions yield a dispute wheel.

Since F j = P N
j for all j, all paths are feasible. Next, since Q̂i is a path from i1 = i to

i2 = σ(i), we conclude that Qk is a path from ik to ik+1 for all k (where we define im+1 = i1).
We now observe that:

σk−1(Ri) = σk−1(i)σk−1(Q̂i)σk(i)σk(P̂i)0
= ik Qkik+1 Pk+10.

Finally, since ≺ik= σk−1(≺i) and Ri �i P̂i, we have σk−1(Ri) �ik σk−1(P̂i). Using the preced-
ing derivation and the fact that Pk = σk−1(P̂i), we conclude that ikQkik+1 Pk+10 �ik ik Pk0, as

160 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

required.
Thus, we have established that i1, . . . , im, together with Q1, . . . , Qm and P1, . . . , Pm, con-

stitute a dispute wheel. �

The preceding lemma reduces the search for a dispute wheel to a search for a permuta-
tion and a π-accepted ranking with the stated properties. Observe from Equation (6.2) that
the permutation σ maps the path P̂i into the “tail” of the path Ri; in applying Lemma 6.1,
we will construct a partial permutation by mapping a path P̂i into the “tail” of Ri as in (6.2),
and then we will complete the permutation by adding nodes to the system if necessary so
that periodi(σ) = period(σ). We use this approach to prove two theorems; the first states
that if an ARC function accepts at least one ranking that prefers an n-hop path less than a
path of at least n + 2 hops, then the ARC function is not safe under filtering.

Theorem 6.1 Let π be an ARC function. Suppose there exists a node i with π-accepted ranking
≺i, and two paths Ri, P̂i ∈ P N

i such that length(Ri) > length(P̂i) + 1 and Ri �i P̂i. Then, π is
not safe under filtering.

Proof. The proof relies on Lemma 6.1 to build a dispute wheel. First, using scale invariance
of the ARC function, we show that the stated conditions of the theorem ensure that there
exist two paths R′i, P̂′i such that: length(R′i) ≥ length(P̂′i) + 1; R′i is more preferred than
P̂′i for some π-accepted ranking; and R′i and P̂′i have no nodes in common, other than i
and 0. Lemma 6.2 then completes the proof of the theorem through two steps: first, once
we have found the paths R′i and P̂′i , we use them to build a permutation σ such that the
conditions of Lemma 6.1 are satisfied; and second, we show that the dispute wheel given
by Lemma 6.1 is in fact a dispute ring, by checking that no nodes are repeated around the
wheel.

We first construct the paths R′i and P̂′i as described in the previous paragraph. Let i,
≺i, Ri, and P̂i be given as in the theorem. Let ` = length(P̂i); i.e., P̂i = iu1u2 . . . u`−10. We
add ` new nodes to the routing system, and label them v1, . . . , v`; let N′ = N + `. By scale
invariance, there exists a π-accepted ranking ≺N′

i on the set of paths P N′
i with ≺i as a

subranking. For such a ranking≺N′
i we have Ri �

N′
i P̂i.

But now consider the path Ti = iv1 . . . v`0; note that length(Ti) = ` + 1. Since Ri �
N′
i P̂i,

either Ti �
N′
i P̂i, or Ri �

N′
i Ti. In the former case, let R′i = Ti, P̂′i = P̂i; and in the latter case,

let R′i = Ri, and P̂′i = Ti. Then length(R′i) ≥ length(P̂′i) + 1, R′i �
N′
i P̂′i , and R′i and P̂′i have

no nodes in common other than i and 0.
The following lemma uses Lemma 6.1 to construct a dispute wheel.

Lemma 6.2 Let π be an ARC function. Suppose there exists a node i with π-accepted ranking ≺ i
over P N

i , and two paths Ri, P̂i ∈ P N
i such that:

1. length(Ri) ≥ length(P̂i) + 1;

2. Ri �i P̂i; and

3. Ri and P̂i have no nodes in common other than i and 0.

Then there exists a π-accepted routing system for which there exists a dispute ring.

SECTION 6.5. AUTONOMY AND SAFETY 161

PSfrag replacements

0

i1
in

i′1

i′n

î1

în

x1

xh−1 x′1

x′h−1

x̂1
x̂h−1

Figure 6-14: Dispute ring construction for Lemma 6.2.

Proof of Lemma. The proof of this lemma proceeds by using scale invariance: we add
enough new nodes to the system to allow us to build a permutation such that the condi-
tions of Lemma 6.1 are satisfied. The key insight is that we initially construct the permu-
tation σ by mapping the path P̂i into the “tail” of the path Ri. We then add enough nodes
so that when we complete the definition of σ, we have periodi(σ) = period(σ).

Let length(P̂i) = n, and let h = length(Ri)− n; note that, by Condition 1 in the statement
of the lemma, we know h ≥ 1. Define i1 = i. We label the nodes so that P̂i = i1i2 . . . in0, and
Ri = i1x1x2 . . . xh−1 î1 î2 . . . în0. We want to define a permutation σ that will map the path
i1 . . . in0 to the tail of Ri, i.e., to the path î1 . . . în0. However, this does not completely define
a permutation, so we must add additional nodes to ensure that periodi(σ) = period(σ).

We add 2(h − 1) + n additional nodes to the system, labeled x̂1, . . . , x̂h−1, and
i′1, . . . , i′n, x′1, . . . , x′h−1. By scale invariance, we know there exists at least one π-accepted
ranking ≺̂i over all paths using this larger set of nodes, such that ≺̂i has ≺i as a subrank-
ing. In particular, since Ri�i P̂i, we have Ri�̂i P̂i. We now define a permutation σ according
to the following maps:

ik → îk → i′k → ik, k = 1, . . . , n;
xk→ x̂k → x′k → xk, k = 1, . . . , h− 1.

That is, σ(ik) = îk, σ(îk) = i′k, etc. For all nodes j not listed, we define σ(j) = j. Note that
the period of σ is period(σ) = 3, and of course periodi(σ) = periodi1(σ) = 3 = period(σ).
Finally, note that by definition of σ, we have Ri = iQ̂iσ(i)σ(P̂i)0, where Q̂i = ix1 . . . xh−1 î1.

Thus, the conditions of Lemma 6.1 have been satisfied by the ranking ≺̂i, the paths Ri
and P̂i, and the permutation σ; so we know there exists a π-accepted routing system for
which there exists a dispute wheel. To complete the proof, we need only check that the
dispute wheel is a dispute ring. Note that the wheel has three pivot nodes. Furthermore,
to check that no nodes are repeated around the wheel, we simply enumerate the elements
of our dispute wheel: Q̂i = i1x1 . . . xm−1î1; σ(Q̂i) = î1 x̂1 . . . x̂m−1i′1; σ2(Q̂i) = i′1x′1 . . . x′m−1i1

162 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

; P̂i = i1 . . . in0; σ(P̂i) = î1 . . . în0; and σ2(P̂i) = i′1 . . . i′n0. It is straightforward to check
that these paths constitute a dispute ring: in Figure 6-14, note that the dispute wheel
constructed from these paths has no repeated nodes. �

Lemma 6.2 completes the proof of the theorem: we have shown that if some π-accepted
ranking exists satisfying the conditions of the theorem, then using only permutation in-
variance and scale invariance we can build a π-accepted routing system with a dispute
ring. This routing system is then unsafe under filtering, by Proposition 6.3. �

The preceding theorem suggests that ARC functions that are safe under filtering are
closely related to the shortest hop count ARC function, because no rankings can be ac-
cepted where n hop paths are less preferred than (n + k)-hop paths, for k ≥ 2. The next
theorem draws this relationship even closer, by proving that there exists a dispute wheel
if an ARC function accepts any ranking where an n-hop path is less preferred than an
(n + 1)-hop path.

Theorem 6.2 Let π be an ARC function. Suppose there exists a node i with π-accepted ranking
≺i, and two paths Ri, P̂i ∈ P N

i such that length(Ri) = length(P̂i) + 1 and Ri �i P̂i. Then there
exists a π-accepted routing system with a dispute wheel.

Proof. As in the proof of Lemma 6.2, our basic approach is to map the path P̂i into the “tail”
of the path Ri. This partially defines a permutation σ. Using a graphical approach, we
show how to add nodes to the system and complete the permutation σ so that period i(σ) =

period(σ). We then apply Lemma 6.1 to conclude there exists a π-accepted routing system
with a dispute wheel.

To begin, write Ri = ii1 . . . in0, and P̂i = iv1 . . . vn−10. We will partially define a per-
mutation σ, and then add nodes and “complete” the permutation so that σ satisfies
the conditions of Lemma 6.1. For all nodes j 6∈ Ri

S

P̂i, we define σ(j) = j. Let V =

Ri
S

P̂i \ {0} = {i, i1, . . . , in, v1, . . . , vn−1}; i.e., V is the set of the nonzero nodes in Ri
S

P̂i.
We define a directed graph on the vertex set V, by defining the set of arcs A as follows:
A = {(i, i1)}

S

{(vk , ik+1) : k = 1, . . . , n− 1}. Define the graph G = (V, A).
We can immediately make the following observations about G: (1) each node in V has

either exactly one outgoing link and no incoming links; or exactly one incoming link and
no outgoing links; or exactly one incoming link and exactly one outgoing link; and (2)
from the definition of A, node i has exactly one outgoing link and no incoming links. We
interpret the graph G as a partial representation of the permutation σ, by defining σ(j) = k
if (j, k) ∈ A.

Of course, this only partially defines σ, and we now consider how we should complete
the definition of σ. Let T1, . . . Tm be the disjoint connected components of G; we write Tk =

(Vk, Ak). By the definition of “connected component”, we know Vk ∩Vk′ = Ak ∩ Ak′ = ∅ for
k 6= k′. We assume without loss of generality that i ∈ V1.

Our approach is to first define σ for all the nodes in each connected component Tk, for
k = 2, . . . , m. From the observations above, we can enumerate the nodes in Vk as Vk =

{u1, u2, . . . , u`}, such that each ur has a link to ur+1, for r = 1, . . . , `− 1; and either u` has
no outgoing links (in which case Tk is just a “segment”) or u` has a link to u1 (in which case
Tk is a “cycle”). We define σ(ur) = ur+1, where we interpret u`+1 as u1. Thus, in a segment

SECTION 6.6. IMPLICATIONS: POSSIBILITIES FOR GUARANTEEING SAFETY 163

or cycle, each node is mapped to its successor; in addition, in a segment, the last node is
mapped to the first node. This defines the permutation σ for all nodes, except those in V1.

To complete the proof, we will add enough nodes and extend the definition of σ so that
periodi(σ) = period(σ); we can then apply Lemma 6.1. Note that for all nodes j ∈ V2 ∪
· · · ∪ Vm, we can compute period j(σ) based on the preceding definition. Let K be the least
common multiple of period j(σ), over all j ∈ V2∪ · · ·∪Vm. We then add nodes to the system,
and in particular to the set V1, until |V1| (i.e., the number of nodes in V1) is a multiple of
K. Let the nodes added be z1, . . . , zs; these nodes will eventually become the pivots of
the dispute wheel. We know that A1 must be of the form {(i, i1), (i1, u1), . . . , (u`−1, u`)} for
some nodes u1, . . . , u` ∈ V. We define σ as follows: σ(i) = i1; σ(i1) = u1; σ(ur) = ur+1,
for r = 1, . . . , `− 1; σ(u`) = z1; σ(zr) = zr+1, for 1 ≤ r ≤ s− 1; and σ(zs) = i. Thus, it is
as if we added the nodes z1, . . . , zs, and turned the segment T1 into a cycle. Since the
length of this cycle is a multiple of K, it is clear that period(σ) is a multiple of K, and
periodi(σ) = period(σ).

By scale invariance, even though we have added nodes to the system, we can extend
≺i to a π-accepted ranking over the resulting larger set of paths, while maintaining the
preference of Ri over P̂i for node i. Furthermore, recalling our initial definition of the arc
set A, it is clear that we have Ri = ii1 . . . in0 = iσ(i)σ(v1) . . . σ(vn−1)0 = iσ(i)σ(P̂i)0. Thus, we
can apply Lemma 6.1, with Q̂i = ∅, to conclude there exists a π-accepted routing system
with a dispute wheel. �

The preceding results should not be interpreted as suggesting that we cannot find a
routing system that is safe under filtering, where nodes prefer (n + k)-hop paths over n-
hop paths. Indeed, from Figure 6-10, there are routing systems where nodes prefer 3-hop
paths over 1-hop paths, and yet the system is safe under filtering. However, checking
whether such systems are safe under filtering requires global verification; the theorems
we have presented suggest that safety under filtering cannot be guaranteed through local
verification alone, if some nodes are allowed to prefer (n + k)-hop paths over n-hop paths.

Furthermore, the two results in this section highlight the importance of dispute rings.
Theorem 6.1 gives the strong result that an ARC function that allows some (n + k)-hop
path to be more preferred than an n-hop path cannot guarantee safety under filtering, if
k ≥ 2. Theorem 6.2 only guarantees the existence of a dispute wheel if an ARC function
that allows some (n + 1)-hop path to be more preferred than an n-hop path—we cannot
draw conclusions regarding the stability or safety of a routing system on the basis of the
existence of a dispute wheel (see Figure 6-10).

� 6.6 Implications: Possibilities for Guaranteeing Safety

In light of the results in this chapter, a natural question to ask is whether they are positive
or negative. In one sense, our results are grim, because they suggest that if BGP remains in
its current form and each AS retains complete autonomy and filtering expressiveness (i.e.,
the only realistic scenario for the foreseeable future), then the routing system cannot be
guaranteed to be safe unless each AS constrains its rankings over available paths to those
that are consistent with shortest hop count (or, alternatively, preferences that are based on
consistent edge weights).

164 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

On the other hand, our results suggest several clear directions for designing a policy-
based routing protocol that is guaranteed to be safe. Although we presented the ARC
function as a proof technique, such a function could be implemented in practice to restrict
the rankings that operators specify in operational networks. We foresee a few possibili-
ties: (1) the routing protocol remains as it is today, and the constraints derived in Theo-
rems 6.1 and 6.2 are checked by a tool that statically detects configuration faults (e.g., rcc,
as described in Chapter 4); (2) the routing protocol is modified to prevent operators from
expressing rankings that violate these constraints in the first place; (3) ASes use dynamic
analysis to detect when a safety violation has taken place (e.g., [59]); or (4) a protocol is
designed whereby ASes exchange enough information about their rankings to enable de-
tection or prevention of safety violations, but not enough to reveal their strategic business
decisions. We have not yet fully evaluated the merits of each approach in this work, but
we briefly speculate on their advantages and disadvantages.

� 6.6.1 Static Fault Detection with rcc

Enforcing the ranking constraints from Section 6.5.3 locally at each AS using a static anal-
ysis tool like rcc (Chapter 4) would require no changes to the existing routing protocols
and configuration languages. Unfortunately, the results in Theorems 6.1 and 6.2 only pro-
vide global guarantees if every AS abides by the constraints: as a result, there may be little
incentive for one AS to constrain its policies if other ASes do not abide by the same con-
straints. As such, while using rcc to verify the necessary conditions for safety under filter-
ing could guarantee safety without requiring any modifications to the protocol, it would
require ASes to abide by constraints that are not enforceable, since an AS has no incentive
to restrict its filtering in this way if other ASes do not.

� 6.6.2 A New Routing Protocol that Restricts Expressiveness

Implementing the ranking constraints by restricting the protocol “knobs” requires whole-
sale changes to both the configuration language and the routing protocol, but it would
provide absolute guarantees for safety while still preserving the autonomy of each AS. The
difficult design question involves determining exactly how the knobs should be restricted.
HLP [129], a recent proposal for replacing BGP, proposes that these knobs constrain the
policy constraints to conform to those suggested by Gao and Rexford [47], but the ex-
amples in Section 6.1 suggest that this prescription is too restrictive. Our results suggest
another possibility: a protocol that stipulates that rankings be consistent with weighted
shortest paths but affords each AS some flexibility in actually setting those edge weights.
A recently developed framework called “metarouting” may also be useful in designing a
protocol that is safe under filtering [57]. We now explore each of these possibilities, which
are not mutually exclusive.

Option #1: Implement Rankings with Shortest Paths and “Knob Tweaking”

Our results in Section 6.3.2 suggest one possible direction: there we show that routing
using preferences derived from edge weights is guaranteed to be stable. Suppose each AS
ranks paths based on the sum of edge weights to the destination and adjusts weights on
its incident outgoing edges to neighboring ASes. Rankings would then be derived from

SECTION 6.6. IMPLICATIONS: POSSIBILITIES FOR GUARANTEEING SAFETY 165

the total path cost, but an AS might still retain enough flexibility to control the next-hop
AS en route to the destination. Such an approach could ensure that the protocol is safe
on short timescales, while allowing “policy disputes” to occur on longer timescales, out-
of-band from the routing protocol. Of course, we must explore whether this apparently
more restrictive language could still implement the policies that operators want to express.
Furthermore, a more restrictive policy language would guarantee safety, but would likely
cause routing to oscillate on a slower timescale as operators observe the routing protocol
converging to undesirable paths. We believe that this design decision is exactly the right
one: the routing protocol should converge on a fast timescale and accurately reflect network
topology, while policy conflicts should be resolved on slower, “human” timescales.

One possible problem with routing protocol whose rankings are derived from consis-
tent edge weights is its lack of modularity. For example, a failure or policy change in a
remote part of the network may require a network operator to re-tweak the edge weights
on the edges incident to his AS simply to maintain a desired rankings over paths. Of
course, in practice, an operator would not find such continual knob-tweaking acceptable.
These adjustments could be performed automatically (i.e., the weights required to achieve
some ranking could be automatically computed and reconfigured). Whether such a solu-
tion would introduce too many routing messages into the global routing system, as well
as what the precise technique should be for adjusting these weights, are areas for future
exploration.

Option #2: Use “Metarouting” to Design a Strictly Monotonic Protocol

Metarouting [57] is a recently developed framework based on Sobrinho’s path alge-
bras [125] that allows a routing protocol designer to design a routing protocol using a
“metalanguage” that specifies an algebra. Informally, an algebra is a specification of the
labels that links and paths can assume, the output of composing these labels with some
operator, and a ranking function that specifies which labels are preferred over others. So-
brinho’s work observed that any strictly monotonic algebra (i.e., where the ranking function
prefers a path Pi = (vi, . . . , d) over any path PPi) is guaranteed to be safe [125]; metarout-
ing shows how to compose multiple algebras to obtain a resulting algebra that is strictly
monotonic and provides a language for constructing these algebras.

Metarouting is a framework for analyzing the safety routing protocols, but it remains to
be seen whether it can be used to design any expressive policy-based routing protocol. For
example, because next-hop rankings are not monotonic, a routing protocol that is based
on an algebra whose ranking function uses next-hop rankings as the primary criterion is
not safe. Additionally, a strictly monotonic routing protocol whose ranking function is
not derived from consistent edge weights still requires restrictions on filtering. For the
reasons we discussed earlier in this chapter, it is doubtful that operators would accept
any routing protocol that hard-wires filtering restrictions into the protocol itself. Further,
metarouting only explores sufficient conditions for safety; it is unclear whether it captures
all interesting routing protocols that satisfy safety (particularly since it excludes protocols
based on next-hop rankings, for example).

166 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

� 6.6.3 Restrict Autonomy by Exposing Rankings

Another possibility for guaranteeing safety is to impose restrictions on autonomy. Some
previous work detects safety violations using out-of-band distributed detection mecha-
nisms [75, 83]. Recent work notes that safety may still be satisfied if only a single AS
deviates from the ranking and filtering constraints of Gao and Rexford (as summarized
in Table 2-3) and presents a distributed computation that securely determines the num-
ber of ASes that violate the constraints without revealing exactly which ASes are actually
in violation [83]. Jaggard and Ramachandran also proposed mechanisms for out-of-band
distributed detection of a dispute wheel [75].

A reasonable area for future work would be to further explore these types of ap-
proaches. For one, these distributed detection algorithms do not offer any recourse for
resolving the conflicting policies that give rise to the safety violation, which would ulti-
mately require restrictions on autonomy. For example, suppose every AS were permitted
to express next-hop rankings. In this case, what information must each AS reveal (and
to whom) about its rankings so that the resulting system could detect and resolve safety
violations? In a similar vein, it may be reasonable to exploit the trust relationships among
groups of ASes (e.g., one AS may trust one of its neighbors, but not others) to design a pro-
tocol that guarantees safety but only requires partial revelation of rankings to some subset
of all ASes.

� 6.6.4 Detect Safety Violations using Dynamic Analysis

Rather than restricting rankings and filters to prevent safety violations, the routing proto-
col could rely on analysis of routing protocol dynamics to detect when safety has been vio-
lated. Previous work has focused on such techniques. For example, Griffin et al. proposed
a “safe path vector protocol” [59]; this chapter suggests a modification to BGP where each
AS includes an explanation of why it changed routes (e.g., because the route it changed to
was more or less preferred than the route it was previously using). The protocol facilitates
detection of safety problems, but, in the process, it exposes the potentially private ranking
functions of each AS and provides no mechanism for resolving conflicts in rankings. More
generally, analyzing routing protocol dynamics could help identify safety violations, even
without modifications to the routing protocol itself, although such identification would
likely require analysis of the dynamics from multiple vantage points in the AS graph.

� 6.7 Summary

This chapter explored the fundamental tradeoff between the expressiveness of rankings
and routing safety, presuming that each AS retains complete autonomy and filtering ex-
pressiveness, and presented the first study of the effects of filtering on safety. We make the
following contributions.

1. We showed that next-hop rankings are not safe; we also observed that although rank-
ings based on a globally consistent weighting of paths are safe under filtering, even
minor generalizations of the weighting function compromise safety.

2. We defined a dispute ring and show that any routing system that has a dispute ring

SECTION 6.7. SUMMARY 167

is not safe under filtering. Our results are the first necessary conditions concerning
safety.

3. We showed that, providing for complete autonomy and filtering expressiveness, the
class of allowable rankings that guarantee safety is effectively ranking based on vari-
ants of weighted shortest paths. We also explored the implications of these findings
for the design of future interdomain routing protocols.

This chapter continued the theme of exploring the dynamic properties of Internet rout-
ing by analyzing static properties of the routing configuration. The fact that we can de-
termine anything about the Internet routing dynamics by analyzing the static rankings of
each AS independently is rather remarkable. It is even more noteworthy that we can guar-
antee safety, a property of the global routing system, by analyzing the static configurations
of each AS independently. Of course, guaranteeing safety does in fact require placing very
strict constraints on each AS’s rankings, which is why we advocated relaxing these con-
straints to some degree. An altogether different approach would be to try to detect these
properties at runtime, by analyzing the routing messages themselves (i.e., dynamic analy-
sis). The next chapter briefly explores how other techniques, such as dynamic analysis, can
complement static analysis.

168 CHAPTER 6. LOCAL CONDITIONS FOR SAFE INTERNET ROUTING

Why does everyone talk about the past? All that counts is tomorrow’s game.

- Roberto Clemente

CHAPTER 7
Conclusion

Despite the fact that communication on the Internet relies on correct and predictable oper-
ation of the routing protocols, today’s Internet routing infrastructure is surprisingly frag-
ile. The behavior of Internet routing depends heavily on how today’s de facto standard
Internet routing protocol, BGP, is configured. Although BGP’s configuration is precisely
what allows operators to realize complex economic and policy goals, the resulting “pro-
grammability” of the protocol creates the potential for incorrect and unpredictable behav-
ior. This dissertation has presented proactive techniques for improving the correctness and
predictability of Internet routing. In this chapter, we briefly review the causes for incorrect
and unpredictable behavior. After summarizing the contributions of this dissertation in
Section 7.2, we return in Section 7.3 to the lessons learned from this work (see Section 1.6)
and propose some possible steps forward based on these lessons. Section 7.4 concludes.

� 7.1 Reasons for Correctness and Predictability Problems

Routing on the Internet involves the interaction between tens of thousands of indepen-
dently operated networks, or autonomous systems (ASes), each of which may have any-
where from one to hundreds of independently configured routers. Although a network
operator configures each router independently, the behavior of the protocol may in fact de-
pend on the configurations of multiple routers, as well as the dependencies between these
configurations. These inter-router dependencies make configuring a network of routers
akin to writing a very large distributed program. In light of the fact that, until now, there
have been no tools or techniques to help network operators reason about the configura-
tion of the network as a whole, it is not surprising that network operators make mistakes
configuring their routers.

Even if network operators could be assured that the protocol would always behave
“correctly”, they would still have no assurance regarding what would actually happen
to traffic in response to a particular routing configuration. Various protocol artifacts (e.g.,
the MED attribute and route reflection), as well as the interaction of BGP with interior
routing protocols make it hard to predict route assignments and traffic flow. As such,
to determine the effects of a potential configuration change on the flow of traffic (and,

169

170 CHAPTER 7. CONCLUSION

hence, to determine whether such a configuration change meets traffic engineering goals),
an operator currently has no choice but to test that configuration change on a running
network.

Additionally, the operation of Internet routing depends on the interactions of config-
urations across multiple administrative domains, but network operators typically do not
have access to the configurations of these neighboring domains. As a result of this opac-
ity, a network operator has no way to guarantee that the policies configured in his own
network will not conflict with those in neighboring networks; worse yet, that operator
has no way to debug a problem caused by conflicting configurations when one does arise.
For example, as described in Chapters 3 and 6, ASes with conflicting policies can violate
safety: unlike a shortest paths routing protocol, policy-based routing protocols may never
converge to a stable outcome if the policies in neighboring ASes conflict [135].

� 7.2 Summary of Contributions

This dissertation posited that the complexity of routing protocol configuration is a major
impediment to correct and predictable Internet routing and has presented proactive tech-
niques for improving the correctness and predictability of Internet routing. These tech-
niques are based on a rigorous correctness specification for routing, which we presented
in Chapter 3. This specification has three aspects: route validity, path visibility, and safety.
Although we have explored the correctness specification in the context of today’s Internet
routing system, we hope that it will prove useful for evaluating the behavior of any rout-
ing protocol, particularly ones involving complex routing policies (e.g., modifications to or
replacements for BGP).

Using this correctness specification as a guide, we have developed tools and techniques
that allow a network operator to detect problems and predict routing protocol behavior
before the configuration is deployed by analyzing the static configuration files of the routers
within a single AS. In particular, we presented two such tools:

• rcc , presented in Chapter 4, detects faults in the router configurations within a single
AS (i.e., violations of route validity, path visibility) by analyzing the static configura-
tion files. rcc has been downloaded by over seventy network operators to date and
is available for download at http://nms.lcs.mit.edu/rcc/.

• The route prediction algorithms presented in Chapter 5 (and the associated proto-
type, the routing sandbox) allows an operator to determine which routes each router
will ultimately select, given only a static snapshot of the router configuration and the
routes learned via eBGP. We developed a prototype of this tool and determined that
our route computation algorithms are both accurate and fast enough to be used to
compute routes for a large tier-1 ISP.

In addition to providing these tools to help network operators configure the Internet
routing system, we also derive the constraints that each AS’s rankings must be subject to
in order for the global routing system to satisfy safety, presuming that each AS retains
complete autonomy in how it specifies both rankings and filters (Chapter 6). While the
constraints we derived could certainly be implemented in rcc, it turns out that they are too
restrictive: guaranteeing safety under such circumstances essentially requires that each AS

http://nms.lcs.mit.edu/rcc/

SECTION 7.3. MOVING FORWARD FROM THE LESSONS LEARNED 171

constrain its rankings to be consistent with shortest paths routing. We also speculated on
the implications of these results for the design of future Internet routing systems.

� 7.3 Moving Forward from the Lessons Learned

Some researchers have lamented the “ossification” of the Internet routing system and have
argued that it is difficult to have real impact in this area [108]. Indeed, much networking
research either analyzes the problems with the routing system or proposes solutions that
work within (or around) the limitations of BGP. Arguably, the growing research interest
in overlay networks reflects the community’s general frustration with the difficulty of ef-
fecting real, substantive change in the Internet’s underlying routing system. However,
fixing the routing system is an important and challenging goal that the networking re-
search community needs to address. We believe that there are many open and important
problems related to these challenges where networking researchers can have impact.

We now revisit the lessons learned (Section 1.6) and discuss possible steps forward in
terms of the two philosophies posed at the end of Chapter 1: (1) leaving the routing in-
frastructure largely unchanged and focusing on tools and techniques to make the existing
infrastructure more correct and predictable; or (2) modifying the existing architecture and
infrastructure so that it is inherently more correct and predictable. In addition to revisiting
the lessons from Section 1.6, in Section 7.3.5, we consider imminent open problems in In-
ternet routing security (i.e., how to guarantee correctness and predictability in the face of
adversaries).

� 7.3.1 Static configuration analysis detects many faults

One of the important lessons to take away from our experience with rcc is that static con-
figuration analysis detects many faults in deployed routing configurations. Of course, this
lesson also begs the question of identifying and detecting the types of faults that cannot be
detected with static analysis alone. In general, there appear to be many classes of events
that are of interest to network operators that will not be apparent from static analysis alone
but can nevertheless exploit static analysis to help network operators drill down on the
source of an observed problem:

• Shifts in traffic flow. Operators can use existing monitoring infrastructure and
anomaly detection tools to help them detect shifts in traffic flow, but identifying
the cause of a traffic shift typically requires knowledge of many factors, including
the configuration. For example, to determine whether a traffic shift was caused by
a change in demand or a change in routing, an operator may want to see how the
routes advertised from neighboring ASes have changed or determine whether the
configuration has changed. The techniques described in Chapter 5 can help deter-
mine how these changes would likely affect the flow of traffic.

• Contract violations. Statically detecting faults in one’s own network provides no
guarantees that neighboring networks will behave correctly or scrupulously. In these
cases, dynamic analysis is critical, but static analysis also plays a crucial role in help-
ing operators identify perpetrators. For example, recent work has developed an al-
gorithm to detect inconsistent route advertisements from neighboring ASes [35]; this

172 CHAPTER 7. CONCLUSION

technique exploits static analysis of import policies to discount cases where an ap-
parent inconsistent route advertisement was in fact caused by the AS’s own import
policies.

• Performance degradations. While static analysis alone cannot detect performance
degradations, it can help detect (or eliminate) possible causes for these degrada-
tions. For example, the checks for path visibility in iBGP (e.g., Theorem 3.4) can help
a network operator quickly determine the source of dropped packets and can also
eliminate some potential causes of the problem. In the case of routing failures that
affect end-to-end performance, the fastest way to determine that a problem exists in
the first place is to observe the end-to-end performance of Internet paths, but static
analysis may still play a useful diagnostic role in many cases.

• Route instability. In other cases, such as protocol oscillation cause by interaction
between MED and route reflectors or by interaction of policies between ASes, static
analysis is only useful for determining whether a route oscillation might happen.
Careful analysis of the routing announcements themselves, in conjunction with anal-
ysis of local policies, may help determine when such oscillations actually arise and
merit attention.

• Security problems. Static analysis can help defend against some routing security
problems (e.g., advertising private address space into the public Internet), but detect-
ing route hijacks or otherwise invalid route announcements in general is a challeng-
ing problem. Real-time analysis and detection of suspicious routing announcements
will play an important role in Internet routing security.

Dynamic analysis may play an important complementary role in solving each of these
problems, but an important open question is recognizing that, for each case, a different
“signal” may be necessary. Existing work that analyzes traffic patterns for anomalies faces
a somewhat less challenging problem because the timeseries to analyze is obvious (i.e.,
amount of traffic per unit time). With routing, the timeseries is less obvious. For example,
when is it appropriate to analyze number of prefixes advertised per unit time versus the
total number of prefixes announced by an AS versus the AS path length of a prefix over
time, and what techniques are most appropriate for analyzing these signals?

� 7.3.2 Distributed configuration causes faults

Because distributed configuration is responsible for many configuration faults, a natural
possible step forward is to consider ways to configure the network from a single, central-
ized point. Refactoring configuration in this fashion would allow a network operator to
configure the network, rather than configuring routers. This proposal seems appealing, but
several challenges stand in its way:

• What type of language should such a centralized scheme use?

• What types of techniques would network operators be most likely to adopt?

• How can the expression of high-level policies be separated from the low-level mech-
anisms that implement those policies?

SECTION 7.3. MOVING FORWARD FROM THE LESSONS LEARNED 173

Approaches to fault detection fall into two general categories: those that take the ex-
isting configuration languages as given and analyze deployed configuration for faults
(analysis), and those that try to design higher-level constructs to automatically generate
low-level router configuration (synthesis). Both approaches can benefit from better con-
figuration languages that more closely correspond to the network operator’s intent. For
example, analysis techniques could greatly benefit if they could check the actual routing
configuration against a specification of the intended behavior of the routing protocol. Such
a specification could serve as a high-level language for automatically generating low-level
configuration.

Most network operators are trained on existing configuration languages, and learning
a new process for configuring routers has a high cost. This situation suggests that the
best way to spur adoption would be to design a configuration language that allows an
operator to more easily construct configuration fragments from templates, which could be
customized according to higher-level macros.

In some sense, these two questions are closely related: network operators will most
likely be willing to adopt a configuration language that is similar to the ones they use to-
day. In light of this propensity, one possible approach is to generate a system that gives an
operator the semblance of configuring each independent router but is, in reality, a central-
ized system that is responsible for pushing configuration to the routers but can automati-
cally check for invariants that must hold network-wide. Such a system is actually not that
different from the rcc paradigm: the main difference is that the network would be checked
before it is deployed on running routers and the operator would alter configurations in
a centralized repository, rather than on the individual routers. Once configuration were
centralized in this fashion, however, the system could recognize commonalities (“design
patterns”) that existed across various routers and BGP sessions and assist an operator in
automatically generating these common configurations.

� 7.3.3 Safety + Autonomy ⇒ Tight restrictions on expressiveness

Our results concerning safety in Chapter 6 suggest that, if ASes are given both complete
freedom to establish business contracts (i.e., set filters) and complete autonomy (both rea-
sonably design requirements for the foreseeable future), then the only Internet routing
protocol that is guaranteed to converge on a fast timescale is one where paths are ranked
according to consistent path costs (e.g., shortest path routing).

This result suggests that, moving forward, future Internet routing protocols should ei-
ther: (1) constrain rankings so that they are derived from consistent path costs but still
provide operators the latitude they need to implement business relationships; (2) relax au-
tonomy, designing the protocol in such a way that reveals the fact that a policy conflict
exists without divulging sensitive information; or (3) devise more reasonable constraints
on filtering that might permit more flexible rankings. In any case, it is clear that the Internet
routing protocol must both converge on a fast timescale, for reasons of both performance
and diagnostics, and somehow make it possible for ASes to express preferences over the
next-hop AS to which they send traffic (and make it possible to recognize whether such
rankings conflict).

The work in this dissertation examines one end of this spectrum: that is, we explore how
expressiveness can rankings be, providing for unlimited autonomy and unrestricted filters.

174 CHAPTER 7. CONCLUSION

Our results suggest that, in this regime, ASes have relatively little expressiveness over
rankings, which implies that exploring how to relax requirements such as autonomy may
be worthwhile. In Section 6.7, we discussed possible several future directions. We now
revisit the strawman proposal for a new routing protocol that we proposed in Section 6.6
and pose some open questions related to this proposal.

Suppose that every edge in the inter-AS graph had a corresponding weight, that the
cost of a path was the sum of all inter-AS edge weights from source to destination, and
that each AS was required to prefer the path with lowest path cost. To give operators
some latitude in setting rankings, further suppose that each AS had the freedom to set the
edge weights for only those edges that were incident to its own AS in the graph (i.e., those
edges from it to the next-hop AS towards the destination). Now, we know that such a
protocol is guaranteed to converge on a fast timescale, because all rankings are based on
shortest paths routing. On the other hand, this strawman proposal introduces two obvious
problems:

• Potentially poor isolation. When an inter-AS edge fails, an operator might have
to re-tune the weights on the edges incident to his AS to guarantee that traffic will
continue flowing through the chosen next-hop AS for that destination. Is it possible
to either design a scheme that automatically tunes these weights for the operator and
is still guaranteed to be stable or, alternatively, a way of setting edge weights that is
relatively robust to these types of failures?

• Policy disputes. This strawman proposal does not eliminate policy disputes en-
tirely; rather, it moves the policy disputes so that the protocol oscillates on a slower
timescale. Of course, there is another advantage to this slower-timescale oscillation,
in that the policy dispute will be apparent from the continually increasing path costs.
Can the Internet routing infrastructure incorporate a protocol that automatically de-
tects these disputes and facilitates renegotiation of business relationships to resolve
them?

� 7.3.4 Protocol design should consider correctness and predictability

This dissertation focuses on techniques for improving correctness and predictability within
the current Internet routing architecture, but a more fruitful approach in the long term is to
design the routing protocol or architecture with an eye towards preventing incorrect and
unpredictable behavior in the first place. The routing architecture should be designed to
explicitly provide correct and predictable behavior. Correctness and predictability should
not depend on the routing protocol’s configuration; rather, they should be intrinsic to the
protocol’s design.

Separate routing from forwarding

Our work on detecting faults in router configuration suggests that many router configura-
tion faults result from distributed nature of the configuration. The configuration of some
policies introduces dependencies between the configurations of multiple routers: the cor-
rect operation of a filter on one router may be based on a label that a different router
attaches to the route. Additionally, many of the problems with BGP’s correctness and
predictability result from today’s techniques for disseminating routes within an AS (i.e.,

SECTION 7.3. MOVING FORWARD FROM THE LESSONS LEARNED 175

(a) In a conventional iBGP topology, every
router in the AS participates in IGP and iBGP
and selects routes independently.

(b) RCP receives the iBGP routes and the IGP
topology from the routers in the AS and com-
putes routes on behalf of every router in the
AS, and assigns those routes using iBGP [31].

Figure 7-1: Overview of the Routing Control Platform (RCP) architecture.

iBGP route reflection). Existing techniques for disseminating BGP routes were designed
as scalable, easily deployable extensions to BGP, but did not consider correctness or pre-
dictability as first-order concerns. Route reflectors [5] eliminate the need for a full mesh
between iBGP speakers, but they do not correctly emulate a full mesh iBGP configuration
and, as a result, may cause the protocol to violate basic correctness properties, as described
in Chapter 3. After first surveying some techniques that make minor modifications to iBGP
to improve correctness and predictability, we explore how more radical modifications to
iBGP—specifically, those that separate Internet routing from the individual routers—might
help network operators and protocol designers cope with the complexity of Internet rout-
ing’s techniques for achieving policy and scalability.

Previous work has suggested making small modifications to the way that route reflec-
tors advertise routes to guarantee various correctness properties. RFC 1863 proposed that
route servers forward all routes to clients, rather than just a single best route [66] and
suggested using an “advertiser” attribute to allow recipients to know who advertised the
routes. Basu et al. proposed a small modification to guarantee safety: instead of having
route reflectors only a single route to their clients, this work proposes that route reflec-
tors should advertise all routes that are equally good up to the MED step in the selection
process (Table 2-2, Chapter 2) [4]. In Chapter 3 (Section 3.2.1), we also note that a similar
modification would also guarantee route validity. Work on BGP scalable transport (BST)
has proposed other changes to iBGP that prevent oscillations [74]. Unfortunately, because
these proposals require modifying BGP (which implies either convincing router vendors to
implement the change, effecting the change through a standards body such as the Internet
Engineering Task Force, or both), they have not been widely adopted.

Rather than modifying the deployed routing infrastructure, the functions of Internet
routing could reside in a separate system that gathers information about the topology (e.g.,
via iBGP and IGP), computes the route that each router should use on behalf of each router,
and assigns the appropriate route to each router. The idea of having a control system that is
separate from the infrastructure that is responsible for forwarding packets (i.e., the routers)
is the central idea of the Routing Control Platform (RCP) [13, 31] (see Figure 7-1), as well
as work on a “more versatile route reflector” that computes different routing decisions on
behalf of its client routers [9]. The IETF ForCES working group has also proposed a frame-

176 CHAPTER 7. CONCLUSION

work that separates an individual network element into separate control and forwarding
elements, which can communicate over a variety of media (e.g., a backplane, Ethernet,
etc.) [42]. The framework dictates that routing protocols be implemented in the control
elements [144].

Because RCP has a view of the AS-wide iBGP and IGP topologies, it can assign routes
to each router in a way that guarantees that the routing protocol satisfies various proper-
ties, such as those from the correctness specification in Chapter 3. RCP may also simplify
routing configuration, because configuration can be done on an AS-wide basis, rather than
router-by-router. Rather than implementing these policies with specifications of mech-
anism that are distributed across the routers themselves, RCP could allow an operator to
specify a policy for the entire AS and be agnostic to the mechanisms that actually implement
the policy on the routers themselves.

Separating routing state from the routers can potentially introduce additional robust-
ness, scalability, speed, and consistency problems. The RCP architecture must address
these challenges to be viable. We have implemented a preliminary prototype of RCP as an
extension to Quagga [111] to examine the feasibility of having RCP control route selection
for all of the routers in a large tier-1 ISP [13]. To study the other feasibility issues, we are
presently implementing RCP as extensions to the XORP software router [65]; we plan to
make this prototype available to the research community.

Ultimately, RCP can facilitate innovation because it allows the logic of route selection
to be located in a system that is separate from the infrastructure that is responsible for for-
warding data traffic. Moving routing into a logically centralized (albeit replicated) system
creates more flexibility in how routes are exchanged between RCP nodes in neighboring
ASes: RCP nodes in adjacent ASes could use BGP to exchange these routes, although they
could conceivably use any protocol. RCP could also expose more information about the
routing topology to applications such as overlay networks, as well as give these networks
more control over the IP-level routes that are actually used.

Moving routing functionality into a system like RCP is not the only way to separate
routing from forwarding: others have advocated removing routing from the AS entirely by
moving routing complexity to end hosts, which query route servers to discover routes [80,
145]. Although these projects share our goal of separating routing complexity from the
infrastructure, RCP has the added benefit of simplifying intra-AS routing. Recent work
has also proposed working around the existing infrastructure, using an overlay to improve
BGP’s robustness [1, 50].

Provide direct control over traffic

Much research, both in Chapter 5 and in previous work [39], has focused on developing
predictive models of network-wide routing, typically to assist network operators in traffic
engineering. A system like RCP can provide real-time control of BGP routes rather than
modeling the BGP routes in today’s routing system. That is, rather than trying to infer
the outcome of BGP route selection or otherwise monitor the routing protocol (as many
existing systems do [73, 105, 124]), RCP can control the outcome, thus directly controlling
how traffic flows.

Although RCP provides direct control over traffic, it does not provide any facilities for
helping operators determine how that traffic should be controlled. Similarly, Chapter 5 pre-

SECTION 7.3. MOVING FORWARD FROM THE LESSONS LEARNED 177

Figure 7-2: Aggregation can interfere with an AS’s attempt to control inbound traffic. In this example, AS 1
announces more specific routes to AS 3 in an attempt to have inbound traffic enter via that AS. AS 3, on
the other hand may aggregate (or simply filter) those more specific routes to save routing table space, thus
interfering with AS 1’s intent.

sented algorithms that help network operators predict the effects of configuration changes
on the flow of traffic through the network, but these algorithms do not help network oper-
ators actually discover a routing configuration that achieves their intended objective (e.g.,
relieving persistent congestion, minimizing congestion on peering links, etc.). Unlike in-
tradomain routing optimization, for which there are existing tools and algorithms to help
operators tune parameters [15, 39], interdomain routing is much more difficult to opti-
mize: the search space is much larger, and local configuration changes can have global
effects that alter the traffic volumes coming to that AS from neighboring ASes. Our pre-
vious work proposes some guidelines for helping network operators make configuration
changes that are less likely to cause unpredictable effects [32], but the design techniques
for efficiently finding optimal (or even “good”) configuration settings remain open.

Avoid manipulable routing objects

Recall from Chapter 3 that we considered a destination d to be an immutable “handle”
for a route that referred to a set of endpoints; we cited IP prefixes as the destination d in
the case of Internet routing. Unfortunately, prefixes are not immutable: a router in one
AS can aggregate IP prefixes that are contiguous in the address space taking two routes,
(d1 → vi) and (d2 → v j) and combining them into a single route, (d→ vk), such that any
packets destined for endpoints in either d1 or d2 will be forwarded according to the route
(d→ vk). This creates complications for the definition of an induced path (Definition 3.3),
since a route to any endpoint by be induced by routes for different destination handles at
different routers.

Not only do these manipulable routing objects create problems for reasoning about

178 CHAPTER 7. CONCLUSION

properties of the routing protocol, but they also create practical problems. For one, they
create a tension between control over inbound traffic and scalability. ASes typically ex-
ploit the fact that routers will forward traffic based on the longest matching IP prefix in
the routing table and send more specific routing information along links where it wishes
to attract traffic. This technique allows an AS to control how traffic reaches its AS from
other places on the Internet. On the other hand, to control routing table size, some ASes
may combine multiple more specific routes into a single shorter route using a process
called aggregation. Aggregation dramatically reduces routing table size because Internet
addressing is typically hierarchical. Unfortunately, aggregating more specific prefixes can
also interfere with an ASes attempt to control how traffic reaches its network, as shown in
Figure 7-2 [142]. Thus, ASes must either aggregate routes at the risk of interfering with the
traffic engineering goals of other ASes (the common practice today [11]) or maintain larger
routing tables without receiving compensation for the incurring the extra overhead.

Finally, recent work has observed that, because IP prefixes can be manipulated by
routers in other ASes, they often do not accurately reflect a set of destinations that is atom-
ically either reachable or unreachable [43]. This characteristic can cause violations of route
validity (Definition 3.7) when a portion of endpoints contained within some destination
become unreachable but the route advertising the IP prefix for those endpoints is not with-
drawn.

In light of these problems presented by aggregation, one reasonable design principle
for future Internet routing systems may be to make the destination that is referred to by a
route an immutable property of the route, as a recent proposal has suggested [138].

� 7.3.5 Consider the effects of adversaries on correctness and predictability

This dissertation addresses the challenges for correctness and predictability that are intro-
duced unintentionally. A growing threat to the Internet routing infrastructure, however,
is that posed by adversaries. For example, malicious parties may attempt to inject false
routing information in an attempt to divert or blackhole traffic. Routing security has been
studied in some detail [107], but interdomain routing security is particularly difficult be-
cause interdomain routing must support complex policy. In addition to securing routing
information, the infrastructure should also ultimately provide guarantees about where the
traffic actually goes—in other words, whether the induced path (Definition 3.3, Chapter 3)
actually corresponds to the information about the path that is carried in the route.

Control-Plane Security

Attacks against the control plane have received considerable attention in recent years. The
IETF has established a working group in routing protocol security, RPSEC [122]; recent
drafts have addressed threats to the Internet routing system and BGP and outlined secu-
rity requirements [93]. BGP does not provide any support for controlling route announce-
ments. Securing the control plane boils down to two tasks: origin authentication, which
verifies that the AS that is announcing (“originating”) the prefix actually has legitimate
ownership over the address space for that prefix; and path authentication, which verifies
that the sequence of ASes that the routing advertisement traversed corresponds to the se-
quence of ASes in the AS path.

SECTION 7.4. CONCLUDING REMARKS 179

Various proposals provide either origin authentication [141], path authentication [70],
or both [77]. Unfortunately, these schemes require the existence of a public key infrastruc-
ture (PKI), a central authority that manages key distribution, ownership, and revocation;
PKIs are cumbersome and difficult to maintain. Thus, developing a routing protocol that
automatically verifies the ownership of some address space without requiring a central-
ized, trusted verification or lookup infrastructure remains an important unsolved prob-
lem.

Even an Internet routing architecture that provides both origin and path authentication
still does not enable an AS to verify that the route it receives is one that it should be re-
ceiving. That is, while they allow an AS to verify that a route announcement traversed a
particular sequence of ASes, they do not provide any mechanism to allow an AS to verify
that the sequence of ASes is one that is sensible. Answering this question is critical for
routing security. If an AS has no way to determine whether a sequence of ASes is sensible,
then it is possible for a single malicious organization to establish a new AS and have that
AS buy transit from the upstream AS of a source and destination, respectively. An impor-
tant unsolved problem involves characterizing the types of bogus routes that an AS can
detect with the limited information available today, as well as determining the additional
information that should be added to the routing protocol that could assist this detection
without revealing sensitive business relationships.

Data-Plane Security

Even if an AS could verify that the routes it receives were authentic and policy-compliant,
it still has no way to verify that packets actually traverse the same ASes as those in the
route’s AS path [88]. We note that the AS path was never intended as an indication of the
ASes that traffic will actually traverse. Rather, the AS path was only ever intended for loop
detection (i.e., so that an AS would not readvertise a route that it had already learned) and
as a coarse metric for choosing shorter routes over longer ones. Nevertheless, providing
some guarantees over where traffic will (or won’t) travel appears to be a desirable goal for
Internet routing. Allowing an AS or end host to verify that a route’s AS path matches the
actual forwarding path, or, more generally, allowing it to ascertain the sequence of ASes
that traffic to or from some destination traverses are important capabilities that any future
Internet routing system should provide.

� 7.4 Concluding Remarks

This dissertation has (1) presented a correctness specification for Internet routing; (2) de-
veloped tools and techniques to check for violations of this correctness specification in
real-world routing configuration; (3) exploited the correctness specification to design algo-
rithms that predict the outcome of BGP route selection for the set of routers within an AS;
and (4) derived the first conditions for guaranteeing a global correctness property, safety,
that do not require global knowledge of business relationships or topology.

The current version of the Internet’s routing protocol, BGP, has been deployed for nearly
a decade and has been modified and extended numerous times (e.g., with route reflection).
More striking is the plethora of proposals that have not been deployed. In light of these
proposals, the key challenge is to be able to separate the good protocol modifications from

180 CHAPTER 7. CONCLUSION

the bad ones and to determine how these various modifications interact with each other.
The correctness specification presented in this dissertation facilitates this type of reasoning.
Furthermore, the proactive techniques that this dissertation has advocated and developed
can help resolve the tension between flexibility and complexity that exists in any complex
routing protocol. While we have presented the properties of the correctness specification
in the context of BGP, it is our hope that this specification can serve as a guide for both
evaluating and designing new routing protocols that explicitly provide correctness and
predictability.

181

182

References

[1] S. Agarwal, C. Chuah, and R. H. Katz. OPCA: Robust Interdomain Policy Routing
and Traffic Control. In Proc. 6th International Conference on Open Architectures and
Network Programming (OPENARCH), New York, NY, Apr. 2003. (Cited on page 176.)

[2] C. Alaettinoglu et al. Routing Policy Specification Language (RPSL). Internet
Engineering Task Force, June 1999. RFC 2622. (Cited on page 140.)

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Experience with
an Evolving Overlay Network Testbed. ACM Computer Communications Review,
33(3):13–19, July 2003. (Cited on page 46.)

[4] A. Basu et al. Route Oscillations in IBGP with Route Reflection. In Proc. ACM
SIGCOMM, pages 235–247, Pittsburgh, PA, Aug. 2002. (Cited on pages 60, 75, 132,
133 and 175.)

[5] T. Bates, R. Chandra, and E. Chen. BGP Route Reflection - An Alternative to Full Mesh
IBGP. Internet Engineering Task Force, Apr. 2000. RFC 2796. (Cited on pages 42
and 175.)

[6] I. V. Beijnum. BGP. O’Reilly and Associates, Sept. 2002. (Cited on pages 34 and 75.)

[7] BGP++ Home Page. http://www.ece.gatech.edu/research/labs/
MANIACS/BGP++/, 2005. BGP simulator for ns-2. (Cited on pages 24, 50 and 100.)

[8] K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal Verification of Standards for
Distance Vector Routing Protocols. Journal of the ACM, 49(4):538–576, July 2002.
(Cited on page 49.)

[9] O. Bonaventure, S. Uhlig, and B. Quoitin. The Case for More Versatile BGP Route
Reflectors. Internet Engineering Task Force, July 2004. http://totem.info.ucl.
ac.be/publications/draft-bonaventure-bgp-route-reflectors-00.
html Work in progress, expired November 2004. (Cited on pages 60, 64, 133
and 175.)

[10] Private communication with Randy Bush, May 2004. (Cited on page 139.)

183

http://www.ece.gatech.edu/research/labs/MANIACS/BGP++/
http://www.ece.gatech.edu/research/labs/MANIACS/BGP++/
http://totem.info.ucl.ac.be/publications/draft-bonaventure-bgp-route-reflectors-00.html
http://totem.info.ucl.ac.be/publications/draft-bonaventure-bgp-route-reflectors-00.html
http://totem.info.ucl.ac.be/publications/draft-bonaventure-bgp-route-reflectors-00.html

184 REFERENCES

[11] R. Bush. Re: Verio decides which parts of the Internet to drop. http://www.
merit.edu/mail.archives/nanog/1999-12/msg00022.html, Dec. 1999.
(Cited on page 178.)

[12] R. Bush, T. Griffin, Z. M. Mao, E. Purpus, and D. Stutsbach. Happy Packets: Some
Initial Results. http://www.nanog.org/mtg-0405/pdf/bush.pdf, May 2004.
NANOG 31. (Cited on page 45.)

[13] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and K. van der Merwe.
Design and Implementation of a Routing Control Platform. In Proc. 2nd Symposium
on Networked Systems Design and Implementation (NSDI), pages 15–28, Boston, MA,
May 2005. (Cited on pages 51, 60, 64, 93, 132, 175 and 176.)

[14] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and J. Rexford.
The Cutting EDGE of IP Router Configuration. In Proc. 2nd ACM Workshop on Hot
Topics in Networks (Hotnets-II), pages 21–26, Cambridge, MA, Nov. 2003. (Cited on
page 49.)

[15] Cariden multiprotocol automation and traffic engineering. http://www.
cariden.com/products/marcom/mate_overview_0401.pdf, 2005. (Cited
on pages 47, 50 and 177.)

[16] C-BGP. http://cbgp.info.ucl.ac.be/, 2005. (Cited on pages 50, 51 and 100.)

[17] Cisco BGP Best Path Selection Algorithm. http://www.cisco.com/warp/
public/459/25.shtml. (Cited on page 35.)

[18] How BGP Routers Use the Multi-Exit Discriminator for Best Path Selection.
http://www.cisco.com/warp/public/459/37.html. (Cited on page 101.)

[19] Cisco IOS Master Commands List, Release 12.3. http://cisco.com/univercd/
cc/td/doc/product/software/ios123/123mindx/crgindx.htm. (Cited on
pages 22, 33 and 39.)

[20] Software Systems to Manage Large Networks: A Challenge and Opportunity, Apr.
2005. http://www.csail.mit.edu/events/eventcalendar/calendar.
php?show=event&id=375. (Cited on page 49.)

[21] Team Cymru bogon route server project. http://www.cymru.com/BGP/
bogon-rs.html. (Cited on pages 78 and 92.)

[22] B. Davie and Y. Rekhter. MPLS: Technology and Applications. Academic Press, San
Diego, CA, 2000. (Cited on page 54.)

[23] R. Dube. A Comparison of Scaling Techniques for BGP. ACM Computer
Communications Review, 29(3):44–46, July 1999. (Cited on pages 61 and 75.)

[24] Cisco IOS IP Command Reference, ebgp-multihop. http://www.cisco.com/
en/US/products/sw/iosswrel/ps1835/
products_command_reference_chapter09186a00800ca79d.html, 2005.
(Cited on page 41.)

http://www.merit.edu/mail.archives/nanog/1999-12/msg00022.html
http://www.merit.edu/mail.archives/nanog/1999-12/msg00022.html
http://www.nanog.org/mtg-0405/pdf/bush.pdf
http://www.cariden.com/products/marcom/mate_overview_0401.pdf
http://www.cariden.com/products/marcom/mate_overview_0401.pdf
http://cbgp.info.ucl.ac.be/
http://www.cisco.com/warp/public/459/25.shtml
http://www.cisco.com/warp/public/459/25.shtml
http://www.cisco.com/warp/public/459/37.html
http://cisco.com/univercd/cc/td/doc/product/software/ios123/123mindx/crgindx.htm
http://cisco.com/univercd/cc/td/doc/product/software/ios123/123mindx/crgindx.htm
http://www.csail.mit.edu/events/eventcalendar/calendar.php?show=event&id=375
http://www.csail.mit.edu/events/eventcalendar/calendar.php?show=event&id=375
http://www.cymru.com/BGP/bogon-rs.html
http://www.cymru.com/BGP/bogon-rs.html
http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_command_reference_chapter09186a00800ca79d.html
http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_command_reference_chapter09186a00800ca79d.html
http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_command_reference_chapter09186a00800ca79d.html

REFERENCES 185

[25] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code. In Proc. 18th ACM
Symposium on Operating Systems Principles (SOSP), pages 57–72, Banff, Canada, Oct.
2001. (Cited on page 83.)

[26] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic Routing Encapsulation
(GRE). Internet Engineering Task Force, Mar. 2000. RFC 2784. (Cited on page 54.)

[27] N. Feamster. Practical Verification Techniques for Wide-Area Routing. In Proc. 2nd
ACM Workshop on Hot Topics in Networks (Hotnets-II), pages 87–92, Cambridge, MA,
Nov. 2003. (Cited on page 49.)

[28] N. Feamster, D. Andersen, H. Balakrishnan, and M. F. Kaashoek. Measuring the
Effects of Internet Path Faults on Reactive Routing. In Proc. ACM SIGMETRICS,
pages 126–137, San Diego, CA, June 2003. (Cited on pages 45 and 46.)

[29] N. Feamster and H. Balakrishnan. Towards a Logic for Wide-Area Internet Routing.
In ACM SIGCOMM Workshop on Future Directions in Network Architecture, pages
289–300, Karlsruhe, Germany, Aug. 2003. (Cited on pages 9, 75 and 81.)

[30] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with Static
Analysis. In Proc. 2nd Symposium on Networked Systems Design and Implementation
(NSDI), pages 43–56, Boston, MA, May 2005. (Cited on pages 9 and 134.)

[31] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and K. van der Merwe. The
Case for Separating Routing from Routers. In ACM SIGCOMM Workshop on Future
Directions in Network Architecture, pages 5–12, Portland, OR, Sept. 2004. (Cited on
pages 9, 51, 60, 64, 93, 132, 133 and 175.)

[32] N. Feamster, J. Borkenhagen, and J. Rexford. Guidelines for Interdomain Traffic
Engineering. ACM Computer Communications Review, 33(5):19–30, Oct. 2003. (Cited
on pages 17, 37, 51, 99, 126, 127, 134, 145 and 177.)

[33] N. Feamster, R. Johari, and H. Balakrishnan. The Implications of Autonomy for
Stable Policy Routing. In Proc. ACM SIGCOMM, Philadelphia, PA, Aug. 2005.
(Cited on pages 9 and 103.)

[34] N. Feamster, J. Jung, and H. Balakrishnan. An Empirical Study of “Bogon” Route
Advertisements. ACM Computer Communications Review, 35(1):63–70, Nov. 2004.
(Cited on page 92.)

[35] N. Feamster, Z. M. Mao, and J. Rexford. BorderGuard: Detecting Cold Potatoes
from Peers. In Proc. ACM SIGCOMM Internet Measurement Conference, pages
213–218, Taormina, Sicily, Italy, Oct. 2004. (Cited on pages 75, 84, 91 and 171.)

[36] N. Feamster and J. Rexford. Network-Wide BGP Route Prediction for Traffic
Engineering. In Proc. SPIE ITCom, volume 4868, pages 55–68, Boston, MA, Aug.
2002. (Cited on pages 9 and 21.)

186 REFERENCES

[37] N. Feamster, J. Winick, and J. Rexford. A Model of BGP Routing for Network
Engineering. In Proc. ACM SIGMETRICS, pages 331–342, New York, NY, June 2004.
(Cited on pages 9, 51, 75 and 98.)

[38] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism Design for Policy Routing. In
ACM Symposium on Principles of Distributed Computing, pages 11–20, 2004. (Cited on
pages 146 and 147.)

[39] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford. NetScope:
Traffic Engineering for IP Networks. IEEE Network, 14(2):11–19, Mar. 2000. (Cited on
pages 50, 176 and 177.)

[40] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True. Deriving
Traffic Demands for Operational IP Networks: Methodology and Experience.
IEEE/ACM Transactions on Networking, 9(3):257–270, June 2001. (Cited on page 134.)

[41] A. Feldmann and J. Rexford. IP Network Configuration for Intradomain Traffic
Engineering. IEEE Network, 15(5):46–57, Sept. 2001. (Cited on pages 20 and 49.)

[42] Forwarding and Control Element Separation (ForCES) Charter. http://www.
ietf.org/html.charters/forces-charter.html. (Cited on page 176.)

[43] M. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan. Geographic
Locality of IP Prefixes. In Proc. ACM SIGCOMM Internet Measurement Conference,
New Orleans, LA, Oct. 2005. (Cited on page 178.)

[44] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain Routing (CIDR): an
Address Assignment and Aggregation Strategy. Internet Engineering Task Force, Sept.
1993. RFC 1519. (Cited on page 54.)

[45] L. Gao. On Inferring Automonous System Relationships in the Internet. IEEE/ACM
Transactions on Networking, 9(6):733–745, Dec. 2001. (Cited on page 34.)

[46] L. Gao, T. G. Griffin, and J. Rexford. Inherently Safe Backup Routing with BGP. In
Proc. IEEE INFOCOM, pages 547–556, Anchorage, AK, Apr. 2001. (Cited on pages 75
and 138.)

[47] L. Gao and J. Rexford. Stable Internet routing without global coordination.
IEEE/ACM Transactions on Networking, pages 681–692, Dec. 2001. (Cited on pages 21,
50, 51, 103, 120, 138, 140, 143 and 164.)

[48] R. Gao, C. Dovrolis, and E. Zegura. Interdomain Ingress Traffic Engineering
through Optimized AS-Path Prepending. In Proceedings of IFIP Networking
conference, Waterloo, Canada, May 2005. (Cited on page 37.)

[49] P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proc.
ACM Symposium on Principles of Programming Languages, pages 174–186, Paris,
France, 1997. (Cited on page 49.)

http://www.ietf.org/html.charters/forces-charter.html
http://www.ietf.org/html.charters/forces-charter.html

REFERENCES 187

[50] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and A. Rubin. Working
around BGP: An Incremental Approach to Improving Security and Accuracy in
Interdomain Routing. In Proc. NDSS, San Diego, CA, Feb. 2003. (Cited on page 176.)

[51] M. Gouda and M. Schneider. Maximizable Routing Metrics. IEEE/ACM Transactions
on Networking, 11(4):663–675, Aug. 2003. (Cited on page 141.)

[52] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens, S. Kumar, and W. Lee. An
Architecture for Stable, Analyzable Internet Routing. IEEE Network, 13(1):29–35,
January/February 1999. (Cited on page 140.)

[53] R. Govindan, C. Alaettinoglu, K. Varadhan, and D. Estrin. Route Servers for
Inter-Domain Routing. Computer Networks and ISDN Systems, 30:1157–1174, 1998.
(Cited on page 140.)

[54] T. Griffin, A. Jaggard, and V. Ramacandran. Design Principles of Policy Languages
for Path Vector Protocols. In Proc. ACM SIGCOMM, pages 61–72, Karlsruhe,
Germany, Aug. 2003. (Cited on page 138.)

[55] T. Griffin and B. J. Premore. An Experimental Analysis of BGP Convergence Time.
In IEEE International Conference on Network Protocols (ICNP), Riverside, CA, Nov.
2001. (Cited on pages 45 and 46.)

[56] T. Griffin, F. B. Shepherd, , and G. Wilfong. The Stable Paths Problem and
Interdomain Routing. IEEE/ACM Transactions on Networking, 10(1):232–243, 2002.
(Cited on pages 17, 26, 50, 81, 136, 137, 138, 140, 148, 149, 150 and 151.)

[57] T. Griffin and J. L. Sobrhino. Metarouting. In Proc. ACM SIGCOMM, Philadelphia,
PA, Aug. 2005. (Cited on pages 137, 138, 140, 149, 164 and 165.)

[58] T. Griffin and G. Wilfong. An Analysis of BGP Convergence Properties. In Proc.
ACM SIGCOMM, pages 277–288, Cambridge, MA, Sept. 1999. (Cited on pages 75
and 138.)

[59] T. Griffin and G. Wilfong. A Safe Path Vector Protocol. In Proc. IEEE INFOCOM,
pages 490–499, Tel Aviv, Israel, Mar. 2000. (Cited on pages 63, 72, 140, 164 and 166.)

[60] T. Griffin and G. Wilfong. Analysis of the MED Oscillation Problem in BGP. In IEEE
International Conference on Network Protocols (ICNP), Paris, France, Nov. 2002. (Cited
on page 51.)

[61] T. Griffin and G. Wilfong. On the Correctness of IBGP Configuration. In Proc. ACM
SIGCOMM, pages 17–29, Pittsburgh, PA, Aug. 2002. (Cited on pages 42, 45, 51, 70,
77, 79, 94, 102, 105, 117, 120, 132, 133 and 138.)

[62] K. Hafner and M. Lyon. Where Wizards Stay Up Late: The Origins of the Internet.
Simon and Schuster, 1996. (Cited on page 38.)

[63] J. Hajek. Automatically Verified Data Transfer Protocols. In Proc. ICCC, pages
749–756, 1978. (Cited on page 49.)

188 REFERENCES

[64] S. Halabi and D. McPherson. Internet Routing Architectures. Cisco Press, second
edition, 2001. (Cited on page 34.)

[65] M. Handley, O. Hudson, and E. Kohler. XORP: An Open Platform for Network
Research. In Proc. 1st ACM Workshop on Hot Topics in Networks (Hotnets-I), pages
53–57, Princeton, NJ, Oct. 2002. (Cited on page 176.)

[66] D. Haskin. A BGP/IDRP Route Server alternative to a full mesh routing. RFC 1863,
Oct. 1995. (Cited on page 175.)

[67] C. Hedrick. Routing Information Protocol. Internet Engineering Task Force, June
1988. RFC 1058. (Cited on page 33.)

[68] HP OpenView Products, 2005. (Cited on page 48.)

[69] HP Route Analytics Management System, 2005. (Cited on pages 47 and 48.)

[70] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: Secure Path Vector Routing for Securing
BGP. In Proc. ACM SIGCOMM, pages 179–192, Portland, OR, Aug. 2004. (Cited on
page 179.)

[71] IANA. Special Use IPv4 Addresses. Internet Engineering Task Force, Sept. 2002. RFC
3330. (Cited on page 93.)

[72] Intelliden R-Series. http://www.intelliden.com/page.asp?id=Products,
2005. (Cited on pages 47 and 48.)

[73] Ipsum Networks RouteDynamics. http://www.cisco.com/warp/public/
732/partnerpgm/docs/ipsum_routedynamics.pdf, 2005. (Cited on
pages 47, 48 and 176.)

[74] V. Jacobson, C. Alaettinoglu, and K. Poduri. BST—BGP Scalable Transport. In
NANOG 27, Phoenix, AZ, Feb. 2003. http://www.nanog.org/mtg-0302/ppt/
van.pdf. (Cited on page 175.)

[75] A. D. Jaggard and V. Ramachandran. Robustness of Class-Based Path Vector
Systems. In IEEE International Conference on Network Protocols (ICNP), Berlin,
Germany, Nov. 2004. (Cited on pages 138, 140 and 166.)

[76] JUNOS 7.3 Routing Protocols and Policies Command Reference. http://www.
juniper.net/techpubs/software/junos/junos73/
swcmdref73-protocols/frameset.htm. (Cited on page 33.)

[77] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Protocol (S-BGP). IEEE Journal
on Selected Areas in Communications (J-SAC), 18(4):582–592, Apr. 2000. (Cited on
page 179.)

[78] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet Routing
Convergence. IEEE/ACM Transactions on Networking, 9(3):293–306, June 2001. (Cited
on pages 17, 45, 46, 50 and 75.)

http://www.intelliden.com/page.asp?id=Products
http://www.cisco.com/warp/public/732/partnerpgm/docs/ipsum_routedynamics.pdf
http://www.cisco.com/warp/public/732/partnerpgm/docs/ipsum_routedynamics.pdf
http://www.nanog.org/mtg-0302/ppt/van.pdf
http://www.nanog.org/mtg-0302/ppt/van.pdf
http://www.juniper.net/techpubs/software/junos/junos73/swcmdref73-protocols/frameset.htm
http://www.juniper.net/techpubs/software/junos/junos73/swcmdref73-protocols/frameset.htm
http://www.juniper.net/techpubs/software/junos/junos73/swcmdref73-protocols/frameset.htm

REFERENCES 189

[79] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study of Internet Stability and
Wide-Area Network Failures. In Proc. Twenty-Ninth Annual International Symposium
on Fault-Tolerant Computing, page 278, Washingon, DC, June 1999. (Cited on
page 102.)

[80] K. Lakshminarayanan, I. Stoica, and S. Shenker. Routing as a Service. Technical
Report UCB-CS-04-1327, UC Berkeley, 2004. (Cited on page 176.)

[81] Level3 Hit. http://www.broadbandreports.com/shownews/39381, Feb.
2004. (Cited on page 22.)

[82] D. Linsalata. 12/8 Problems? http://www.merit.edu/mail.archives/
nanog/2005-09/msg00295.html, Sept. 2005. (Cited on page 22.)

[83] S. Machiraju and R. Katz. Verifying Global Invariants in Multi-Provider Distributed
Systems. In Proc. 3nd ACM Workshop on Hot Topics in Networks (Hotnets-III), pages
149–154, San Diego, CA, Nov. 2004. (Cited on pages 30, 140 and 166.)

[84] O. Maennel, A. Feldmann, C. Reiser, R. Volk, and H. Boehm. Network-Wide
Inter-Domain Routing Policies: Design and Realization. In NANOG 34, Seattle, WA,
May 2005. (Cited on page 49.)

[85] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP Misconfiguration.
In Proc. ACM SIGCOMM, pages 3–17, Pittsburgh, PA, Aug. 2002. (Cited on pages 17,
44, 45, 75 and 87.)

[86] Z. M. Mao, R. Govindan, G. Varghese, and R. Katz. Route Flap Damping
Exacerbates Internet Routing Convergence. In Proc. ACM SIGCOMM, pages
221–233, Pittsburgh, PA, Aug. 2002. (Cited on pages 45 and 46.)

[87] Z. M. Mao, T. Griffin, and R. Bush. BGP Beacons. In Proc. ACM SIGCOMM Internet
Measurement Conference, pages 1–14, Miami, FL, Oct. 2003. (Cited on page 46.)

[88] Z. M. Mao, J. Rexford, J. Wang, and R. Katz. Towards an Accurate AS-Level
Traceroute Tool. In Proc. ACM SIGCOMM, pages 365–378, Karlsruhe, Germany,
Aug. 2003. (Cited on pages 35 and 179.)

[89] D. McPherson, V. Gill, D. Walton, and A. Retana. Border Gateway Protocol (BGP)
Persistent Route Oscillation Condition. Internet Engineering Task Force, Aug. 2002.
RFC 3345. (Cited on page 67.)

[90] How, Why Microsoft Went Down. http://wired-vig.wired.com/news/
print/0,1294,41412,00.html, Jan. 2001. (Cited on page 22.)

[91] J. Moy. OSPF Version 2, Mar. 1994. RFC 1583. (Cited on pages 33 and 99.)

[92] Multiprotocol Label Switching (MPLS). http://www.ietf.org/html.
charters/mpls-charter.html. (Cited on page 54.)

http://www.broadbandreports.com/shownews/39381
http://www.merit.edu/mail.archives/nanog/2005-09/msg00295.html
http://www.merit.edu/mail.archives/nanog/2005-09/msg00295.html
http://wired-vig.wired.com/news/print/0,1294,41412,00.html
http://wired-vig.wired.com/news/print/0,1294,41412,00.html
http://www.ietf.org/html.charters/mpls-charter.html
http://www.ietf.org/html.charters/mpls-charter.html

190 REFERENCES

[93] S. Murphy, A. Barbir, and Y. Yang. Generic Threats to Routing Protocols. Internet
Engineering Task Force, Oct. 2004. http://www.ietf.org/
internet-drafts/draft-ietf-rpsec-routing-threats-07.txt,
expired April 2005. (Cited on pages 17 and 178.)

[94] M. Musuvathi and D. Engler. Some Lessons from Using Static Analysis and
Software Model Checking for Bug Finding. In Workshop on Software Model Checking,
Boulder, CO, July 2003. (Cited on pages 49 and 80.)

[95] M. Musuvathi and D. Engler. Model Checking Large Network Protocol
Implementations. In Proc. First Symposium on Networked Systems Design and
Implementation (NSDI), pages 155–168, San Francisco, CA, Mar. 2004. (Cited on
page 49.)

[96] The North American Network Operators’ Group mailing list archive. http://
www.cctec.com/maillists/nanog/. (Cited on pages 22 and 75.)

[97] S. Narain. Network Configuration Management via Model Finding. In Proc. 19th
USENIX Large Installation Systems Administration Conference, San Diego, CA, Dec.
2005. (Cited on pages 30 and 49.)

[98] Network Configuration (netconf). http://www.ietf.org/html.charters/
netconf-charter.html. (Cited on page 49.)

[99] W. Norton. Internet Service Providers and Peering. http://www.equinix.com/
pdf/whitepapers/PeeringWP.2.pdf. (Cited on pages 34 and 75.)

[100] Opnet NetDoctor. http://opnet.com/products/modules/netdoctor.htm,
2005. (Cited on pages 47 and 50.)

[101] Opnet NetDoctor White Paper. http://www.opnet.com/products/
brochures/Netdoctor.pdf, 2005. (Cited on page 47.)

[102] Opnet SP Guru. http://www.opnet.com/products/spguru/
SPGuru_brochure.pdf, 2005. (Cited on pages 47 and 50.)

[103] Opsware Network Automation System. http://www.opsware.com/
products/networkautomation/, 2005. (Cited on pages 47 and 48.)

[104] D. Oran. OSI IS-IS intra-domain routing protocol. Internet Engineering Task Force,
Feb. 1990. RFC 1142. (Cited on pages 33 and 99.)

[105] Packet Design Route Explorer. http://www.packetdesign.com/products/
rex.htm, 2005. (Cited on pages 47 and 176.)

[106] V. Paxson. End-to-End Routing Behavior in the Internet. IEEE/ACM Transactions on
Networking, 5(5):601–615, 1997. (Cited on pages 45 and 46.)

[107] R. Perlman. Network Layer Protocols with Byzantine Robustness. PhD thesis,
Massachusetts Institute of Technology, Oct. 1988. MIT-LCS-TR-429. http://www.
lcs.mit.edu/publications/specpub.php?id=997. (Cited on page 178.)

http://www.ietf.org/internet-drafts/draft-ietf-rpsec-routing-threats-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-rpsec-routing-threats-07.txt
http://www.cctec.com/maillists/nanog/
http://www.cctec.com/maillists/nanog/
http://www.ietf.org/html.charters/netconf-charter.html
http://www.ietf.org/html.charters/netconf-charter.html
http://www.equinix.com/pdf/whitepapers/PeeringWP.2.pdf
http://www.equinix.com/pdf/whitepapers/PeeringWP.2.pdf
http://opnet.com/products/modules/netdoctor.htm
http://www.opnet.com/products/brochures/Netdoctor.pdf
http://www.opnet.com/products/brochures/Netdoctor.pdf
http://www.opnet.com/products/spguru/SPGuru_brochure.pdf
http://www.opnet.com/products/spguru/SPGuru_brochure.pdf
http://www.opsware.com/products/networkautomation/
http://www.opsware.com/products/networkautomation/
http://www.packetdesign.com/products/rex.htm
http://www.packetdesign.com/products/rex.htm
http://www.lcs.mit.edu/publications/specpub.php?id=997
http://www.lcs.mit.edu/publications/specpub.php?id=997

REFERENCES 191

[108] L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet Impasse through
Virtualization. In Proc. 3nd ACM Workshop on Hot Topics in Networks (Hotnets-III),
pages 23–28, San Diego, CA, Nov. 2004. (Cited on page 171.)

[109] J. B. Postel. Transmission Control Protocol. Internet Engineering Task Force, Sept.
1981. RFC 793. (Cited on page 34.)

[110] X. Qie and S. Narain. Using Service Grammar to Diagnose BGP Configuration
Errors. In Proc. 17th USENIX Large Installation Systems Administration Conference,
pages 237–246, San Diego, CA, Oct. 2003. (Cited on page 48.)

[111] Quagga software router. http://www.quagga.net/. (Cited on page 176.)

[112] B. Quoitin, C. Pelsser, O. Bonaventure, and S. Uhlig. A Performance Evaluation of
BGP-based Traffic Engineering. International Journal of Network Management, 15(3),
May 2005. (Cited on page 37.)

[113] Really Awesome New Cisco ConfIg Differ (RANCID). http://www.shrubbery.
net/rancid/, 2004. (Cited on pages 46 and 85.)

[114] Redcell Netconfig. http://www.doradosoftware.com/products/
netConfig.jsp, 2005. (Cited on pages 47 and 48.)

[115] Voyence VoyenceControl! http://www.voyence.com/solutions/index.
shtml, 2005. (Cited on pages 47 and 48.)

[116] Reef Point. http://www.reefpoint.com/site/content/firewalls.asp,
2005. (Cited on page 49.)

[117] Y. Rekhter and T. Li. An Architecture for IP Address Allocation with CIDR. Internet
Engineering Task Force, Sept. 1993. RFC 1518. (Cited on page 54.)

[118] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). Internet Engineering Task
Force, Mar. 1995. RFC 1771. (Cited on pages 19, 21, 33, 34 and 35.)

[119] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). Internet
Engineering Task Force, Oct. 2004. http://www.ietf.org/
internet-drafts/draft-ietf-idr-bgp4-26.txtWork in progress,
expired April 2005. (Cited on pages 33, 34 and 35.)

[120] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP Routing Stability of Popular
Destinations. In Proc. ACM SIGCOMM Internet Measurement Workshop, pages
197–202, Marseille, France, Nov. 2002. (Cited on pages 102 and 132.)

[121] Router Glitch Cuts Net Access. http://news.com.com/2100-1033-279235.
html, Apr. 1997. (Cited on pages 22 and 91.)

[122] Routing Protocol Security (RPSEC) Charter. http://www.ietf.org/html.
charters/rpsec-charter.html. (Cited on page 178.)

http://www.quagga.net/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.doradosoftware.com/products/netConfig.jsp
http://www.doradosoftware.com/products/netConfig.jsp
http://www.voyence.com/solutions/index.shtml
http://www.voyence.com/solutions/index.shtml
http://www.reefpoint.com/site/content/firewalls.asp
http://www.ietf.org/internet-drafts/draft-ietf-idr-bgp4-26.txt
http://www.ietf.org/internet-drafts/draft-ietf-idr-bgp4-26.txt
http://news.com.com/2100-1033-279235.html
http://news.com.com/2100-1033-279235.html
http://www.ietf.org/html.charters/rpsec-charter.html
http://www.ietf.org/html.charters/rpsec-charter.html

192 REFERENCES

[123] A. Shaikh and A. Greenberg. A Case Study of OSPF Behavior in a Large Enterprise
Network. In Proc. ACM SIGCOMM Internet Measurement Workshop, pages 217–230,
Marseille, France, Nov. 2002. (Cited on page 20.)

[124] A. Shaikh and A. Greenberg. OSPF Monitoring: Architecture, Design, and
Deployment Experience. In Proc. First Symposium on Networked Systems Design and
Implementation (NSDI), pages 57–70, San Francisco, CA, Mar. 2004. (Cited on
pages 20 and 176.)

[125] J. L. Sobrinho. Network Routing with Path Vector Protocols: Theory and
Applications. In Proc. ACM SIGCOMM, pages 49–60, Karlsruhe, Germany, Aug.
2003. (Cited on pages 50, 138, 140 and 165.)

[126] N. Spring, R. Mahajan, and T. Anderson. Quantifying the Causes of Path Inflation.
In Proc. ACM SIGCOMM, pages 113–124, Karlsruhe, Germany, Aug. 2003. (Cited on
page 91.)

[127] SSFNet. http://www.ssfnet.org/, 2003. (Cited on pages 24, 50, 51 and 100.)

[128] J. Stewart. BGP4. Addison-Wesley, Reading, MA, 1998. (Cited on page 34.)

[129] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker, and I. Stoica.
HLP: A Next-generation Interdomain Routing Protocol. In Proc. ACM SIGCOMM,
Philadelphia, PA, Aug. 2005. (Cited on page 164.)

[130] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. Dynamics of Hot-Potato Routing in
IP Networks. In Proc. ACM SIGMETRICS, pages 307–319, New York, NY, June 2004.
(Cited on page 38.)

[131] P. Traina, D. McPherson, and J. Scudder. Autonomous System Confederations for BGP.
Internet Engineering Task Force, Feb. 2001. RFC 3065. (Cited on page 42.)

[132] Tripwire for network devices. http://www.tripwire.com/products/
network_devices/index.cfm, 2005. (Cited on pages 47 and 48.)

[133] S. Uhlig and O. Bonaventure. Designing BGP-based Outbound Traffic Engineering
Techniques for Stub ASes. ACM Computer Communications Review, 34(5):89–106,
2004. (Cited on page 51.)

[134] BGP config donation. http://www.cs.washington.edu/research/
networking/policy-inference/donation.html. (Cited on page 88.)

[135] K. Varadhan, R. Govindan, and D. Estrin. Persistent Route Oscillations in
Inter-Domain Routing. Technical Report 96-631, USC/ISI, Feb. 1996. (Cited on
pages 25, 26, 136, 138 and 170.)

[136] K. Varadhan, R. Govindan, and D. Estrin. Persistent Route Oscillations in
Inter-Domain Routing. Computer Networks, 32(1):1–16, 2000. (Cited on pages 75
and 138.)

http://www.ssfnet.org/
http://www.tripwire.com/products/network_devices/index.cfm
http://www.tripwire.com/products/network_devices/index.cfm
http://www.cs.washington.edu/research/networking/policy-inference/donation.html
http://www.cs.washington.edu/research/networking/policy-inference/donation.html

REFERENCES 193

[137] C. Villamizar, R. Chandra, and R. Govindan. BGP Route Flap Damping. Internet
Engineering Task Force, Nov. 1998. RFC 2439. (Cited on page 103.)

[138] M. Vutukuru, N. Feamster, M. Walfish, H. Balakrishnan, and S. Shenker. Revisiting
Internet Addressing: Back to the Future! Unpublished manuscript. (Cited on
page 178.)

[139] M. Vutukuru, P. Valiant, S. Kopparty, and H. Balakrishnan. How to Construct a
Correct and Scalable iBGP Configuration. Technical Report MIT-LCS-TR-996, MIT
Computer Science and Artificial Intelligence Laboratory, Aug. 2005. http://www.
lcs.mit.edu/publications/specpub.php?id=1787. (Cited on pages 62
and 73.)

[140] Wide-Area Network Design Laboratory (WANDL) IP Analysis Tools (IPAT).
http://wandl.com/html/ipat/IPAT_new.cfm, 2005. (Cited on page 47.)

[141] R. White. Architecture and Deployment Considerations for Secure Origin BGP (soBGP).
IETF, May 2005. http://www.ietf.org/internet-drafts/
draft-white-sobgp-architecture-01.txt. Work in progress, expires
November 2005. (Cited on page 179.)

[142] R. White, B. Akyol, and N. Feamster. Considerations in Validating the Path in Routing
Protocols. IETF, June 2005. http://www.ietf.org/internet-drafts/
draft-white-pathconsiderations-05.txtWork in progress, expires
December 2005. (Cited on page 178.)

[143] WorldCom suffers widespread Internet outage. http://www.usatoday.com/
tech/news/2002-10-03-net-outage_x.htm, Oct. 2002. (Cited on page 22.)

[144] L. Yang et al. Forwarding and Control Element Separation (ForCES) Framework.
RFC 3746, Apr. 2004. (Cited on page 176.)

[145] X. Yang. NIRA: A New Internet Routing Architecture. In ACM SIGCOMM
Workshop on Future Directions in Network Architecture, pages 301–312, Karlsruhe,
Germany, Aug. 2003. (Cited on page 176.)

[146] T. Ye and S. Kalyanaraman. A Recursive Random Search Algorithm for Large-Scale
Network Parameter Configuration. In Proc. ACM SIGMETRICS, pages 196–205, San
Diego, CA, June 2003. (Cited on pages 28 and 50.)

http://www.lcs.mit.edu/publications/specpub.php?id=1787
http://www.lcs.mit.edu/publications/specpub.php?id=1787
http://wandl.com/html/ipat/IPAT_new.cfm
http://www.ietf.org/internet-drafts/draft-white-sobgp-architecture-01.txt
http://www.ietf.org/internet-drafts/draft-white-sobgp-architecture-01.txt
http://www.ietf.org/internet-drafts/draft-white-pathconsiderations-05.txt
http://www.ietf.org/internet-drafts/draft-white-pathconsiderations-05.txt
http://www.usatoday.com/tech/news/2002-10-03-net-outage_x.htm
http://www.usatoday.com/tech/news/2002-10-03-net-outage_x.htm

	Acknowledgments
	Bibliographic Notes
	Contents
	List of Figures
	List of Tables
	Introduction
	Internet Routing Overview
	Configuration: The Achilles' Heel of Internet Routing
	Challenges
	The Role of Proactive, Static Configuration Analysis
	Contributions
	Lessons Learned
	How to Read This Dissertation

	Background and Related Work
	Internet Structure and Operation
	Internet Routing: The Border Gateway Protocol
	Internet Routing Configuration
	Related Work
	Summary

	Correctness Specifications for Internet Routing
	Preliminaries: Paths, Routes, and Policy
	Route Validity
	Path Visibility
	Safety
	Summary

	rcc: Detecting BGP Configuration Faults with Static Analysis
	rcc Design
	Path Visibility Faults
	Route Validity Faults
	Implementation
	Evaluating Operational Networks with rcc
	Take-away Lessons
	Summary

	Predicting BGP Routes with Static Analysis
	Motivation and Overview
	Problem Statement and Challenges
	Modeling Constraints and Algorithm Overview
	Preliminaries
	Simple Case: BGP with Determinism and Full Visibility
	Route Computation without Determinism
	Route Computation without Full Visibility
	Implementation: The Routing Sandbox
	Proposed Improvements to BGP
	Summary

	Local Conditions for Safe Internet Routing
	Background
	Routing Model and Definitions
	Ranking Classes and Safety
	Dispute Wheels and Dispute Rings
	Autonomy and Safety
	Implications: Possibilities for Guaranteeing Safety
	Summary

	Conclusion
	Reasons for Correctness and Predictability Problems
	Summary of Contributions
	Moving Forward from the Lessons Learned
	Concluding Remarks

	References

