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Abstract

In this paper, we describeparaloading, a novel approachto re-
trieving files from theInternetby establishingparallelconnections
with multiple mirror sites.This methodcontrastswith theconven-
tional downloadmethodwheretheclient retrievesdatafrom a sin-
gle source.Theadvantagesof paraloadingover single-connection
downloadingincludeimprovedperformancegainedfrom aggregat-
ing thebandwidthsof theparallelconnections,increasedefficiency
gainedfrom loadbalancingdownloadrequestsamongtheparallel
connections.andincreasedresilienceagainstcongestionor failures
on any onepath,In orderfor paraloadingto work, serversmustbe
mirroredthroughouttheInternet.However, asmirror sitesbecome
more widespreadand as end usersupgradeto higher connection
speeds,we believe that paraloading—ifimplementedproperly—
will offer significantperformancegain over the traditionalsingle-
sourcefile accesses.

Paraloadingis a subjectthathasnot beenextensively studiedby
theresearchcommunity. Thispaperexaminestheperformanceand
thedesignof a paraloadingschemeproposedin [21]. We have de-
velopeda paraloaderapplicationin Java that usesHTTP 1.1 for
its range-requestandpersistentconnectionfeatures.We have con-
ducteda seriesof experimentsusingour paraloaderat MIT andat
UC Berkeley, andwehavefoundthattheperformancegainsof par-
aloadingarenotasgoodasthoseclaimedin [21]. Thissuggeststhat
paraloadingmay not fair well in differentnetwork environments.
Nevertheless,we believe that therearea numberof enhancements
that canbe madeto the paraloaderto improve its performancein
differentnetwork environments.We will outlinesomeof theseen-
hancementtechniquesand discusssomeopenresearchissueson
paraloading.

Keywords: Parallel downloading, paraloading,mirror
servers,downloadperformance,Internetmeasurements.

1 Introduction

Theconventionalmethodfor downloadingafile from theIn-
ternetis to openoneor moreconnectionsbetweentheclient
and a single server. The downloadperformance, the time
to downloada file, is directly influencedby the load of the
server, the bandwidthof thebottlenecklink, andany traffic

fluctuationsthat may intersectthe routebetweenthe client
andthe server. To help balanceload andbring the content
physicallycloserto theclientin thehopeof improvingdown-
loadperformance,variousorganizationshavedeployedmir-
ror servers in differentnetwork domains. Thus, whenever
theuserswish to downloadfrom themirror servers,they can
selecta mirror sitethatcontainsthefastestavailablepath.

Presently, usersare seldomgiven accurateperformance
metricsto help themselectthe fastestserver. Most often,
clientsuseadhocmirror selectiontechniquesthatyield poor
download performance. Even when the fastestserver has
beenchosen,throughputcanstill fluctuatebecausethe traf-
fic patternsmaychangeduringa downloadsession.For ex-
ample, intermediaterouterscan becomecongestedduring
a downloadsession. In this case,the transientcongestion
forcestheserverto decreaseits offeredload,whichthenlow-
erstheclient’sobservedthroughput.

Thus, rather than trying to identify and connectto the
fastestavailableserver, clientscouldimprovedownloadper-
formancemoresimply andeffectively by connectingto two
or moreserverscontainingan exact copy of the document.
Insteadof downloadingtheentiredocumentfrom oneserver,
clientswould downloaduniquepartsof thesamedocument
from eachof themirror serversin parallel.Onceall theparts
of thedocumentshave beenreceived,theclient canrecover
theoriginal documentby reassemblingthepieces.This par-
allel file accessschemewasfirst proposedin [21]. In therest
of thispaper, wewill referto this schemeas“paraloading”.

Thereareseveraladvantagesto employing a paraloading
scheme.First, becausea paraloadingschemeopensmulti-
pleconnectionsto differentservers,paraloadingis inherently
moreresilientto routeor link failuresandtraffic fluctuations
than the traditional schemeof downloadingfrom a single
source. Second,the mirror selectionprocesscanbe elimi-
natedby aparaloadingschemethatopensaconnectionto all
of theavailablemirrors. In this case,thefastestpathwill be
amongthesetof openedparallelconnections.Third, aggre-
gatingthe bandwidthof the individual connectionscanpo-
tentiallyincreaseoverallthroughputto theclient. Ideally, the
total bandwidthto theclient is equivalentto the sumof the
bandwidthsfrom eachindividual server. Fourth,a paraload-



ing schemeallows theclient to employ a varietyof schedul-
ing algorithms� for assigningdownloadrequests.This flexi-
bility enablesan intelligent paraloaderto performdynamic
load balancing. For example,a paraloadercan chooseto
downloada biggerproportionof a file from a fasterconnec-
tion or dropconnectionsthathavebecomeheavily congested
duringadownloadsession.

1.1 The Basic Paraloading Scheme

Thebasicparaloadingschemeis conceptuallysimple.When
a client wishesto obtaina documentfrom a particularsite,
the paraloaderwill first obtain a list of mirrors serversas-
soicatedwith that site. We assumethis informationcanbe
obtainedeasily by queryinga directory service. Oncethe
serversareknown, theparaloaderwill queryoneof themir-
rors to obtain the length of the target document. The file
lengthis neededfor partitioningthefile into multiple block
unitsandfor ensuringthatall theblockshave beensuccess-
fully receivedby theclient. After thefile hasbeenpartitioned
into theproperblocksizes,theparaloaderwill begin issuing
requestsfor different blocks to eachof the mirror servers.
Whena connectionfinishesdownloadinga datablock, the
client immediatelyissuesa requestfor thenext block to that
sameconnection. This schemecontinuesuntil all the dif-
ferentblocks of the documenthave beenreceived. As the
paraloadingprocedureprogresses,it is likely that the client
will receive thedatablocksout of order. Therefore,thefinal
stepfor theparaloaderis to recovertheoriginaldocumentby
reorderingandreassemblingall theblocksit hasreceived.

Notice that this simplealgorithmautomaticallyachieves
load balancing: it is not difficult to seethat a fastercon-
nectionwill endup transportingmoreblock requestsfrom
the paraloader. Hence,a fasterconnectionwill downloada
largerproportionof thefile thana slower connection.How-
ever, a drawback to this algorithm is that connectionsbe-
comeidle whenthey wait for a block to arriveafterissueing
a request.This idle time typically spansoneround-triptime
( ����� ), duringwhichnousefuldatais transmittedandband-
width is wasted.

Conceivably, a paraloaderintroducesat least threenew
kinds of overheadnot found in the traditionaldownloading
schemes.Theseare the overheadassociatedwith schedul-
ing the block requests,the overheadassociatedwith intro-
ducingrequestmessagesinto thenetwork, andtheoverhead
associatedwith maintainingbuffersto receiveincomingdata
blocks. Hence,a parallel downloadingschemeshouldnot
bewidely deployedunlessit canbeproventhatparaloading
achievesa measurableperformanceimprovementin today’s
network environment.

To this end, we developeda simple Java paraloaderap-
plication andusedit to conducta seriesof preliminaryex-
perimentsat MIT and UC Berkeley. Our experimentsare
similar to thoseconductedby Rodriguezet al. except we
have performedour experimentsin two differentnetworks,
usingthreedifferentsetsof mirror servers. In addition,we

havevarieddifferentparameterssuchasthedegreeof paral-
lelism, thenumberof openparallelconnections,andthedata
blocksizesin orderto examinehow eachof theseparameters
impactparaloadingperformance.

Our resultshave shown that paraloadingachieves good
downloadperformancein general.This is similar to the re-
sults recentlypublishedby Rodriguezet al. However, we
have foundthattheperformancegainsof paraloadingin our
network environmentare not as good as thoseclaimedby
Rodriguezet al. This suggeststhatparaloadingmaynot fair
well in all network environments.Nevertheless,we believe
that therearea numberof enhancementsthat canbe made
to the paraloaderto improve its performance.We will at-
temptto outlinethreeenhancementtechniquesfor improving
paraloadingperformance:fastfile lengthretrieval, pipelined
blockrequests,andlastblockdownloadpreemption.Finally
wewill discusssomeopenresearchissuespertainingto fair-
nessandefficiency.

2 Related Work

Prior to our researchand that conductedby the authorsin
[21], therehasbeenanumberof techniquesdevelopedto im-
prove downloadperformance1. Onesimpletechniqueused
by webbrowsers[18] andby someFTPclients[1] involves
the openingof multiple connectionsto a single server. In
thistechnique,downloadtimeis decreasedbecausetheclient
consumesnetwork bandwidthmore aggressively [3] when
openingparallel connectionsto a singleserver. While this
schemeis simpleto implement,theaggressivenesscancause
anunfair allocationof network resources2. Moreover, paral-
lel connectionsaddextra overheadto the server by requir-
ing theserver to maintainmultipleconnections.Becausethe
servercanonly opena limited numberof simultaneouscon-
nections,the numberof distinct clients that the server can
handlewill decreaseby a factorproportionalto theaverage
numberof parallelconnectionsopenedperclient.

Anothertechniqueto reducedownloadtime relieson the
existenceof mirror serversthatcontainexactreplicasof the
datathat a client wishesto retrieve. Given a setof mirror
servers,aclientcouldminimizedownloadtimebyaccurately
selectingthe mirror server with the shortestresponsetime
andhighestbandwidth. Differentmethodsof selectingthe
bestserver have beenstudied. In [6], server performance
is measureddynamicallyby sendingprobepacketsfrom the

1While the paraloadingschemeis first formalizedby [21], the earliest
implementationof a paraloadingclient we found is a Perl script that is
part of the CPAN library called the Parallel User Agent written by Marc
Langheinrich. The PUA is a simplescript that allows usersto download
multiple files in parallel from different sources.However, unlike the par-
aloadingschemeproposedby Rodriguez,thePUA doesnotsupportparallel
accessof an individual file from multiple serversasdoesthe paraloading
scheme.

2Balakrishnanet al. [4] have proposeda techniqueto solve this unfair
allocationproblemby introducinga “CongestionManagement”layer be-
tweenthe applicationand the transportlayer to coordinateparallel flows
connectedto asingleserver.



client to eachserver. In [8], dataaboutserversis maintained
in a resolver that clientscanqueryto obtainthe identity of
thebestserver. Specifically, serverspushinformationabout
theirperformanceto resolversusedin application-layerany-
casting. In addition,probeagentssendperiodicqueriesto
servers to determineperformance.Another methodto se-
lect thebestserver is basedon examiningstatisticalrecord-
keeping[22].

Thesemethodsof selectingthe “best” server from a set
of mirror servershave many disadvantages.Usinghistorical
measurementscanoften leadto grossinaccuraciesbecause
traffic patternsvary over time. On theotherhand,while us-
ing probepacketsto measurethenetwork conditionscanbe
more accurate,periodic probing can introduceundesirable
overhead.Moreover, this file accessschemedoesnot take
advantageof aggregatingbandwidthfrom multiple connec-
tions. Thus, download performanceis still limited by the
bottleneckbandwidthof theoptimalpath.

Ratherthantrying to tacklethe problemof selectingthe
optimal server, otherresearchershave examinedthe ideaof
parallel-accessfor information dispersal. Rabin’s research
on informationdispersalexploredthe ideaof disseminating
a documentto a receiver by breakingit into several pieces
anddeliveringthepiecesalongmultiple network paths[20].
However, theideaof usingmultiplemirror serversin parallel
to improvedownloadperformanceis fairly recent.

Onenovelparallel-accessapproachto minimizedownload
timewasproposedby Byersetal. In [5], theauthorsdescribe
a “feedback-freeTornadosolution” to facilitatethedelivery
of datain parallel.In theirscheme,afile of size � is encoded
on eachmirror server with redundantinformation. The en-
codedfile consistsof �
	���
�� differentblocksof size � ,
where ������������� . Whena receiver makesa requestfor
thefile, eachmirror sitedeliversthe � packetscontinuously
to thereceiver3. To minimizethenumberof duplicatedpack-
etsreceivedat theclient,eachsenderdeliversthepacketsin
a randomorder. As soonasthe receiver collects � distinct
packetsfrom thesenders,theoriginalfile canbeimmediately
decodedandreconstructed.This schemeis “feedback-free”
becauseoncethetransmissionbegins,thereceiver is not re-
quiredto sendany explicit requeststo askfor a new packet
nor is the receiver requiredto sendany acknowledgements
backto thesenderto confirmthereceptionof apacket.

While the Tornadocode solution greatly simplifies the
mechanismfor datapacketdelivery(andprovidesanelegant
solutionto the multicastimplosionproblem),therearetwo
main drawbacksthat make it unsuitablefor wide-areapar-
aloading.First, thereis anoverheadassociatedwith encod-
ing anddecodingthefile, allocatingstoragespacefor storing
theredundantinformationin theencodedfile, andtransmit-
ting the extra ������� bytesof datausedto reconstructthe
original file. Second,the feedback-freeschemecanpoten-
tially causecongestioncollapsedueto undeliverable pack-

3In [5], Byerset al. assumethat the sendingrate is TCP-friendlyand
doesnot introduceaggressive behavior in thenetwork.

ets[10]. Considerwhenthereceiver hasreceived � distinct
packetsandwantsto terminateall the parallelconnections.
When the receiver breaksthe connections,all the packets
currentlyin transitwill bedroppedandbandwidthis wasted.
Thisproblemis aggravatedwhenthenumberof parallelcon-
nectionsis large or whenthe bandwidth-delayproductof a
connectionis large.

Asmentionedpreviously, theauthorsof [21] proposeady-
namicparallel-accessschemewhereclientsandserverscon-
nectvia unicastTCP. Application-levelnegotiationsareused
to requestdifferentpartsof a documentfrom mirror servers.
Theresultspresentedby Rodriguezet al. have shown good
speedupoversingleconnectiondownloading.

2.1 Assumptions

For a paraloadingschemeto be beneficial,therearea few
assumptionsthat musthold. First, we assumethat the un-
derlyingprotocol(in ourcase,HTTP1.1)transportsdatare-
liably andimplementsrangerequestscorrectly. Otherwise,
the paraloaderneedsto performa final checksumto verify
thatthereassembledfile is correct.

Second,we assumethat the databeing fetchedis static,
meaningthat the file undergoesno changeson any of the
mirror serversduringaparaloadingsession.

Third, we assumethat the paraloadercan quickly and
readily obtain the locationsof the available mirror servers
without incurring a significantoverheadin the system. In
theversionof theparaloaderthatwe have implemented,the
mirror locationshave beenhardcoded.A betterapproachis
to have theparaloaderobtainthis informationautomatically
from widely deployed network services. For example,we
canenhancethe functionality of the DomainNameSystem
(DNS) server by addingsomeof the changesproposedin
[14] to providea list of mirror serverscontainingthedesired
document.Alternatively, a directoryor searchenginecould
bequeriedto providethemirror list.

Finally, we assumethatthepathsto themirror serversare
bottleneck-disjoint. In otherwords,thedifferentpathsof the
parallelconnectionsfrom theclient to theserversdo not in-
tersectat a bottleneck4. Sharingbottlenecksis undesirable
in thefollowing two situations.In thefirst situation,if, at the
bottlenecklink, thereareno connectionsotherthantheones
originatingfrom theparaloader, theparallelconnectionsmay
“cannibalize”eachother’sbandwidthandcancelany gainin
aggregatethroughput.In thesecondsituation,if two or more
paraloaderconnectionssharethebottleneckwith many other
connectionsin thenetwork, thentheparaloaderconnections
will becomeoverlyaggressive[3] andstartto dominateother
TCP-friendlytraffic in thenetwork [10].

4Two or moreconnectionsmayintersecteachotheraslong asthepoint
of intersectionis nota bottlenecklink.



3 Theoretical background of par-
aloading

The basic idea behindparallel downloadingis that clients
openconnectionsto multiple servers. In doing so, clients
couldexperienceabandwidthequivalentto thesumof thein-
dividual bandwidths.Theoretically, this decreasestheover-
all time to downloadthefile.

Let thesetof all serverscontaininga commondocument
be � . Definetheserialbandwidthto server � to be �! #" $ . This
is the connectionbandwidththat a client experienceswhen
only openingasingleconnection.Therefore,thesetof serial
bandwidthsof all mirror serverscanbedefinedas:% 	'&(�! #" )(*+�! #" ,-*+�! #" ./*1020103*4�  #"65 785:9 0

We definethe ideal bandwidthto be equalto the sumof
theindividual serialbandwidths:

� $<;>=@?BA 	 5 785C $EDF) �  B" $ 0 (1)

As moremirror serversareintroduced,it will bepossibleto
openmoreconnections.Theoretically, if bottleneck-disjoint
pathsareusedandthe client’s capacityis infinite, opening
moreconnectionswill increasethe ideal bandwidthandre-
sult in a noticeabledecreasein downloadtime.

Given G , thesizeof thedesiredfile, we cancalculatethe
time to downloadthefile seriallyfrom server � asH  #" $I	 G�! #" $ 
 H4J+K =ML#N�=@?2; #" $ 
 H4OMJ4P/P #" $ 0 (2)

The first term in equation(2) representsthe transmission
time. In the serial download case, the overheadtimeH J+K =ML#N�=@?2; #" $ is basically

H LB=@ RQ J+P  @= #" $ , which is the time between
makinga block requestandreceiving the first byte of data.
The

H L#=4 RQ J4P  4= #" $ essentiallyequalstheround-triptime �S�T� $ to
server � . Finally,

H OMJ+P/P #" $ , is the time to opena serialconnec-
tion5 to server � .

To determinethe time to downloada file usingparallel-
access,we mustconsidermoreparameters.Whenparaload-
ing, not all theserversneedto beused.Let �'U bethesetof
mirror serversactuallyusedfor paraloading.In otherwords,� UWV � . X � U X representsthedegreeof parallelism.

Anotherparameterthatwe canvary is theblock size.Be-
foreparaloading,thedesiredfile is brokeninto many blocks.
If � is the sizeof a block and Y is the numberof blocks,
then YZ	\[/]^`_ . In orderto fully utilize all theserversin the
set � U , � shouldbe chosensuchthat Yba\X � U X . In other
words,aminimumof X � U X blocksshouldbedownloadedsi-
multaneously. If YS$ is thenumberof blocksdownloadedby

server � suchthat Yc	ed 5 7gfh5$:DI) Y $ , the time for server � to

5If the underlyingprotocol usesTCP, this is equivalent to the time it
takesto performtheSYN packet exchange.

download YS$ blocksis:

H Q�" $!	iYS$kj ��lQ�" $ 
 H4J4K =@L#N�=@?3;Q�" $ m 
 H4OMJ4P-PQ�" $ 0 (3)

In this equation,thebandwidthto eachserver is denotedby� Q�" $ , which representstherealizedbandwidthachievedfrom
server � whenall X � U X connectionsareactive. Thus, � Q�" $`n�  #" $ . In theparaloadingcase,theoverheadtime

H J+K =ML#N�=@?2;Q�" $ is
thesumof

H LB=@ RQ J4P  @=Q�" $ and
H Q3L J#O =@ @ Q , where

H L#=@ hQ J+P  @=Q�" $ o �S�T� $
and

H Q2L J#O =@ @ Q is theprocessingoverheadfor schedulinga re-
questto connection� . In the idealcase,theprocessingtime
is negligible.

Assumingthat mirror server discovery is fast, and that
only a singleserver performsthe initial file lengthrequest,
givenequation(3), thetimeto downloadafile from multiple
serversusingparaloadingis:H Q�" p J pq?BA 	 HMr =sp A:= P r pqN 
ut�v�wl& H Q�" $ 92x �ky�� U (4)

where
HMr =Mp AE= P r pqN o �S�T� $ is thetime requiredto getthefile

lengthfrom someserver � .
Now, considerthe casewhere � U 	z� . Summingthe

individualbandwidths�lQ�" $ to eachserverduringparaloading
yieldsthetotalbandwidthduringparaloading6:

� J Q3p{$:|}?BA!	 5 785C $:DI) �lQ�" $ (5)

In the forthcomingversion of this paper, we will showhow
equation(4) canbe madeequalto (5) whenweassumethe
overheadis negligible. Theresultof this will producea set
of mathematicalconstraints that an ideal paraloadermust
satisfyfor achievingoptimalperformance.

Notice that � J Q3p{$:|`?>A will not necessarilybe equal to� $<;>=@?BA . Assumingthatprocessingtime is negligible andthat
all pathsarebottleneck-disjoint,theupperboundon theop-
timal bandwidthis t�~E�F�{��$<;>=@?BA@*+� O A6$<= P p4� , where� O A6$<= P p is the
local clientbandwidth.

As we have shown in theaboveequations,paralleldown-
loadingallows clientsto experiencea gain in total through-
put by aggregatingtheindividual bandwidths.However, the
penaltypaid for paraloadingis the increasedoverhead. In
theory, if theoverheadcanbemadesmall, theperformance
of paraloadingshouldbeno worsethanserialdownloading.
In particular, if the fastestmirror server � is includedin the
setof � U , then �  #" � is a componentof � J Q3p{$E|}?BA , which im-
pliesthat � J Q3p{$E|}?BA a��  #" � .

6This is equivalent to thedefinitionof optimumbandwidthasgiven by
Rodriguezetal.. In theirpaper, theoptimumbandwidthis determinedbased
on theoptimumtransmissiontime. “The optimumtransmissiontime is the
transmissiontime achieved by a parallel-accessschemewhereall servers
senduseful informationuntil the documentis fully received andthereare
no idle timesbetweenreceptionof two consecutive blocks.”



4 Paraloading Parameters

Someof theinefficienciesof paraloadingcanbereducedby
merely increasingthe degreeof parallelismand the block
size.

Intuitively, as the client increasesthe degree of paral-
lelism, the total download time decreasesbecauseeach
addedserver contributes some bandwidth to the optimal
bandwidth� J Q>p{$:|}?BA . This intuition is really theconsequence
of 5; as X � U X increases,� J Q3p{$E|}?BA increasesaswell.

Hence,in theory, setting � U 	�� will alwaysresult in
thebestpossibleperformance.However � J Q3p{$:|}?BA is bounded
by � O A6$<= P p when � O A6$<= P p
� � $:;>=4?BA . In this situation, the
client’s link is completely saturatedby the parallel con-
nectionsso there is little gain in adding anotherconnec-
tion. Furthermore,practicalconsequencessuchasincreased
amountsof overheadand adverseinteractionsamongpar-
allel connectionsat the client’s link will likely decreasea
paraloader’sperformance.Thereforein practice,oneshould
choose� U�� � to achieve maximumperformancegain
withoutwastingnetwork resources.

Thereareothersubtleissuesthatexplain why onewould
chooseadegreeof parallelismlessthan X �ZX . Wewill discuss
theseissuesin theDiscussionsection.

While retrieving a file using paraloading,bandwidthis
wastedduring the idle time betweentherequestfor a block
andthearrival of therequesteddatablock. Typically, theidle
time is at leastone �S�T� .

Oneway to reducethis inefficiency is to increaseblock
sizesandthusdecreasethenumberof blocksandthenumber
of idle times. Unfortunately, makingblocks too large will
reducethe total numberof blocks. This in turn reducesthe
effectivenessof loadbalancingtheblockrequestsamongthe
activeparallelconnections.

In theory, theoptimalway to sizetheblocksis to assigna
differentblock sizefor eachof theconnectionssothateach
connectiondownloadsoneblock andall downloadsfinishat
the sametime. In particular, the size of the block � $ for
server � shouldbe:

�I$F	 �lQ�" $� J Q3p{$E|}?BA G�0 (6)

Assigningthe blocksthis way ensuresthateachconnection
finishesat exactly the sametime and only downloadsone
block. Clearly, this minimizesthe numberof requests.In
practice,however, it is difficult to determineboth �lQ�" $ and� J Q>p{$:|}?BA asbandwidthscanfluctuateconsiderablyovertime.

5 Optimization Techniques

In orderto achievemaximumperformance,wewantto fully
utilize all of the parallelconnectionsin a paraloader. This
implies thatan idealschedulerfor a degree X � U X paraloader
will scheduleblock requestssuchthata) thefirst X � U X block
requestsgoing to eachof themirror serversaremadeat the

earliestpossibletime, b) no wastedidle time betweensuc-
cessive block requestsgoing to eachof the mirror servers
exists, and c) noneof the connectionsbecomeidle before
the last block hasbeenfully received. To meeteachof the
correspondingrequirementslistedabove,anidealparaloader
muststrive to minimizetheinitialization delay, theidle time
betweenrequests,andany idle time thatariseasa resultof a
poorly scheduledrequestto retrieve the lastblock. We will
describehow theparaloadercanbeoptimizeto meeteachof
thesegoals.

5.1 Minimizing the Initialization Delay

Theinitializationprocessmusttakeplacebeforeaparaloader
canbegin sendingrequests.This processaffectsthe initial-
ization delay, which involvesretrieving the mirror list and
file lengthinformationandestablishingaconnectionto each
of themirror servers.While thelatterdelaydependsentirely
on the network characteristicsandthe underlyingprotocol,
the formerdelaycanbeminimizedby cachingthe required
informationin thelocal system.

We recognizethatmaintaininganaccuratecachecontain-
ing information aboutthe characteristicsof the network is
not always possible;hence,we assumethat suchinforma-
tion mustbe fetchedfrom oneof themirror servers. In this
situation,theinitializationdelaycanbeminimizedby piggy-
backinga datablock requestonto the mirror-list/file-length
querythat is sentto oneof the mirror servers. In this sce-
nario, we assumethat the locationof at leastoneserver is
givenat thestartof theparaloader7.

5.2 Minimizing the Idle Time Between Re-
quests

For eachrequestsent to a particularserver, a simple par-
aloadermustwait at leastone �S�T� beforeit startsto receive
adatablock. Duringthis idle time, thelink is notutilizedand
bandwidthis wasted. In [21], the useof pipelining the re-
questsis proposedasa solutionto this problem.In a typical
pipeliningscheme,the paraloaderwill initially send�����
requestsfor different blocks to eachserver. When a con-
nectiondownloadsthe first byte of datafrom a datablock,
anotherrequestis sentto that connectionfor the next unre-
questedblock. Therewill alwaysbeonependingdatablock
downloadat the client and ���
� pendingdatablock trans-
mission“in thepipeline” for eachconnection.It is intuitive
to seethat � shouldbesetto 2. By setting � to 2, we min-
imize the numberof pendingrequeststhat the server must
keeptrackof. However, this requiresthat the block sizebe
at leastthe bandwidth-delayproductof the particularcon-
nectionthattherequestis beingsentto.

7If all themirror locationsareknown aheadof time,thenonecanfurther
optimizeby sendinga uniqueblock andfile lengthqueryfor thefirst � �8�q�
differentblocksto eachof the � � � � servers.Theblocksizecanbearbitrarily
setandany error responsesreturnedasa resultof requestingout-of-range
datablockscanbeignored.



By introducingpipelining, the time due to requestinga
block� (

H L#=4 RQ J4P  4=Q�" $ ) is eliminated.We believe thatthis is anef-
fective optimizationespeciallyin situationswheretheblock
size is relatively small comparedto the bandwidth-delay
productof theindividual connections.Our simulatedexper-
imentalresultsagreeswith this claim.

5.3 Minimizing the Idle Time in Down-
loading the Last Block

The amountof time spentdownloadingthe last datablock
can be significant. This is especiallytrue when the block
sizeis largeandthelastblockdownloadhasbeenscheduled
to a slow connection.As this connectiondownloadsthelast
block,otherconnectionsmaybecomeidle. Onewayto mini-
mizethiswastebandwidthis to setsmallerblocksizessothat
the wait time for the last block is reduced.However, small
block sizesmaybeimpracticalbecausethey will requirethe
paraloaderto sendmany morerequestmessagesto the net-
work. Moreover, small block sizeswill increasethe total
numberof idle gapswhenpipeliningis not implemented.

Anotherapproachto minimize the last block delay is to
dynamicallyadjustthe block sizesaccordingto (6) so that
the last X � U X datablocksfinish downloadingat roughly the
sametime. However, this will requireaccuratebandwidth
measurementsfor eachconnectionat runtime,whichmaybe
difficult to obtain.

Alternatively, the paraloadercansendrequeststo oneor
moreof theother X � U Xq��� connectionsthathavebecomeidle
to download the remainingportionsof the last block from
the differentmirror servers. However, in this case,an idle
time periodstill existsbeforetheparaloadercanidentify the
lastblock. For example,imaginetwo slow connectionsthat
start to paraloadthe final two blocks of a file at the same
time. In thissituation,thelastblockcannotbeidentifieduntil
oneof the two blocks finishesdownloading. Becausethis
wait canstill besignificant,an idealoptimizationtechnique
would assignrangerequestsfor the unreceived portionsof
eachof thelast X � U X(��� blocksto theconnectionsthathave
becomeidle.

Clearly, the block assignmentpolicy can be varied to
tradeoff performanceand the amount of redundantdata
transferred.In maximizingperformance,it is possiblethat
redundantdata will be received. In both of the previous
cases,redundantdatamay be receivedsincethe paraloader
typically cannotrevokeablockrequestthathasalreadybeen
sent.

6 Dynamic Paraloading Experi-
ment

Themainobjectiveof ourexperimentwasto verify thatpar-
aloadingdecreasesdownloadtime relative to downloading

from a singleconnection.At thesametime, we hadseveral
otherobjectives:

1. To determinewhetherchangingtheblocksizeor thede-
greeof parallelismcouldaffectdownloadperformance.

2. To collect an extensive set of datato show how well
paraloadingperformsunderdifferentnetwork environ-
ments.Towardthisgoal,weranexperimentsat two dif-
ferentclient sitesparaloadingfrom threedifferentsets
of mirror servers.Wehaveplansto try paraloadingfrom
additionalsites.

3. To compareour resultswith thoseobtainedin [21] and
to verify that paraloadingindeedproducessignificant
speedupover thesingleconnectioncase.

4. To determinetheimpactof paraloadingperformanceby
applyingsomeof theoptimizationsdiscussedin thepre-
vioussection.

We first designedand implementeda paraloader. In
ourimplementation,we wrote a Java application called
jphttp, which standsfor Java Parallel HTTP. The pro-
gram’sunderlyingprotocolis HTTP 1.1. We chosethis pro-
tocol primarily becauseit is widely deployed and because
it supportsrangerequestsandpersistentconnections8. The
rangerequestfeatureis usedfor fetchinga documentblock
with arbitrarystartandfinish offsetsfrom a range-request-
enabledmirror server. The persistentconnectionfeatureis
usedto enhancetheefficiency of theparaloader9.

In our paraloader, only two of theoptimizationswereim-
plemented.We save oneroundtrip time by issuinga GET
messageto a randomserver in order to requestfor the file
lengthandthefirst datablock. We alsoalsoattemptreduce
the last block delayby selectingthe fastestconnection10 to
downloadtheunreceivedportionof thelastblock. Requests
arenot pipelinedin our implementation.

Wehaveensuredthatthereceiversocketbuffer is setlarge
enoughso that it doesnot createa bottleneckat the client
by advertisinga smaller-than-optimalTCPreceiver window
value.In ourexperiments,thereceiversocketbuffer is setto
32KB.

8AlthoughHTTP1.1waschosenin ourimplementation,thechoiceof an
underlyingprotocolis orthogonalto the ideaof paraloading.For example,
onecanstill implementa paraloadingschemewithout usingrangerequests
by pre-partitioningthe file at the mirror serversandnamingthe files with
theappropriateblock numbers.

9Ratherthanwastingpossiblymany round-triptimesfor re-negotiatinga
new connectionevery timetheparaloadersendsarequestto amirror server,
thepersistentconnectionfeatureallows theparaloaderto sendrequestsby
usingthe sameconnectionasthe onefirst establishedbetweenthe mirror
serverandtheparaloader.

10We determinethe fastestconnectionto be the connectionthat down-
loadedthe mostblocksat the time whenthe paraloaderidentifiesthe last
block.



6.1 Experiment Setup

In our experiment, we downloaded a single file
from three different sets of seven mirror servers
( � 	 � ). In particular, data from the mirrors
of the sites http://www.kernel.org (Set 1),
http://mars.jpl.nasa.gov/mgs (Set 2), and
http://www.tucows.com (Set 3) were downloaded.
In additionto paraloadingfrom differentsetsof mirrors,we
alsoparaloadedat differentclient locations;we paraloaded
to hostsatMIT andUC Berkeley.

To examinehow the degreeof parallelismwould affect
thedownloadtime, we setthe degreeof parallelismto one,
three,five, andsevenserversanddownloadedthesamefile
for eachvalueof X �'UsX . To examinehow performancevaries
for differentfile sizes G , we downloadeda 1 MB file anda
300KB file. We fixedtheblocksizeto 32 KB.

Becausetraffic over the Internetcanvary over a dayand
throughoutanentireweek,weconductedourexperimentfor
24 hoursover a periodof seven days. On day � , at the be-
ginning of every hour, a 1 MB file anda 300 KB file was
downloadedfrom server � . To increasethe accuracy of our
samples,we repeatedeachdownloadfive times. Oncethe
file wasdownloadedserially, thesametwo files weredown-
loadedfrom a randomlychosensetof threeservers,a ran-
domly chosensetof five servers,andfinally from all seven
servers.Again,eachof thesedownloadswasperformedfives
times.Thisprocedurewasrepeatedfor eachof thethreesets
of mirror serverslistedabove.

As the downloadsproceeded,we tracked variousstatis-
tics abouteachconnectionsuchastheresponsetime,down-
loadtime, andtheschedulingoverheadfor eachblock. The
responsetime is the time betweensendinga block request
andreceiving thefirst byteof thedatablock. Typically, this
is the sumof the roundtrip time andthe server processing
overhead.The downloadtime is the time betweensending
a block requestandreceiving thelastbyteof thedatablock.
Theschedulingoverheadis theamountof time thatthecon-
nectionremainidle while waiting for theschedulerto assign
thenext block request.

6.2 Results and Analysis

In thissection,only theresultsfor theMIT/MARSparaload-
ing experimentsare presented.We are still in theprocessof
gatheringandanalyzingtheresultsof theotherexperiments
mentionedin theprevioussection.We will presentthesere-
sultsin theforthcomingversionof this paper.

Beforeanalyzingthedata,we first averagedthefive trials
perdegreeof parallelismat eachhour. This averageformed
a paraloadsampleper setfor thathour. For eachdegreeof
parallelism,wethenaveragedeachparaloadsamplefor each
houracrosssevendays.This averageformsa datapoint on
thegraphfor thespecificnumberof serversused.

In figure 1, we graphthe time to downloada 1 MB file
from eachof the serversthroughouta singleday. In addi-

tion, we determinedthe averagetime to download the file
fromoneserver, if theserverwerechosenrandomlyfrom � .
This is doneby summingthe single-server downloadtimes
at eachhour and dividing by the total numberof servers.
For comparison,we alsographtheidealdownloadtime that
would resultif a bandwidthof � $<;>=@?BA asdefinedin Equation
1 wasused. The valueof � $:;>=4?BA is calculatedby summing
theexperimentalvaluesof �! #" $ ateachhour.
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Figure1: Averagetimeto downloada1 MB file seriallyfrom
severalMARS webmirrors throughouta singleday( G�	Z�
MB, ��	i��� KB, X � U X�	'� ).

As shown, the download time for the file variesconsid-
erablyto someof the serversusedthroughoutthe day. For
example,theslowestserver (Denmark)takesbetween4 and
130secondsto deliver the file asthe dayprogresses.How-
ever, thedownloadtimefor thefastserversseemsto befairly
stablethroughoutan entire day. For example, the USA2
serverdownloadsthefile consistentlyin 2 to 4 seconds.

In figure2, wegraphthetimeto downloada1 MB file us-
ing variousdegreesof parallelism.Theserversexaminedare
againMARS mirrors. Thesingleserver caserepresentsthe
averageof the individual downloadtimesof eachserver. In
additionto graphingthedownloadtime for differentdegrees
of parallelism,we alsographedthe downloadtime derived
from ��$<;>=@?BA and � J Q3p{$:|`?>A . The valueof ��$<;>=@?BA is calculated
asbeforeandthevalueof � J Q3p{$:|`?>A is obtainedby summing
the simulatedvaluesof �lQ�" $ for all � . The valueof �lQ�" $ is
simulatedby subtractingthemeasuredschedulingoverhead
timesandthe responsetimesfrom the total downloadtime
for all blocksin connection� . Thisnumberwasthendivided
into Y $ � $ , the total numberof bytesdownloadedfrom con-
nection� . As shown in figure2, thetimesto downloadfrom
parallel connectionsis clearly lessthan the time to down-
load from an averageserver. This meansthat on average,
paraloadingperformsbetterthandownloadingfrom a single
server. Moreover, thedownloadtimedecreasesasmoremir-
ror serversareadded.For example,theaveragetime reduc-
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Figure2: The downloadtime for a 1 MB file is compared
amongdifferentdegreesof parallelism( G�	�� MB, ��	
���
KB, X � U X-	���*+��*#��*>� )
tion betweenthe oneandthreeserverscaseis about7.93s.
Theaveragedifferencebetweentheoneandfiveservercases
is about12.3s. Finally, the averagedifferencebetweenthe
oneandsevenserverscaseis 13.5s.

One interestingfeatureto note is that as X � U X increases
from five to seven, the performancegain is lessdramatic.
A possiblereasonfor this behavior is that two slow servers
wereadded.Theserversprobablydid not contributein fur-
therreducingthedownloadtime.

Anotherinterestingfeatureof this graphis thatthedown-
loadtimeusingtheoptimalbandwidthis neartheidealband-
width. However, this doesnot provideany knowledgeabout
thebottleneck-disjointnessat theclient. We will explain this
in detail in a forthcomingpaper.

In figure3, we againgraphthetime to downloada 1 MB
file usingvariousdegreesof parallelism.Thistime,however,
the X � U XI	z� caserepresentsthe time to downloadthe file
from thefastestserver (USA2). Again, we alsographedthe
downloadtime derivedfrom ��$<;>=@?BA and � J Q3p{$:|}?BA . Themost
surprisingresultshown by thesegraphsis thatthedownload
times when paraloadingis actually worsewhen compared
to the fastestserver. This resultseemsto contradictthe re-
sults obtainedin [21], where the authorsfound consistent
performancegain in all their dynamicparaloadingexperi-
ments. We will attemptto resolve theseinconsistenciesin
thenext section.

In figures4 and5, we show the timesto downloada 300
KB file with varyingdegreesof parallelismandafixedblock
sizeof 32 KB (sameasbefore). In figure 4, the X � U X�	z�
caserepresentstheaverageof theindividualdownloadtimes
from eachserver. In figure5, the X � U XW	�� caserepresents
thetimeto downloadfrom thefastestserver(USA2). In gen-
eral,theperformancegainedover theaveragecasefrom par-
aloadingthe small file is lessthan the performancegained
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Figure3: The downloadtime for a 1 MB file is compared
amongdifferent degreesof parallelismwhere degree1 is
representedby the fastestserver ( G'	�� MB, �\	���� KB,X � U X-	��-*#��*#��*B� )
from paraloadingthelargefile. In someinstances(e.g.whenX �'UhXk	�� ), the paraloadingperformanceis worsethan the
averageserial download case. Theseresultsare expected
becausethe effectivenessof load balancingthe block as-
signmentshasdecreaseddueto thereducedtotal numberof
blocks. Hence,we canconcludethat paraloadingbecomes
lesseffectivewhenit is usedfor downloadingasmallfile 11.

6.3 Comparison with Rodriguez et al. re-
sults

Our experimentalresultshave shown that paraloadingdoes
not provide significantperformancegainover from thebest
singleserver case.This is in contrastto theresultsreported
in [21]. In this section,we will compareandcontrastour
experimentsetupagainstthat reportby Rodriguezet al. in
anattemptto explainwhy our resultsdiffer.

In ourexperiment,thefile sizesandblocksizesusedwere
roughly the samesizeasthosein [21]. In addition,the de-
greeof parallelismusedwasalsoapproximatelythesame;in
mostof their experiments,they use X � U X�	�  , while we useX � U X¡	���*B� . However, our experimentsdiffer in thefollow-
ing majorways:

1. Theserversusedin their experimentwereroughlyone
orderof magnitude(7 times)slower thanours.Theav-
eragesinglesourcethroughputthatwasreportedranged

11However, we do not rule out thepossibility for achieving high perfor-
mancegain by usinga paraloaderto retrieve manysmall files in parallel.
Suchaschemewill mostdefinitelybeusefulfor webbrowsingapplications.
AlthoughRodriguezhassuggestedthatsmallfiles,suchaswebobjects,be
combinedinto a larger file in order to increaseparaloadingeffectiveness,
combiningthesmall files togetherwill causeexcessive delaysbecausethe
largerfile might have to beentirelyretrievedbeforetheapplicationcanac-
cessany oneof thesmallfiles.
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Figure4: Thedownloadtime for a 300KB file is compared
usingdifferentdegreesof parallelism( G¢	
�-£-£ KB, ��	����
KB, X � U X-	���*+��*#��*>� )

from 40 to 120 Kbps. In our experiment,the single
sourcethroughputrangedfrom 210to 890Kbps.

2. From their paper, it is likely that their paraloaderem-
ployeda differentstrategy for obtainingthefile length.
Morespecifically, they did not implementtheoptimiza-
tion that combinesthe first block requestwith the file
lengthquery.

3. The paraloaderusedby Rodriguezet al. employs a
differentstrategy for minimizing the last block delay.
Specifically, their strategy does not require the idle
connectionsto wait for the paraloaderto identify the
last block, but downloadsredundantdata for the lastX � U X/��� blocks.

We now show thatthesedifferencescanaffect theperfor-
manceof theparaloaderin thefollowing ways:

1. High speednetworkswill increasetheratiobetweenre-
questidle time anddatablock transfertime. Hence,if
we assumethat the roundtrip timesaresimilar for all
connectionsin both experiments,our experimentwill
suffer from a higherratioof wastedbandwidth.

2. In analyzing the file length query optimization, we
found a bug in our paraloader. Ideally, full scalepar-
aloadingshouldbegin assoonasthe file length infor-
mationis obtained,i.e. whentheHTTP headerarrives
at theparaloader. However, ourparaloaderdoesnotbe-
gin paraloadinguntil after theentirefirst blockhasbeen
received. Thus,the bug addsa total delayof the time
requiredto downloada datablock, which canbe sig-
nificant if a slow connectionwere chosenfor the file
length query. To test the effect of this bug, we have
simulatednew resultsby subtractingthe datatransfer
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Figure5: Thedownloadtime for a 300KB file is compared
usingdifferentdegreesof parallelismwheredegree1 is rep-
resentedby the fastestserver ( G¤	\�-£�£ KB, �¥	¦��� KB,X � U X-	��-*#��*#��*B� )

time for thefirst block of datafrom theoriginal results.
Thesimulatedresultsfor paraloadinga 1 MB file from
theMARS mirror serversto MIT areshown in Table1.
Fortunatelyfor us, thereis no significantperformance
differencebetweenthesimulatedandoriginal results.

Table1: Theperformanceimpactof a bug introducedin our
paraloaderis shown. Thetime for paraloadinga1 MB file is
theaverageof the24 houraverages.Hencethetimesin the
first columncorrespondsto theaveragesof the24datapoints
for each X � U X§�¨� ) in figure 2. The times in the second
columncorrespondsto thesamesetof averagessubtractthe
averagedfirst blockdatatransfertime.© ª � © Original Simulated Speedup

paraloading paraloading
time,averaged(s) time,averaged(s)

3 11.025 10.466 5.74%
5 6.548 6.114 7.29%
7 5.462 5.134 6.87%

3. It turns out that the differencein the last block opti-
mization(LBO) policy hasanenormousimpactonpar-
aloadingperformance.We have simulatednew results
by subtractingthe fastestconnection’s wait time from
thetotal time. Thefastestconnection’swait time is the
differencebetweenthe time when the fastestconnec-
tion becomesidle dueto anemptyblock requestqueue
andthe time whenthe lastblock requestis assignedto
it. In Table2, we show thegainrealizedby simulating
thisoptimization.While werecognizethesimulatedre-
sultscanreportanoverly optimisticparaloadingperfor-



mance,thesignificanttime differencebetweenthetwo
resultsstill givesa goodideaof how muchbandwidth
waswastedduringthefastestconnection’swait period.

Table 2: Comparesthe performanceof a paraloaderwith
LBO. Thesameaveragingmethodusedin Table1 wasalso
usedhereto constructthetablevalues.© ª � © Averagetime Averagetime Speedup

withoutLBO (s) with LBO (s)

3 11.025 10.785 2.08%
5 6.548 5.269 23.05%
7 5.462 3.671 48.13%

We believe that the combinationof the threekey differ-
encesoutlinedabovehavereducedtherealizedperformance
gainin ourexperiments.Hence,webelieve thatafterresolv-
ing the implementationdifferences,the performancegain
shouldmatchthosereportedin [21].

Oneimportantlessonto be learnedis that the implemen-
tationdifferencesamongparaloaderscangreatlyimpactthe
performanceof the paraloader. Becauseparaloadinghas
sucha large parameterspace,the numberof possibleopti-
mizingdesignsarenumerous.

6.4 Pipelining Simulation

Wehavealsosimulatednew resultsfor examiningtheperfor-
mancegainedby pipeliningblock requests.Our paraloader
haskept a recordof the responsetime betweensendinga
requestandreceiving thefirst byteof datafor eachblock re-
quested.To simulatethepipeliningresults,we summedthe
total downloadtime and thensubtractedthe responsetime
for the individual blocks. This gives us a set of new val-
uesindicatingtheamountof timeeachconnectionhadspent
downloadingblocks. We thentake the maximumover this
setof valuesto bethenew total time for paraloadingtheen-
tire file by pipeliningrequests.Notice this simulationgives
a conservative estimateof the theoreticalpipeliningcaseas
theremaybeabetterrequestassignmentamongtheconnec-
tions.

Table3 shows the simulatedresultsfor the differentde-
greesof X � U X . The averageimprovement of pipelining
over the non-pipelinedcaseis about38%. As shown, the
pipelined simulation shows a significant performanceim-
provementin our experiment. Also, we note that the im-
provementswe have obtainedin the pipelinesimulationis
muchgreaterthan the improvementsdue to pipelining ob-
tainedin [21]. We believe that this is causedby the higher
averagebandwidthsof the network we used. As explained
above,higherbandwidthsleadto a higherratiobetweenidle
time anddatatransfertime. Sincethe pipelining optimiza-
tion is designedto eliminatethis waste,it is not surprising

Table3: Comparestheperformanceof aparaloaderwith the
pipelinedrequestoptimization.Thesameaveragingmethod
usedin Table1 wasalsousedhereto constructthetableval-
ues. © ª � © Averagetime Averagetime Speedup

without with
pipelining(s) pipelining(s)

3 11.025 8.320 36.15%
5 6.548 4.787 38.70%
7 5.462 3.948 42.09%

to seea greaterperformanceimprovementin our simulated
experiment.

7 Discussion

Up to this point, the paperhasfocusedon performanceis-
sues.In this section,we attemptto discussotherissuesthat
may becomeimportantfor deploying a complete,efficient
paraloadingsystem.

7.1 Cost of paraloading

While paraloadingmaysignificantlyimprovedownloadper-
formance,it doesnot comewithout cost. A goodparaload-
ing systemshouldconsiderthecostof its design.Here,we
outlinethreegeneraltypesof coststhatwould appearin any
paraloadingscheme:

1. First, aswe have seen,thereis a processingoverhead
at thereceiverfor schedulingblockassignmentsamong
theparallelconnections.

2. Second,there is a memoryoverheadassociatedwith
creatinganapplicationbuffer largeenoughto holddata
blocksthatarriveoutof order. In ourcurrentimplemen-
tation, thememorycostis X � U X�«�� bytes. In addition,
thereis alsoa memorycostassociatedwith openinga
new receiversocket for eachparallelconnection.

3. Third, thereis the costfor the block requestmessages
to generateextra traffic in thenetwork. Themagnitude
of thiscostdependsgreatlyontheblocksizeandonthe
paraloader’sunderlyingprotocol.

4. Fourth,thereis anincreasein serverresourceconsump-
tion as paraloadersopenmultiple connections. Con-
sequently, the maximumnumberof clients per set of
mirror serverswill decrease.We will usethefollowing
algebrato illustratewhat we mean. The consequence
of this cost is that the total resourcesat all the mirror
serversmust increaseby a factor ¬ (definedbelow) if
thoseserverswish to provide serviceto thesamenum-
berof clientsastheserialdownloadingcase.



Define � to be numberof mirror serversand ­ be the
maximum® numberof simultaneousconnectionsper server.
Let ¬ be the averagenumberof parallel connectionsper
client whereeachconnectionconnectsto a differentserver
and ¯ be the averagenumberof parallel connectionsper
clientwhereeachconnectionconnectsto asingleserver. Let°

bethetotalnumberof clientsserved.
In the serial downloadingcase,

°  @=ML#$:?>A±	¨­²� , in the
paraloadingcase,

° Q2?3L#?BA J ?3;³	b�R­²���+´3¬ , and in the cases
where parallel connectionsare openedto a single server,° Q2?3L#?BA6AE=sAI	��q­²���#´/¯ .

7.2 When To Use Paraloading

Therearesituationswherewe do not wantto startparaload-
ing. An intelligent paraloadermustdeviseheuristicsto de-
terminewhenit shouldstartparaloadingor whento revert to
theserialdownloadscheme.Weoutlinethreesuchsituations
below.µ As alreadyshown in our results,paraloadingdoesnot

provide much of a performancegain when it is used
to retrieve a singlesmall file. When the performance
gain is too small, a paraloadershouldrevert to serial
downloadingto conservenetwork resources.µ In thecasewheretherearea few outlyingconnections
with relatively high bandwidths,that is, whenall other
connectionshave very low bandwidthsrelative to the
outliers, almostall block requestswill be assignedto
theoutlyingconnections.In thiscase,aparaloadermay
wishto droptheslow connectionsto conserveserverre-
sourceswithout significantlyaffectingperformance.In
thecasewherethereis only oneoutlyingconnection,an
intelligentparaloadershouldrevertto aserialdownload
from thesingleoutlier in orderto savetheblockrequest
overheads.Notethat this effect canbeemulatedby in-
creasingtheblocksizedynamically.µ Finally, as we alreadymentionedin the Assumptions
section,we note that paraloadingmay becomeoverly
aggressivein acongestednetwork andstartto dominate
other TCP-friendly flows. An intelligent paraloader
shouldbe conservative and drop connectionsthat are
sharinga bottleneck.However, detectingwhich setof
connectionssharea bottleneckis a very difficult prob-
lem12.

7.3 Open Research Issues

Hereis a list of openresearchissuesrelevantto thedesignof
a successfulparaloadingsystem.

12We believe that the paraloadingschemewill provide many interest-
ing waysto attackthis or a similar problem. For example,the paraloader
can treat block requestmessagesas “probe” packets to measurethe re-
sponsetime of theconnection.Also, it is not necessaryto dropbottleneck-
sharingconnections.The paraloadercaninterleave block requestsamong
thebottleneck-sharingconnectionsto countertheiraggressive behavior.

µ Detectingsharedbottlenecksandminimize the poten-
tial aggressivenesswhensharinga bottleneckwith ex-
istingconnections.µ Developinga commonAPI thatoffersparaloadingser-
vices to a variety of different applications(e.g. ftp,
http).µ Determining whether paraloadingshould be imple-
mentedat theapplicationlevel or at thenetwork level.µ Designinga directoryservicethat reportsthe locations
of all themirror serverscontainingthesamedocument.µ Determiningwhethernetwork scopeaffectsthroughput
of mirror servers.If wecanfind outhow network scope
affectsthroughput,thena paraloadercanopenparallel
connectionsto a specificsetof mirror serverswithout
relyingonexplicit network metricinformation.µ Designingaprocessfor acheap,easy, fast,safe,andse-
curemirrorupdateandreplicationthatcanhandleongo-
ingparaloadingsessions.Whenthereis anongoingpar-
aloadingsession,a file cannotbeupdatedeasilyacross
all servers. Also, updatesshouldbe donecheaplyand
easily. A paraloadercannotbewidely deployedunless
thereis a robustmirroring infrastructureavailable. Fi-
nally, we needa mechanismto verify the integrity of a
file thathasits variouspartsdownloadedfrom different
mirror servers.µ Determininganddevelopingsolutionsto thesecurityis-
suesrelatedto paraloading.µ Determiningthe implications of the wide-spreaduse
of paraloading. More specifically, could paraloading
shift network congestionpointscloserto the edge(the
clients) of the network? If so, what impact would it
haveon theexisting network environment?

8 Future Research

Our immediateresearchgoal is to conductmoreparaload-
ing experimentsondifferentnetworksusingdifferentsetsof
mirror servers. We will attemptto implementasmany op-
timizationsaswe canto seehow consistentandhow large
the performancegainsare. A coupleof the optimizations
that we are especiallyinterestedin include pipelining and
dynamicblock sizeadjustment.

Sincethe Internet is driven mainly by web applications
today, we will be especiallyinterestedin examining how
paraloadingcanbe optimizedto provide performancegain
for retrieving web objects from different mirror servers.
Initially, we plan to conducta seriesof experimentswith
the non-optimizedparaloaderto help us designthe web-
optimizedparaloader.

We alsowant to explore whetherwe canincorporatethe
applicationlevelframing(ALF) [7] ideainto determiningthe



blocksizefor retrieving webobjects.Doingsomaygive the
paraloader¶ theflexibility to performout-of-orderdeliveryfor
webapplications.

9 Conclusion

In this paper, we have describeda simple methodof de-
creasingdownload time. By paraloading,openingparallel
connectionsto multiple mirrors, downloadtime canbe de-
creased.Moreover, becauseopeningmultiple connections
provides an aggregation of the individual bandwidths,the
improvementcanbesignificant.

In an attemptto explore whetherparaloadingwould per-
form better than traditional downloading, we performed
some paraloadingexperimentsto various mirror servers.
During the courseof our experiment,we determinedthat
the numberof serversused(the degreeof parallelism)and
thesizeof blocksa file is brokeninto canhave greatimpact
on the downloadtime. Overall, our resultsshow that par-
aloadingconsistentlydownloadsfiles fasterthantraditional
downloadingon theaveragecase.In addition,we simulated
severaldifferentoptimizationsusingthedatacollectedasthe
startingfoundation.We discoveredthatdownloadtime can
be further decreasedby addinga numberof enhancements.
In particular, pipelining requestsfor blocksandemploying
anintelligentpolicy for downloadingthelastblockcanhave
tremendousimpacton downloadtime.

In conclusion,basedon our results,we believe that par-
aloadingcanbebeneficialin any network environmentpro-
videdtheimplementationof theparaloaderapplicationis ro-
bust.
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Appendix A

Some Peculiarities of HTTP 1.1 implemen-
tations

During the courseof our experiment,we discoveredsev-
eral peculiaritieswith the HTTP 1.1 specificationthat can
causeproblemsfor our paraloader. While the HTTP 1.1
specificationis designedto havemorestringentrequirements
thanHTTP 1.0, implementorsof thespecificationstill have
agreatdealof leeway. As aresult,serverbehavior oncertain
typesof requestscanbe unpredictable.The following is a
list of server behavior thatwe hadto payattentionto during
analysis:µ Serversare not requiredto honor every RANGE RE-

QUEST command.Theonly requirementfor serversis
that they mustrespondwith somedatathat coversthe
requestedrange. This meansthat the server cansend
dataexactly in the requestedrange,somedatathat in-
cludesandexceedstherequestedrange,or eventheen-
tire file itself. Clearly, if a server choosesto sendmore
datathanthat requested,therewill be addedoverhead
for the paraloader. Furthermore,the efficiency of par-
aloadingcan be dramaticallydecreased.In the worst
case,if everyconnectionchoosesto sendtheentirefile,
therewould beno gainin downloadperformance.µ Servers may choosenot to honor rangerequestsfor
certaintypesof files. We discoveredthat serversmay
not allow rangerequestsfor HTML files suchasin-
dex.html. However, rangerequestswasallowedfor
largerbinaryfiles suchasJPEGandGIF files. Hence,
any implementationof theparaloadermustnot assume
thatrangerequestsarehonoredfor everyfile format.µ TheHTTP1.1specificationdoesnot requireall servers
to support persistentconnections. Furthermore,for
those servers that do support persistentconnections
have the option to close it after any requesttransac-
tions. Hence,any implementationof the paraloader
mustcheckfor this conditioncarefullyandavoid using
HTTP1.1serversthatdonotsupport“persistent”persis-
tent connnections.Otherwise,reopeninga connection
oneveryblockrequestwould incur toomuchoverhead,
thusdegradingtheoveralldownloadperformance.


