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1 Introduction

Wireless sensor networks used for surveillance are typically deployed in environments where posi-
tions and locations of network entities cannot be controlled. Rather, nodes tend to be randomly
scattered over some terrain where objects of interest may traverse. One main purpose of these
sensor nodes is to provide information about interesting events that occur in the environment.
For example, in the military, tiny sensor nodes can be used to monitor enemy soldier and tank
maneuvers in an area of conflict. When a moving tank is detected by some array of sensors, some
information (e.g. velocity) about the tank should be reported by the sensor to the basestation of
an ally.

In such a network, nodes have limited energy resources due to their size and the low energy
density of small batteries. Therefore, computation and communication at each node should not
be used without carefully considering the energy costs. In addition, the communication protocol
should be designed in such a way so that nodes do not wastefully communicate. Note that in such
a system, both transmitting and receiving can be costly. Therefore, collisions should be minimized
and constant transmission prohibited.

Clearly, a media-access control (MAC) protocol will be needed to allow the nodes to share the
wireless media. A good MAC protocol will provide high throughput while maintaining an equal
share of the available bandwidth among the nodes. However, designing a good MAC protocol
without any information about the topology of a network can be difficult. One beneficial piece
of information that can help the MAC designer is the neighborhood size. Thus, we introduce
the network neighborhood size estimation (N-EST) problem. Given a set of N nodes randomly
scattered over some terrain, we wish to determine the number of neighbors n for each node. A node
u is considered a neighbor of v if u is within a communication range r of v. All nodes have the
same r and it is not necessary for any node to know the number of neighbors for any other node.

In this paper, we will present a parallel fully polynomial randomized approximation scheme
with O(log? N) running time to estimate the neighborhood size for every node in the network.

2 Problem Statement

As described, we wish to consider the problem of estimating the number of nodes reachable by each
node in a wireless ad-hoc network. In such a network, we have several constraints:



e Every node has knowledge of the total number of nodes N at the time of deployment. However,
no node has knowledge about their locations.

e Each node possesses a unique identifier ¢, where 1 < ¢ < N, but does not have knowledge
about any other node in the network.

e Nodes will be deployed over some region, but the deployment of the nodes cannot be con-
trolled. In other words, the physical distribution of nodes over the region is unknown.

e Nodes must communicate during time slots of fixed length. A node may broadcast and receive
broadcasts simultaneously. In addition, we will assume that nodes have synchronized clocks.

e Each node can transmit a distance of r; thus, each node can communicate with nodes within
a circle of radius r. However, suppose two nodes a,b are both within r of a third node c¢. If
a and b transmit within the same time slot, the messages from a and b will collide and node
¢ will receive a corrupted message.

As stated, the solution to the N-EST problem will give an estimate for the number of neighbors
for each node in the network.

3 Related Work

Much research has been conducted in the area of random sampling, approximation algorithms, and
parallel approximation algorithms. The use of random sampling for size estimation was used in [1].
In that paper, a size-estimation framework was introduced to estimate the size of the transitive
closure. The author also outlines a technique that can be used to estimate the number of vertices
with a distance d of a given vertex v. Unlike the N-EST problem, however, the algorithm is given
G = (V, E); the algorithm is given a complete description of the vertices and edges in the graph.
In the N-EST problem, the set of edges is unknown.

Randomization techniques have also been used to estimate the multicast session size in a wide-
area network [2]. Multicast is a method that is used to distribute information to a subset of
users in a wide-area network. These users are collectively known as a multicast group. According
to [2], estimating the size of a multicast session is essential for scalability. That is, in order
to support extremely large multicast groups, multicast protocols require group size estimates to
achieve scalability. The scheme proposed by the authors uses probabilitistic polling of users in the
wide-area network to find the group size.

4 Solution Criteria

To evaluate the performance of the algorithms presented, we will consider the following criteria:

e Accuracy. Clearly, the optimal solution for each node is when every node exactly estimates its
neighborhood size. However, any algorithm that can provide a probabilistic guarantee that
all nodes have an estimate within € of their actual neighborhood size is also useful.

e Time to determine an approximation to n. Another important criteria is the running time
required to produce an estimate that is within ¢ of n.



The notion of a polynomial approximation scheme captures how well an algorithm satisfies these
two criteria. A polynomial approzimation scheme (PAS) for a counting problem IT is a deterministic
algorithm A that takes an input instance I and a real number ¢ > 0, and in time polynomial in
n = ||I|| produces an output A(I) such that

(1 —e)#(I) < A(I) < (1 +&)#(I)

where #(I) is the number of distinct solutions for an instance I of II [5].

A polynomial randomized approximation scheme (PRAS) is a PAS that uses a randomized
algorithm A instead of a deterministic one. Furthermore, a PRAS produces an output A(I) such
that

Pr[(1 — e)#(I) < A(I) < (1 + e)#(I)] > Z.

A fully polynomial randomized approximation scheme (FPRAS) is a polynomial randomized ap-
proximation scheme whose running time is polynomial in N and 1/e. Finally, an (e, )-FPRAS for
a counting problem II is an FPRAS that takes an input instance I and computes a e-approximation
to #(I) with probability at least 1 — ¢ in time polynomial in N, 1/¢, and log(1/6).

In an algorithm that solves the neighborhood size estimation problem, we would like to find
an approximation for every node. A fully polynomial approximation algorithm (deterministic or
randomized) to determine the neighborhood size for a particular node x would therefore take as
input K € S, €, §, and N, the number of nodes. Then, A(k,¢,d, N) should produce an estimate
of the number of distinct neighbors for k. An algorithm to determine the neighborhood size for
every node would take as input the set of nodes, ¢, and . It should output an N element vector!,
where the ¢'th entry represents an estimate for n; where n; is the number of neighbors for node
i, 1 < 4 < N. Since the nodes are autonomous, one can imagine that all nodes will estimate
n; in parallel. Therefore, a parallel randomized approximation algorithm is presented to find all
n;’s simultaneously. In general, a good parallel algorithm should have a running time that is
polylogarithmic in the input size, in this case, N.

To analyze the feasibility of the algorithm presented and to evaluate its performance, we have
implemented a custom simulator.

Before presenting the parallel FPRAS, a deterministic algorithm will be introduced. Then, we
will describe our algorithm and give a performance and running time analysis. A discussion of
the simulator and simulation results will follow. Finally, we will conclude and offer some ideas for
future research.

5 A Deterministic Algorithm

One straightforward way to allow every node i to obtain an exact estimate for n; is to do the
following. Each node broadcasts at the i’th time slot. Since each node has a unique identity, it is
clear that no collisions will occur. Every node maintains a counter ¢; that increments each time a
message is received. After © (V) slots, we have n; = ¢;. In other words, ¢; will be the exact number
of nodes around node 3.

6 A Randomized Sampling Estimation Algorithm

We present a parallel FPRAS which in O(log? N) time outputs a (g,d) approximation for the
number of neighbors of every node. Intuitively, each node broadcasts a signal to all its neighbors

'In reality, each node obtains an estimate for n; and no vector is output.



with some probability in every time slot. We assume that broadcasts are synchronized, and that
nodes can broadcast and receive broadcasts simultaneously. A node receives an uncorrupted signal
if only one of its neighbors broadcasts in a time slot. If more than one neighbor broadcasts, the
node registers a collision. By counting the number of uncorrupted signals received over O(log N)
time slots, constituting one epoch, a node can estimate its number of neighbors. Depending on its
number of neighbors, some broadcast probabilities will ensure the node receives many clear signals
in an epoch, and will achieve a good estimate for its number of neighbors. The algorithm runs for
O(log N) epochs, in each of which a different broadcast probability is used. This ensures that every
node will receive many clear signals in some epoch.

For 6,e > 0, define p. 5 = gglog%. Define 8 £ [395u, 5]. Define p(n,p) = np(1 — p)". For
0 < p < 1, define y(z,p) to be a solution for n to p(n,p) = z. Note that for z # (1 — p)1/?,
p(n,p) = z has 2 solutions. We will describe which solution to choose later. Given a set S of
numbers $1, ..., 85, define maxarg(S) to be the index of the maximum element in S. We summarize
some of the definitions in the table below. The algorithm is presented following the table.

Variable | Definition

He,b s% log %

8 39515, |

p(n,p) np(l —p)"

v(z,p) A solution for n to p(n,p) = 2.

maxarg(S) | The index of the maximum element of a set S.

N The total number of nodes.

Dj The broadcast probability used in epoch j.

M The number of clear signals received by node 7 in epoch j.
A; The set {\}, for 1 < j < [log N] + 2.

Algorithm 1
Input: A set of nodes with unknown distribution. 6, > 0.
Output: Every node obtains a (e,0) approzimation for its number of neighbors.
1. Every node broadcasts.
2. If a node doesn’t receive any broadcasts, it records 0 as its number of neighbors and stops.
3. Set j < 1, pj « 5.
4. Repeat the following [log N| + 2 times:
4.1 Every node i sets ¢; < 0.
4.2 Repeat the following £ times:
4.2.1 Every node broadcasts with probability p;.
4.2.2 Every node 7 which receives an uncorrupted broadcast increments c;.
4.3 For every node i, set /\g —ci, g+ 75+ 1.
4.4 Set pj < pj_1/2.

5. For every node i which didn’t stop in step 1, let ¢; = maxarg(A;).
i+l
6. Every node ¢ which didn’t stop in step 1 records ,),(L'ﬁ_’ Pu;+1) as its number of neighbors.

7 Analysis

We first present a lemma which relates an estimate for p to an estimate for .
Lemma Let 0 < v < 0.1, 0 < p < %, and ﬁ <n< %. If (1 —0.263v)p(n,p) < z < (14



0.263v)p(n, p), then (1 —v)n < vy(z) < (1 +v)n.
Proof We consider the amount of relative change in p given a v change in n, compared to v. This
quantity equals

1p((A+v)n,p) —p(n,p) _ (A+v)A—p)" -1 4

v p(n’p) - v ¢(napa V)

We seek to lower bound |¢(n,p,v)|, for 0 < p < 3, ﬁ <n < ﬁ, and —0.1 < v < 0.1. We will
see shortly that ¥ (n,p,v) > 0 in this region, so it suffices to lower bound 1 (n,p,v). We have
g—lﬁ = (1+v)log(l —p)(1 —p)"™ <0, since log(1 — p) < 0. Thus 7 is minimized for n = ﬁ.

1
> h(—
¥(m.p,v) 2 905 P v)
Also, a—w = —(1+v)(1—-p)*"'n <0. Thus ¢ is minimized p = 3, n = 55 = 1.

(1+v)(3)"

blnpov) > B(1, 2 0) = L2 yy0)

We can verify that for —0.1 < v < 0.1, 5 is minimized for v = 0.1. Thus,
1

Thus, for every factor of v change in n, p changes at least a factor of 0.263v. Hence, if (1 —
0.263v)p(n,p) < z < (14 0.263v)p(n,p), then (1 —v)n < y(z) < (1 +v)n. 0

Claim Algorithm 1 produces a (4,¢) approximation for the number of neighbors of all nodes in
O(log? N) time.

Proof Fix a node ¢, and let n be its number of neighbors. If n = 0, ¢+ will not receive any
broadcasts in step 1, and will correctly record 0 as its number of neighbors. Assume then that
n > 0, and let ¢ = % Let epoch 0 refer to step 1. Then po = 1, and ppiognj42 < ﬁ. Thus,
there exists a j such that p; < ¢ < pj_1, where 1 < j < [N] 4 2. Define k = pjn. i receives a
clear signal in each iteration of step 4.2 if only one of its neighbors broadcasts. This event occurs
with probability p(n,p;) = np;(1 — p;)" = nE(1 — £)*. We have (1 — £)» > e*(1 — %2) Since
%q < pj < g, then l <k< 1. Thus (1 — E) >e k(1 - M)’ and k(1 — %)” > %ke‘k. Thus,
the probability i receives a clear 51gnal in each iteration is at least 166_1/ 4. Define € £ 0.263¢. The

expected time for ¢ to receive ucs = 6—2 log 4 5 clear signals is Eel/ 4,u6 5- By the Markov inequality,
the probability 7 does not receive p. s clear signals in %el/ 4/16,5 time is < % 5, and the probability

i does not receive p.s clear signals in —el/4u6510gN time is < ﬁ Slnce there are N nodes,

the probability any of them do not receive p s clear signals is at most 1 . If 7 receives ug . clear

vit+1
signals, then it has a (¢,4) estimate for p(n,p;). Then, since )"T > pes with high probability,
i +1
A is an (¢, §) approximation for p(n, p;) with high probability. Since € = 0.263¢, then lemma 1
3 ,8) app p(n,p; gh p y :

i+l
implies that ¢’s estimate ’y('\ 7 Pu;+1) 1s an € approximation for n. Each iteration of step 4 takes
at most % 1/40.263~2 peslog N < 395u; slog N time. Thus, the total running time is at most
395uc slog? N = O(log® N). Algorithm 1 is fully polynomial in N, log(1/4), and 1/e, and is in
RNC. [



8 Additional Analyses

v;+1 L
It might at first seem counterintuitive to use y(~5—,p,;+1) instead of 'y(%,pw) to estimate n,

where n is node i’s number of neighbors. Indeed, since \;’ > )\2“’1, % is a better estimate for
vi+1
np,; (1 —p,;)"™ than )"'ﬂ is for np,;+1(1 — p,;+1)". However, we are interested in estimating y(p, p).

As we will see, y(p,;,p,;) is a poor estimate for n, even if p,, is well estimated. We see that ¢;
corresponds in expectation to the epoch with the optimal broadcast probability for n. Thus in
expectation, ¢; = j, where p; < % < pj—1. Here we have % <p; < % Restricting 0 < v < 0.1,
0<p< % as in the lemma and following a similar analysis, we have that |¢(n,p;,v)| is minimized
for (n,p;,v) = (pij,pj,O). Hence,

1+v)(1—pj)m -1

l¥(n,pj,v)| = lim

v—0 14
_ i L 2)"Pi (9 + (14 ) log(1 — p))
v—0 p]
_ b +log(1 — pj)
pj

The second equality follows from L’H6pital’s rule. Thus, we have

n—)gifg‘lj—)o |¢(n’pj’ V)| B plle—>n
The second equality again follows from L’Hoépital’s rule. This shows that in the limit, any € approx-
imation for n leads to a perfect approximation for np;(1 — p;)", or conversely, any e approximation
for np;(1 — p;)™ leads to an infinitely poor approximation v(np;(1 — p;)",p;) for n. For large n,
we have np;(1 — p;)" = ke™*, where k = np;. Then, the previous result is intuitively clear by
observing that the graph of ke * (shown in Figure 1) is flat for ¥ = 1. This means that for k = 1,
any change in ke * leads to an unbounded relative change in k. We can also verify that for small
€, an € approximation for ke™* leads to an approximation for & which is exponentially poor in
€. Hence, achieving an ¢ approximation for & when k is close to 1 takes exponential time in €.
However, by basing our estimate around epoch ¢; + 1, we ensure with high probability that we have
% <k< % Since the slope of ke~* is bounded from below by a positive constant in this region,
we ensure that an e estimate for np;(1 — p;)" leads to a ce estimate for n, for some bounded ¢ > 0.
Hence, estimating & in this region takes the same asymptotic time as estimating ke *. Note that
we do not choose ¢; + s for s > 1, because this dramatically lowers the probability of a successful
broadcast.

Another consideration is computing 7(z,p). As mentioned previously, for z # (1 — p)¥/?,
p(n,p) = z has 2 solutions. We always let y(z,p) be the smaller of the 2 solutions. To justify this,
note that we only apply v to values from epoch ¢; + 1 (for any 7). With high probability, we have
ﬁ <pu+1 < %, so that 2n < p%.1+1 < 4n. In general, one of the solutions of y(z,p,;+1) is less than
Iﬁ, and the other solution is greater than p%1+1
than 2n, and only the smaller of the 2 solutions can be a good estimate for n.

. Hence, the larger of the 2 solutions is greater
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9 The Simulator

9.1 Description of the Simulator

We wrote a Java-based simulator to help us understand and test the performance of our approxima-
tion algorithm. The simulator allows the user to specify various parameters. The key parameters
are shown in Table 1. A detailed discussion of some of these parameters will be given later.

Table 1: Table of simulation parameters.

Parameter Meaning
Distribution Nodes can be physically distributed
using the normal or uniform distribution

Maximum steps | The maximum number of simulation steps

7 1 is specified instead of § and ¢

N Number of nodes to simulate

p Starting broadcast probability
radius Fixed broadcast radius for each node
X Width of simulation region

y Height of simulation region

The simulator also implements a graphical user interface that displays the broadcast activities
in each step and draws a bar graph reporting the current neighbor estimate generated by each
node running Algorithm 1. Figure 2 shows a screen shot of the user interface. The top portion
animates the broadcast activities as the simulation runs. Each dot represents a node and each
circle represents a broadcast event. The radius is proportional to the transmission range. Each
node receives a different color, depending on whether it lies in one circle (successful reception),
overlapping circles (collision), or no circle (no reception). At the bottom is a bargraph. The height
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Figure 2: GUI for our simple Java networking simulator. Note that the nodes are physically
distributed using the normal distribution.

of each bar is the current estimate for a given node. Each column also contains a mark whose
height represents the actual number of neighbors for the node. Hence, the gap between the height
of a bar and the mark shows the absolute error of the current estimate for a node in the current
iteration.

Finally, we note that the quality of our results may be affected by the quality of the ran-
dom function generator and floating-point operations implemented on our development platform.
Hence, we used Java 1.3’s StrictMath library, which implements the well-known “Freely Distribu-
tion Math Library (fdlibm) [7], to reduce the possibility of producing erroneous results caused by
non-standard generator and operator implementations. This also helps us to obtain uniform results
on different platforms running the Java simulation.

9.2 Implementation Issues
9.2.1 Computing v(z,p)

Our estimation algorithm depends on computing the value of y(z,p). However, this computation is
difficult in practice because it is not possible to get a closed-form solution for y(z,p). In addition,
v(z,p) has two solutions for z # (1 — p)!/?, and the method we use for computing y(z,p) must
produce the solution we want.

We considered two basic approximation schemes to solve this problem. First, we can use
Newton’s method to approximate v(z,p). However, this approach increases the running time of
our simulation, as Newton’s method requires many iterations of expensive floating-point operations.
Moreover, Newton’s method may return an arbitrary solution when multiple solutions exist, and
S0 may return an incorrect solution for our purposes.

Instead, we implemented a table lookup method over a set of precomputed values of p(n,p) =



np(l — p)" to approximate 7y(z,p). We apply a binary search on the value of p(n,p) among the
precomputed values to obtain the correct n. Binary search allows us to retain high precision while
saving memory, by keeping only N entries in the table. Our running time remains the same, as
binary search is accomplished in O(log N) time.

Note that the table is also parameterized by p. Because we have a different p in each epoch,
and there are O(log N) epochs, we need to construct O(log N) tables. Hence, the total space used
is O(N log N).

We have considered an alternative table lookup scheme to eliminate the O(log N) factor in the
memory consumption. If we let p = k/n, then

p(z,p) = np(1 —p)" = k(1 — k/n)" ~ ke™*

Rather than keeping O(log N) tables with different values of p, we keep one table, map z,p to
a solution for k, and then find n by computing n = k/p. However, this method works only when n
is large, as (1 — k/n)" % e~* for small n. Hence, this scheme does not work well unless the node
density is sufficiently high.

9.2.2 Stopping Estimates After Receiving u(e,d) Packets

The algorithm implemented in our simulator actually deviates from Algorithm 1. In particular,
nodes stop updating the counters ¢; and j after they have received y. s uncorrupted packets?. When
this is done, the accuracy of the neighbor size estimate does not improve by increasing [ arbitrarily.
Using this implementation, the accuracy is controlled by choosing the desired (e, ) bounds on the
estimates, and then using the Chernoff bound to derive the required p. s to acheive the bounds.
Then, we use our analysis to find the appropriate 8 which allows every node to receive p. ;5 packets
with high probability. Finally, we verify our analysis by comparing the observed (¢’,d’) values
against the chosen (g, d).

10 Simulation Results

10.1 Methodology

As described in Algorithm 1, the user gives as input the number of nodes N, ¢, and §. Using these
input parameters, we have shown how to derive a parallel (e, §)-FPRAS.

In the simulator, instead of specifying 0 and ¢, the user specifies y. 5. In our simulations, we
wanted to get a (6§ = 0.05, € € [0.05,1]) approximation for the N-EST problem. Since . 5 = E% log %,
we set pc 5 = 2500, which gives an € ~ 0.07 for 6 = 0.05. In addition, we tested p. ;s = 500. With
¢ = 0.05, this corresponds to a € =~ 0.16.

Once p, s is input, we can determine the maximum number of steps required to execute the
algorithm. Let n; be the number of neighbors for node ¢, then ¢ will have a good approximation to
n; after receiving p. 5 good signals. Hence, we need to determine the total sampling time required
for all nodes to receive y. s uncorrupted packets with high probability. As discussed previously, the
total sampling time required is at most [395u, 5 logZ N]. Thus, given Me 5, We can determine the
maximum number of steps required to produce our guarantee.

2One can view this as an optimization for saving energy. The nodes shut down their receivers after they received
p packets. Even though the nodes stop recording receptions, they must continue to broadcast, because neighboring
nodes may not have received p packets. The energy saving from shutting down receivers can be quite significant,
because receiving data takes more power than transmitting data [6].



In addition to N and p s, the user needs to specify a region size, the maximum communication
range 7, and a distribution to the simulator (see Table 1). A distribution needs to be specified
because we must scatter the nodes in some fashion. Scattering the nodes using a uniform probability
distribution would be the most desirable. However, since deployment is dependent on the terrain
and method of deployment, this is often not achievable in practice. Hence, the simulation allows
the user to choose to scatter nodes using a Gaussian or uniform distribution.

In simulating our algorithm, we performed a set of simulation runs using a uniform distribution
and a single run using a Gaussian distribution. In all cases, the extent of our region was 200 x 200.
Our simulation was a straightforward O(N?) sequential implementation of Algorithm 1. For this
reason, it was infeasible to simulate values of N > 1000, and so the asymptotic behavior of our
algorithm was not directly observed.

For the uniform distribution, we first fixed r € {25,50}. Then we varied N € {50, 100, 200, 500}
and p.5 € {500,2500}. Therefore, a total of 16 simulations were performed using a uniform
distribution of the nodes. For the Gaussian case, we fixed » = 50, N = 500, 4 = 1000. For p = 1000
and 0 = 0.05, we expect at least € factor deviation of at least 11% for 95% of the nodes.

10.2 Results
10.2.1 TUniformly distributed nodes

First, we show the results obtained from simulating nodes distributed uniformly. We only give a
subset of all the results we gathered, however, the results obtained are sufficient for comparison
with the theoretical analyses. Table 2 shows the mean, standard deviation, median, minimum, and
maximum percentage errors from the actual number of neighbors for the nodes for various N and
pe,s- Notice that the mean of the error is well within our desired error of 0.07.

Table 2: Statistics concerning the accuracy of our algorithm. The nodes were distributed using a
uniform distribution and r = 50. The error is reported as a fraction of the actual.

N | pes || mean std median | min | max
50 | 500 || 0.0301 | 0.0674 0 0 |0.3333
2500 || 0.0019 | 0.0130 0 0 | 0.0909
100 | 500 || 0.0331 | 0.0459 0 0 | 0.2222
2500 || 0.0157 | 0.0268 0 0 | 0.1000
200 | 500 || 0.0358 | 0.0316 | 0.0323 0 | 0.1379
2500 || 0.0135 | 0.0199 0 0 | 0.0909
500 | 500 || 0.0488 | 0.0370 | 0.0435 0 | 0.2083
2500 || 0.0189 | 0.0154 | 0.0169 0 | 0.0690

To get an idea of the error obtained by all the nodes, we created several “cumulative” plots.
Figure 3 shows a cumulative plot of the percentage of total nodes at a specific error deviation for
r = 50, ue s = 2500, and various N. The meaning of these graphs and how to interpret them is
best illustrated through an example. For instance, for N = 100, approximately 95% of the nodes
have at most a 7% deviation from their actual number of neighbors. This matches our theoretical
predictions. We expected 95% of the nodes to be within a factor of € ~ 0.07 nodes. Note that for
other N, our experimental results matched our theoretical predictions as well.

10
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Figure 3: Cumulative plot of the error percentage for nodes uniformly distributed over a 200 x 200
Li+2

region with r = 50, u = 2500, and N variable. Note that v* = fy('\"T,pLiJrz). For example, for

N = 100, approximately 95% of the nodes have at most a 7% deviation from their actual number

of neighbors.

An interesting feature in Figure 3 is the graded nature of the results. This is because some
nodes have few neighbors and hence, any slight error in the absolute estimate in the number of
neighbors causes a large jump in the relative estimate. Figure 4 shows a cumulative plot of the
percentage of total nodes at a specific error deviation for r = 50, u, § = 500 and various N. Again,
the experimental results match or exceed our theoretical predictions.

In addition to the accuracy of our algorithm, we wished to assess the running time needed to
obtained the desired accuracy. Table 3 shows the mean, standard deviation, median, minimum,
and maximum number of time steps for each node to obtain y. s uncorrupted packets and thus, a
good approximation of the neighborhood size of the node. In theory, we expect that all nodes will
receive ;5 in at most [395/s, log? N | time. This theoretical upper bound on the expected time
is shown in the last column of Table 3.

Clearly, the mean finishing times are much less than the expected times. Thus, the upper
bound of the running time that we have computed theoretically is loose. In fact, all of the nodes
successfully receive y. s good signals two orders of magnitude before the allotted time. This shows
that in practice the upper bound is very weak. In addition, we have again produced plots to track
the various finishing times of the nodes. Figure 5 shows a cumulative plot of the percentage of total
nodes at a specific error deviation for r = 50, . § = 2500 and various N. While Figure 6 shows a
cumulative plot of the percentage of total nodes at a specific error deviation for r = 50, 1. 5 = 500
and various N.

11
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Figure 4: Cumulative plot of the error percentage for nodes uniformly distributed over a 200 x 200
ti+2
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Table 3: Statistics concerning the time (in steps) at which a node received p. 5 good packets. The
nodes were distributed using a uniform distribution and r = 50.

N | pes mean std median | min | max | expected
50 | 500 | 2401.98 | 385.48 | 2374.00 | 1706 | 3270 || 6.2 x 10°
2500 || 12422.65 | 2001.57 | 12227.00 | 8903 | 17068 || 3.1 x 107
100 | 500 | 2584.08 | 367.37 | 2547.50 | 1865 | 3479 || 8.7 x 106
2500 || 12808.72 | 2117.58 | 12230.50 | 9973 | 17608 || 4.4 x 107
200 | 500 || 2597.53 | 486.35 | 2444.00 | 1933 | 3847 || 1.2 x 107
2500 || 12827.43 | 1896.12 | 12408.50 | 9744 | 17994 || 5.8 x 107
500 | 500 || 2827.44 | 570.56 | 2973.00 | 1736 | 3752 || 1.6 x 107
2500 || 14017.98 | 2239.93 | 14692.00 | 9650 | 17785 || 7.9 x 107

10.2.2 Gaussian distributed nodes

In the Gaussian simulations, we set y = 1000, which corresponds to a ¢ =~ 0.11 for § = 0.05. The
results obtained through simulation are shown in Table 4, Figure 7, and Figure 8. As before, the
errors and time taken are well within our theoretical predictions.
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Figure 5: Cumulative plot of the time (in steps) at which a node received p. s good packets for
nodes uniformly distributed over a 200 x 200 region with r = 50, 4 = 2500, and N variable.
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Figure 6: Cumulative plot of the time (in steps) at which a node received p. ; good packets for
nodes uniformly distributed over a 200 x 200 region with r = 50, 4 = 500, and N variable.

11 Future Work

Our analysis currently assumes that all nodes have synchronized clocks and make the decision to
broadcast at the same time. However, this assumption may not be practical, and the algorithm
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Figure 7: Cumulative plot of the error percentage for nodes distributed using a Gaussian distribu-
ti+2
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Figure 8: Cumulative plot of the time (in steps) at which a node received pyqgrepsiton,s good packets.
The nodes were deployed using a Gaussian distribution over a 200 x 200 region (N = 500, r = 50,
p = 1000).
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Table 4: Some statistics concerning the performance of our algorithm. The nodes were distributed
using a normal distribution and N = 500, r = 50, 4 = 1000.

mean std median | min | max
Error (%) 2.39 1.51 2.20 0 10
Time (steps) || 5519.95 | 949.57 | 5681.50 | 3996 | 7254

should be analyzed for the case when the nodes are not synchronized. Under this relaxed assump-
tion, we believe that our algorithm should not perform much worse. Without synchronization, a
single packet can overlap and collide anywhere within a time slot. Hence, the only value that is
affected under this relaxed assumption is p(n,p), the probability of successfully receiving a packet.
Note that if a broadcast packet consumes one time slot, it can overlap in at most two time slots.
Hence, we can derive a new expression for p(n,p), and derive similar analyses using the framework
presented in this paper.

In addition, as described in the results section, our simulations illustrate that the bound on the
running time of Algorithm 1 is rather weak. Perhaps through the use of additional probabilistic
tools or by changing the analsis approach, we can reduce the constant factor in our bound of the
running time.

Finally, our algorithm is designed to estimate the number of neighboring nodes in a static
network. It would be interesting to see if this technique can be extended and/or modified to handle
a dynamic network. In such a network, nodes change positions or become active and inactive over
time. Since the number of active neighbors varies over time, it is unclear if random sampling can
be used solve the problem.

12 Conclusion

In this paper, we have presented N-EST, a novel problem of estimating the number of neighboring
nodes in an ad-hoc wireless network. We have presented a parallel FPRAS that runs in O(log? N)
time, which is much asymptotically faster than the simple deterministic algorithm that runs in
O(N) time. The algorithm makes no initial assumption about the physical node distribution, the
area over which the nodes are distributed, and the broadcast radius of the nodes. We also presented
a variety of simulation results and confirmed the theoretical performance of our algorithm.
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