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Abstract

In this paper we describeparaloading a novel approachto re-
trieving files from the Internetby establishingparallelconnections
with multiple mirror sites. This methodcontrastswith the corven-
tional downloadmethodwherethe client retrievesdatafrom a sin-
gle source.The adwantageof paraloadingover single-connection
downloadingincludeimprovedperformanceyainedfrom aggreat-
ing thebandwidthsof the parallelconnectionsincreasedfficiency
gainedfrom load balancingdownload requestsamongthe parallel
connectionsandincreasedesilienceagainsicongestioror failures
on ary onepath,In orderfor paraloadingo work, senersmustbe
mirroredthroughouthe Internet. However, asmirror sitesbecome
more widespreadand as end usersupgradeto higher connection
speedswe believe that paraloading—ifimplementedproperly—
will offer significantperformancegain over the traditional single-
sourcefile accesses.

Paraloadings a subjectthathasnot beenextensvely studiedby
theresearcltommunity This paperexaminesthe performancend
the designof a paraloadingschemeproposedn [21]. We have de-
velopeda paraloaderapplicationin Java that usesHTTP 1.1 for
its range-requesindpersistentonnectiorfeatures.We have con-
ducteda seriesof experimentsusingour paraloadeat MIT andat
UC Berkeley, andwe have foundthatthe performanceyainsof par
aloadingarenotasgoodasthoseclaimedin [21]. Thissuggestshat
paraloadingmay not fair well in differentnetwork ervironments.
Neverthelessye believe thattherearea numberof enhancements
that canbe madeto the paraloadeto improve its performancen
differentnetwork environments.We will outline someof theseen-
hancementechniquesand discusssomeopenresearchssueson
paraloading.

Keywords: Parallel downloading, paraloading, mirror
seners,dowvnloadperformancelnternetmeasurements.

1 Introduction

Thecornventionalmethodfor downloadingafile from theln-
ternetis to openoneor moreconnectiondetweertheclient
and a single sener. The downloadperformance the time
to downloada file, is directly influencedby the load of the
sener, the bandwidthof the bottleneckiink, andary traffic
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fluctuationsthat may intersectthe route betweenthe client
andthe sener. To help balanceload and bring the content
physicallycloserto theclientin thehopeof improving down-

load performanceyariousorganizationhave deployed mir-

ror senersin differentnetwork domains. Thus, whenever
theuserswishto downloadfrom themirror seners,they can
selectamirror sitethatcontainsthefastestvailablepath.

Presently usersare seldomgiven accurateperformance
metricsto help them selectthe fastestsener. Most often,
clientsusead hocmirror selectiontechniqueshatyield poor
download performance. Even when the fastestsener has
beenchosenthroughputcanstill fluctuatebecausehe traf-
fic patternamay changeduring a downloadsession For ex-
ample, intermediaterouterscan becomecongestedduring
a download session. In this case,the transientcongestion
forcesthesenerto decreasds offeredload,whichthenlow-
erstheclient’s obsenedthroughput.

Thus, rather than trying to identify and connectto the
fastestvailablesener, clientscouldimprove downloadper
formancemoresimply andeffectively by connectingo two
or more senerscontainingan exact copy of the document.
Insteadof downloadingtheentiredocumenfrom onesener,
clientswould downloaduniquepartsof the samedocument
from eachof themirror senersin parallel.Onceall the parts
of the documentsave beenreceved, the client canrecover
the original documentby reassemblinghe pieces.This par
allel file accesschemeawasfirst proposedn [21]. In therest
of this paperwe will referto this schemeas“paraloading”.

Thereare several advantagego employing a paraloading
scheme.First, because paraloadingschemeopensmulti-
pleconnectiongo differentseners,paraloadings inherently
moreresilientto routeor link failuresandtraffic fluctuations
than the traditional schemeof downloadingfrom a single
source. Second,the mirror selectionprocesscan be elimi-
natedby a paraloadingschemehatopensa connectiorto all
of the availablemirrors. In this case the fastespathwill be
amongthe setof openedparallelconnectionsThird, aggre-
gatingthe bandwidthof the individual connectionscan po-
tentiallyincreaseverallthroughputo theclient. Ideally, the
total bandwidthto the client is equivalentto the sumof the
bandwidthdrom eachindividual sener. Fourth,a paraload-



ing schemeaallows the clientto employ a variety of schedul-
ing algorithmsfor assigningdownloadrequests.This flexi-
bility enablesanintelligent paraloadeto performdynamic
load balancing. For example, a paraloadercan chooseto
downloada biggerproportionof afile from afasterconnec-
tion or dropconnectionshathave becomeheavily congested
duringadownloadsession.

1.1 The Basic Paraloading Scheme

Thebasicparaloadingschemas conceptuallysimple.When
a client wishesto obtaina documentfrom a particularsite,
the paraloademill first obtaina list of mirrors senersas-
soicatedwith that site. We assumehis informationcanbe
obtainedeasily by queryinga directory service. Oncethe
senersareknown, the paraloadewill queryoneof the mir-
rors to obtainthe length of the target document. The file
lengthis neededor partitioningthe file into multiple block
unitsandfor ensuringthatall the blockshave beensuccess-
fully recevedby theclient. After thefile hasbeerpartitioned
into the properblock sizes the paraloadewill begin issuing
requestdor differentblocksto eachof the mirror seners.
When a connectionfinishesdownloadinga datablock, the
clientimmediatelyissuesarequesfor the next block to that
sameconnection. This schemecontinuesuntil all the dif-
ferentblocks of the documenthave beenreceved. As the
paraloadingprocedureprogressest is likely thatthe client
will receivethedatablocksoutof order Thereforethefinal
stepfor theparaloadeis to recovertheoriginal documenby
reorderingandreassemblingll theblocksit hasreceived.

Notice that this simple algorithm automaticallyachieses
load balancing: it is not difficult to seethat a fastercon-
nectionwill endup transportingmore block requestfrom
the paraloader Hence,a fasterconnectiorwill downloada
larger proportionof thefile thana slower connection.How-
ever, a dravbackto this algorithmis that connectionsbe-
comeidle whenthey wait for ablock to arrive afterissueing
arequest.Thisidle time typically spansoneround-triptime
(RT'T), duringwhich nousefuldatais transmittecandband-
width is wasted.

Concevably, a paraloadeilintroducesat leastthree nen
kinds of overheadnot foundin the traditionaldownloading
schemes.Theseare the overheadassociatedvith schedul-
ing the block requeststhe overheadassociatedvith intro-
ducingrequesimessagemto the network, andthe overhead
associateavith maintainingbuffersto receveincomingdata
blocks. Hence,a paralleldownloadingschemeshouldnot
bewidely deplogyedunlessit canbe proventhatparaloading
achievesa measurabl@erformancemprovementin today’s
network ervironment.

To this end, we developeda simple Java paraloadeap-
plication and usedit to conducta seriesof preliminary ex-
perimentsat MIT and UC Berkeley. Our experimentsare
similar to thoseconductedby Rodriguezet al. exceptwe
have performedour experimentsin two differentnetworks,
usingthreedifferentsetsof mirror seners. In addition,we

have varieddifferentparametersuchasthe degreeof paral-
lelism, thenumberof openparallelconnectionsandthe data
blocksizesin orderto examinehow eachof theseparameters
impactparaloadingerformance.

Our resultshave shavn that paraloadingachieres good
downloadperformancen general. This is similar to there-
sultsrecently publishedby Rodriguezet al. However, we
have foundthatthe performancegainsof paraloadingn our
network ervironmentare not as good as thoseclaimed by
Rodriguezetal. This suggestshatparaloadingnay not fair
well in all network ernvironments.Neverthelessye believe
thatthereare a numberof enhancementthat can be made
to the paraloadetto improve its performance.We will at-
temptto outlinethreeenhancemerechniquegor improving
paraloadingperformancefastfile lengthretrieval, pipelined
block requestsandlastblock downloadpreemption Finally
wewill discusssomeopenresearclissuegertainingto fair-
nessandefficiency.

2 Related Work

Prior to our researchand that conductedby the authorsin
[21], therehasbeenanumberof techniquesievelopedio im-
prove download performancé Onesimpletechniqueused
by web browsers[18] andby someFTP clients[1] involves
the openingof multiple connectiongo a single sener. In
thistechniqguedownloadtimeis decreasetiecaus¢heclient
consumesetwork bandwidthmore aggressiely [3] when
openingparallel connectiongo a single sener. While this
schemas simpleto implementtheaggressienessancause
anunfair allocationof network resource& Moreover, paral-
lel connectionsadd extra overheadto the sener by requir
ing the senerto maintainmultiple connectionsBecausehe
sener canonly opena limited numberof simultaneougon-
nections,the numberof distinct clients that the sener can
handlewill decreasédy a factorproportionalto the average
numberof parallelconnection®penedoerclient.
Anothertechniqueto reducedownloadtime relieson the
existenceof mirror senersthat containexactreplicasof the
datathat a client wishesto retrieve. Given a setof mirror
seners,aclientcouldminimizedownloadtime by accurately
selectingthe mirror sener with the shortestresponsdime
and highestbandwidth. Differentmethodsof selectingthe
bestsener have beenstudied. In [6], sener performance
is measuredlynamicallyby sendingprobepacletsfrom the

1While the paraloadingschemes first formalizedby [21], the earliest
implementationof a paraloadingclient we found is a Perl script that is
part of the CPAN library called the Parallel User Agent written by Marc
Langheinrich. The PUA is a simple script that allows usersto download
multiple files in parallelfrom different sources.However, unlike the par
aloadingschemeproposedy Rodriguezthe PUA doesnotsupportparallel
accesf anindividual file from multiple seners as doesthe paraloading
scheme.

2Balakrishnaret al. [4] have proposeda techniqueto solve this unfair
allocationproblemby introducinga “CongestionManagement’layer be-
tweenthe applicationand the transportlayer to coordinateparallel flows
connectedo asinglesener.



clientto eachsener. In [8], dataaboutsenersis maintained
in aresoler that clientscanqueryto obtainthe identity of

the bestsener. Specifically senerspushinformationabout
their performanceo resohersusedin application-layeary-

casting. In addition, probeagentssendperiodic queriesto

senersto determineperformance. Another methodto se-
lect the bestsener is basedon examiningstatisticalrecord-
keeping[22].

Thesemethodsof selectingthe “best” sener from a set
of mirror senershave mary disadwantagesUsinghistorical
measurementsan often leadto grossinaccuraciedbecause
traffic patternsvary overtime. On the otherhand,while us-
ing probepacletsto measurehe network conditionscanbe
more accurate periodic probing can introduceundesirable
overhead. Moreover, this file accessschemedoesnot take
adwantageof aggreyatingbandwidthfrom multiple connec-
tions. Thus, download performanceis still limited by the
bottleneckbandwidthof the optimal path.

Ratherthantrying to tacklethe problemof selectingthe
optimal sener, otherresearcherbhave examinedthe ideaof
parallel-acces$or information dispersal. Rabins research
on informationdispersakxploredthe ideaof disseminating
a documentto a recever by breakingit into several pieces
anddeliveringthe piecesalongmultiple network paths[20].
However, theideaof usingmultiple mirror senersin parallel
to improve downloadperformancas fairly recent.

Onenovel parallel-accesapproactio minimizedownload
timewasproposedy Byersetal. In [5], theauthorsdescribe
a “feedback-freeTornadosolution” to facilitatethe delivery
of datain parallel.In theirschemeafile of size F" is encoded
on eachmirror sener with redundaninformation. The en-
codedfile consistsof n = k + [ differentblocksof sizep,
wherenp > kp > F. Whenarecever makesarequestor
thefile, eachmirror site deliversthen packetscontinuously
to therecever®. To minimizethenumberof duplicatedoack-
etsrecevvedat the client, eachsendedeliversthe pacletsin
arandomorder As soonasthereceier collectsk distinct
pacletsfrom thesenderstheoriginalfile canbeimmediately
decodedandreconstructedThis schemds “feedback-free”
becaus®ncethetransmissiorbegins, thereceveris not re-
quiredto sendary explicit requestgo askfor a new paclet
nor is the recever requiredto sendary acknavledgements
backto thesendeto confirmthereceptionof a paclet.

While the Tornado code solution greatly simplifies the
mechanisnior datapacletdelivery (andprovidesanelegant
solutionto the multicastimplosionproblem),therearetwo
main drawbacksthat make it unsuitablefor wide-areapar
aloading.First, thereis an overheadassociateavith encod-
ing anddecodinghefile, allocatingstoragespaceor storing
theredundantnformationin the encodedile, andtransmit-
ting the extra kp — F' bytesof datausedto reconstructhe
original file. Second the feedback-freeschemecan poten-
tially causecongestioncollapsedueto undeliveable pad-

3In [5], Byersetal. assumehatthe sendingrateis TCP-friendlyand
doesnotintroduceaggressie behaior in the network.

ets[10]. Considerwhenthereceverhasrecevedk distinct

pacletsandwantsto terminateall the parallelconnections.
When the recever breaksthe connectionsall the paclets

currentlyin transitwill bedroppedandbandwidthis wasted.
This problemis aggraratedwhenthenumberof parallelcon-

nectionsis large or whenthe bandwidth-delayproductof a

connectionis large.

As mentionedoreviously, theauthorsof [21] proposeady-
namicparallel-accesschemavhereclientsandsenerscon-
nectvia unicastTCP Application-level negotiationsareused
to requesdifferentpartsof adocumenfrom mirror seners.
Theresultspresentedy Rodriguezet al. have shavn good
speedumver singleconnectiordownloading.

2.1 Assumptions

For a paraloadingschemeto be beneficial,thereare a few

assumptionghat musthold. First, we assumehat the un-

derlyingprotocol(in ourcase HTTP 1.1)transportglatare-

liably andimplementsrangerequestsorrectly Otherwise,
the paraloadeneedsto performa final checksunto verify

thatthereassembledile is correct.

Second,we assumehat the databeingfetchedis statig
meaningthat the file undegoesno changeson ary of the
mirror senersduringa paraloadingsession.

Third, we assumethat the paraloadercan quickly and
readily obtain the locationsof the available mirror seners
without incurring a significantoverheadin the system. In
theversionof the paraloadethatwe have implementedthe
mirror locationshave beenhardcoded.A betterapproachs
to have the paraloadenobtainthis informationautomatically
from widely deployed network services. For example,we
canenhancehe functionality of the DomainName System
(DNS) sener by addingsomeof the changegproposedin
[14] to provide alist of mirror senerscontainingthedesired
document.Alternatively, a directoryor searchenginecould
be queriedto provide the mirror list.

Finally, we assumehatthe pathsto the mirror senersare
bottlene&-disjoint In otherwords,thedifferentpathsof the
parallelconnectiongrom the clientto the senersdo notin-
tersectat a bottleneck. Sharingbottleneckss undesirable
in thefollowing two situations.In thefirst situation,if, atthe
bottlenecKink, thereareno connection®therthantheones
originatingfrom theparaloadertheparallelconnectiongnay
“cannibalize”eachother’s bandwidthandcancelany gainin
aggregatethroughput.In thesecondsituation,if two or more
paraloadeconnectionsharehebottleneckwith mary other
connectionsn the network, thenthe paraloadeconnections
will becomeoverly aggressie[3] andstartto dominateother
TCP-friendlytraffic in the network [10].

4Two or moreconnectionsnay intersecteachotheraslong asthe point
of intersectioris nota bottlenecKink.



3 Theoretical background of par-
aloading

The basicidea behind parallel dovnloadingis that clients
openconnectiongo multiple seners. In doing so, clients
couldexperienceabandwidthequivalentto thesumof thein-
dividual bandwidths.Theoretically this decreasethe over-
all time to downloadthefile.

Let the setof all senerscontaininga commondocument
be M. Definetheserialbandwidthto seners tobe i, ;. This
is the connectionbandwidththat a client experiencesvhen
only openingasingleconnection.Thereforethesetof serial
bandwidth=of all mirror senerscanbedefinedas:

U= {us,laus,27u8,37 . '7:“«9,|M\}'

We definethe ideal bandwidthto be equalto the sum of
theindividual serialbandwidths:

|M|

= Zus,i- (1)
i=1

As moremirror senersareintroduced,t will be possibleto
openmoreconnectionsTheoreticallyif bottleneck-disjoint
pathsare usedandthe client’s capacityis infinite, opening
more connectionswill increasethe ideal bandwidthandre-
sultin anoticeabledecreasé downloadtime.

Given S, thesizeof the desiredfile, we cancalculatethe
time to downloadthefile seriallyfrom seneri as

Mideal

+ t‘(g)’vierhead geonm (2)

ts,i = EX

’ Ms,i

The first term in equation(2) representghe transmission
time. In the serial download case, the overheadtime

touerhead is basicallyt, 7", which is the time between
maklnga block requestand receving the first byte of data.

Thet[7"°"*° essentiallyequalgheround-triptime RTT; to

seneri. Finally, 55", is thetime to opena serialconnec-
tion® to seneri.

To determinethe time to download a file using parallel-
accesswe mustconsidemmoreparametersWhenparaload-
ing, notall the senersneedto beused.Let M’ bethe setof
mirror senersactuallyusedfor paraloadingln otherwords,
M' C M. |M'| representshe degreeof parallelism.

Anotherparametethatwe canvaryis theblock size.Be-
fore paraloadingthe desiredile is brokeninto mary blocks.
If F'is the sizeof a block and B is the numberof blocks,
thenB = [2]. In orderto fully utilize all thesenersin the
setM', F shouldbe chosensuchthatB > |M’|. In other
words,aminimumof | M| blocksshouldbe downloadedsi-
multaneouslylf B; is the numberof blocksdownloadedby

sener i suchthat B = ELJX{' B;, the time for sener i to

5If the underlying protocol usesTCP, this is equialent to the time it
takesto performthe SYN paclet exchange.

downloadB; blocksis:

F
tpi = B (Np,i

In this equation the bandwidthto eachsener is denotedby
Up,i, which representiaherealizedbandwidthachie/edfrom
seneri whenall |[M'| connectionsareactive. Thus,u, ; <
ts,i. In the paraloadingcase the overheadime t‘”’"hwd is
the sumof #5777 andfroees®, wheret """ ~ RTT;
andtproce** is the processingverheador schedulinga re-
questto connectioni. In theideal case the processindime
is negligible.

Assumingthat mirror sener discovery is fast, and that
only a single sener performsthe initial file lengthrequest,
givenequation(3), thetime to downloada file from multiple
senersusingparaloadings:

) +teon, 3)

tp,total = tget_length + ma'x{tp,i}Vi eM (4)

wheret ge;_jengtn = RI'T; is thetime requiredto getthefile
lengthfrom somesener .

Now, considerthe casewhere M’ = M. Summingthe
individual bandwidthsz, ; to eachsenerduringparaloading
yieldsthetotal bandwidthduring paraloadin§:

| M|

= Z Mp,i (5)
i=1

Moptimal

In the forthcomingversion of this paper we will showhow
equation(4) can be madeequalto (5) whenwe assumehe
overheadis nggligible. Theresultof this will producea set
of mathematicalkonstaints that an ideal paraloader must
satisfyfor achieving optimal performance

Notice that poprime: Will not necessarilybe equal to
Mideal- ASSUMIngthatprocessingime is negligible andthat
all pathsarebottleneck-disjointthe upperboundon the op-
timal bandwidthis min(p;gear, fctient ) Wher€pciens is the
local client bandwidth.

As we have shown in theabove equationsparalleldovn-
loadingallows clientsto experiencea gainin total through-
put by aggreyatingtheindividual bandwidths.However, the
penaltypaid for paraloadings the increasedverhead. In
theory, if the overheadcanbe madesmall, the performance
of paraloadingshouldbe no worsethanserialdownloading.
In particulay if the fastesimirror sener k is includedin the
setof M', thenp, y is acomponendf optimqr, Whichim-
plieSthat/j’optimal > Ms,k-

6This is equivalentto the definition of optimumbandwidthasgiven by
Rodrigueztal.. In theirpapertheoptimumbandwidthis determinedased
on the optimumtransmissiortime. “The optimumtransmissiortime is the
transmissiortime achieved by a parallel-accesschemewhereall seners
sendusefulinformationuntil the documents fully receved andthereare
noidle timesbetweerreceptionof two consecutie blocks’



4 Paraloading Parameters

Someof theinefficienciesof paraloadingcanbereducedoy
merely increasingthe degree of parallelismand the block
size.

Intuitively, as the client increaseshe degree of paral-
lelism, the total download time decreasedecauseeach
addedsener contributes some bandwidthto the optimal
bandwidthy,peimar- This intuition is really theconsequence
of 5; as|M'| increaseSyoptimar iNCreasegaswell.

Hence,in theory setting M’ = M will alwaysresultin
thebestpossibleperformanceHowever poptimar is bounded
BY pctient WNEN pcient < Midear- N this situation, the
client’'s link is completely saturatedby the parallel con-
nectionsso thereis little gain in adding anotherconnec-
tion. Furthermorepracticalconsequencesuchasincreased
amountsof overheadand adwerseinteractionsamongpar
allel connectionsat the client’s link will likely decreasea
paraloades performanceThereforein practice,oneshould
chooseM' C M to achieve maximum performancegain
withoutwastingnetwork resources.

Thereareothersubtleissueshat explain why onewould
chooseadegreeof parallelismessthan|M|. Wewill discuss
theseissuesn the Discussiorsection.

While retrieving a file using paraloading,bandwidthis
wastedduringthe idle time betweerthe requestfor a block
andthearrival of therequestediatablock. Typically, theidle
timeis atleastone RTT.

Oneway to reducethis inefficiengy is to increaseblock
sizesandthusdecreas¢éhenumberof blocksandthenumber
of idle times. Unfortunately making blockstoo large will
reducethe total numberof blocks. This in turn reduceghe
effectivenes®f loadbalancingheblock requestamongthe
active parallelconnections.

In theory the optimalway to sizetheblocksis to assigna
differentblock sizefor eachof the connectionsothateach
connectiordownloadsoneblock andall downloadsfinish at
the sametime. In particular the size of the block F; for
seners shouldbe:

F=_tri_g (6)

Moptimal

Assigningthe blocksthis way ensureghateachconnection
finishesat exactly the sametime and only downloadsone
block. Clearly, this minimizesthe numberof requests.In
practice,however, it is difficult to determineboth 1, ; and
Uoptimal @Sbandwidthsanfluctuateconsiderablyvertime.

5 Optimization Techniques

In orderto achieve maximumperformancewe wantto fully
utilize all of the parallelconnectionsn a paraloader This
impliesthatanideal schedulerfor a degree| M’ | paraloader
will scheduléblock requestsuchthata) thefirst | /'] block
requestgjoingto eachof the mirror senersaremadeat the

earliestpossibletime, b) no wastedidle time betweensuc-
cessve block requestggoing to eachof the mirror seners
exists, and ¢) noneof the connectionshecomeidle before
thelast block hasbeenfully receved. To meeteachof the
correspondingequirementtistedabove,anidealparaloader
muststrive to minimize theinitialization delay theidle time
betweerrequestsandary idle time thatariseasaresultof a
poorly scheduledequestto retrieve the lastblock. We will
describehow the paraloadecanbeoptimizeto meeteachof
thesegoals.

5.1 Minimizing the Initialization Delay

Theinitializationprocessnusttake placebeforeaparaloader
canbegin sendingrequests.This processaffectsthe initial-
ization delay which involvesretrieving the mirror list and
file lengthinformationandestablishinga connectiorto each
of themirror seners.While thelatterdelaydepend®ntirely
on the network characteristicand the underlyingprotocol,
the former delay canbe minimized by cachingthe required
informationin thelocal system.

We recognizehatmaintaininganaccurateachecontain-
ing information aboutthe characteristicof the network is
not always possible;hence,we assumehat suchinforma-
tion mustbe fetchedfrom oneof the mirror seners. In this
situation theinitialization delaycanbeminimizedby piggy-
backinga datablock requestonto the mirror-list/file-length
guerythatis sentto one of the mirror seners. In this sce-
nario, we assumethat the location of at leastonesener is
givenatthestartof the paraloadet.

5.2 Minimizing the Idle Time Between Re-
quests

For eachrequestsentto a particularsener, a simple par
aloademustwait atleastone RT'T beforeit startsto receve
adatablock. Duringthisidle time, thelink is notutilizedand
bandwidthis wasted. In [21], the useof pipelining the re-
guestds proposedasa solutionto this problem.In atypical
pipelining schemethe paraloadewill initially sendn > 1
requestdor differentblocksto eachsener. Whena con-
nectiondownloadsthe first byte of datafrom a datablock,
anotherrequestis sentto that connectiorfor the next unre-
guestedlock. Therewill alwaysbe onependingdatablock
downloadat the clientandn — 1 pendingdatablock trans-
mission“in the pipeline” for eachconnection.lt is intuitive
to seethatn shouldbe setto 2. By settingn to 2, we min-
imize the numberof pendingrequestghat the sener must
keeptrack of. However, this requiresthatthe block sizebe
at leastthe bandwidth-delayproductof the particularcon-
nectionthattherequesis beingsentto.

7If all themirror locationsareknown aheacbf time, thenonecanfurther
optimizeby sendinga uniqueblock andfile lengthqueryfor thefirst | M’|
differentblocksto eachof the| M’| seners. Theblocksizecanbearbitrarily
setandary errorresponseseturnedasa resultof requestingout-of-range
datablockscanbeignored.



By introducing pipelining, the time due to requestinga
block (t,,777°"*%) is eliminated.We believe thatthisis anef-
fective optimizationespeciallyin situationswherethe block
size is relatively small comparedto the bandwidth-delay
productof theindividual connectionsOur simulatedexper
imentalresultsagreeswith this claim.

5.3 Minimizing the Idle Time in Down-
loading the Last Block

The amountof time spentdownloadingthe last datablock
can be significant. This is especiallytrue when the block
sizeis largeandthelastblock downloadhasbeenscheduled
to aslow connection.As this connectiordownloadsthe last
block, otherconnectiongnaybecomadle. Onewayto mini-
mizethiswastebandwidthis to setsmallerblock sizessothat
the wait time for the lastblock is reduced.However, small
block sizesmaybeimpracticalbecausehey will requirethe
paraloadeto sendmary morerequestmessageto the net-
work. Moreover, small block sizeswill increasethe total
numberof idle gapswhenpipeliningis notimplemented.

Anotherapproachto minimize the last block delayis to
dynamicallyadjustthe block sizesaccordingto (6) so that
thelast|A/'| datablocksfinish downloadingat roughly the
sametime. However, this will requireaccuratebandwidth
measurement®r eachconnectioratruntime,whichmaybe
difficult to obtain.

Alternatively, the paraloadeican sendrequestd4o oneor
moreof theother|M'| — 1 connectionshathave becomedle
to download the remainingportionsof the last block from
the differentmirror seners. However, in this case,anidle
time periodstill existsbeforethe paraloadecanidentify the
lastblock. For example,imaginetwo slon connectionghat
startto paraloadthe final two blocks of a file at the same
time. In thissituation thelastblock cannotbeidentifieduntil
one of the two blocks finishesdawnloading. Becausethis
wait canstill be significant,anideal optimizationtechnique
would assignrangerequestdor the unreceved portionsof
eachof thelast|M'| — 1 blocksto theconnectionghathave
becomedle.

Clearly, the block assignmentpolicy can be varied to
tradeof performanceand the amount of redundantdata
transferred.In maximizing performanceijt is possiblethat
redundantdatawill be receved. In both of the previous
casesyedundantlatamay be receved sincethe paraloader
typically cannotrevoke ablock requesthathasalreadybeen
sent.

6 Dynamic Paraloading Experi-
ment

Themainobjective of our experimentwasto verify thatpar
aloadingdecreaseslownload time relative to downloading

from a singleconnection.At the sametime, we hadseveral
otherobjectives:

1. Todeterminavhetherchangingheblocksizeor thede-
greeof parallelismcould affectdownloadperformance.

2. To collect an extensie set of datato shov how well
paraloadingperformsunderdifferentnetwork environ-
ments.Towardthis goal,we ranexperimentsattwo dif-
ferentclient sitesparaloadingrom threedifferentsets
of mirror seners.We haveplansto try paraloadindrom
additionalsites.

3. To compareour resultswith thoseobtainedin [21] and
to verify that paraloadingindeedproducessignificant
speedumverthesingleconnectiorcase.

4. Todetermingheimpactof paraloadingperformancedy
applyingsomeof theoptimizationgdiscusseth thepre-
vioussection.

We first designedand implementeda paraloader In
ourimplementation,we wrote a Java application called
j pht t p, which standsfor Java Parallel HTTP. The pro-
gram'sunderlyingprotocolis HTTP 1.1. We chosethis pro-
tocol primarily becausat is widely deployed and because
it supportsrangerequestsand persistentonnection® The
rangerequesfeatureis usedfor fetchinga documentblock
with arbitrary startandfinish offsetsfrom a range-request-
enabledmirror sener. The persistenttonnectionfeatureis
usedto enhancehe efficiengy of the paraloadet.

In our paraloaderonly two of the optimizationswereim-
plemented.We save oneroundtrip time by issuinga GET
messageo a randomsener in orderto requestfor the file
lengthandthe first datablock. We alsoalsoattemptreduce
the last block delay by selectingthe fastestconnectior® to
downloadthe unrecevedportion of thelastblock. Requests
arenot pipelinedin ourimplementation.

We have ensuredhatthereceversocletbufferis setlarge
enoughso that it doesnot createa bottleneckat the client
by adwertisinga smallerthan-optimalTCP recever window
value.In our experimentstherecever soclet buffer is setto
32KB.

8AlthoughHTTP 1.1waschoserin ourimplementationthechoiceof an
underlyingprotocolis orthogonalto the ideaof paraloading.For example,
onecanstill implementa paraloadingschemewithout usingrangerequests
by pre-partitioningthe file at the mirror senersand namingthe files with
theappropriateblock numbers.

9Ratherthanwastingpossiblymary round-triptimesfor re-negyotiatinga
new connectiorevery time the paraloadesendsarequesto amirror sener,
the persistentonnectiorfeatureallows the paraloadeto sendrequestdy
usingthe sameconnectionasthe onefirst establishedetweenthe mirror
senerandthe paraloader

10we determinethe fastestconnectionto be the connectionthat down-

loadedthe mostblocks at the time when the paraloadeidentifiesthe last
block.



6.1 Experiment Setup

In our experiment, we downloaded a single file
from three different sets of seven mirror seners
M = 7). In particular data from the mirrors
of the sites http://ww. kernel.org (Set 1),
http://mars.jpl.nasa. gov/ngs (Set 2), and
http://ww. t ucows. com (Set 3) were downloaded.
In additionto paraloadingrom differentsetsof mirrors,we
alsoparaloadedt differentclient locations;we paraloaded
to hostsat MIT andUC Berkeley.

To examinehow the degree of parallelismwould affect
the downloadtime, we setthe degreeof parallelismto one,
three,five, and seven senersand downloadedthe samefile
for eachvalueof | M'|. To examinehow performancevaries
for differentfile sizesS, we downloadeda 1 MB file anda
300KB file. We fixedtheblock sizeto 32 KB.

Becausdraffic over the Internetcanvary over a day and
throughoutanentireweek,we conductedur experimentfor
24 hoursover a periodof seven days. On day 4, at the be-
ginning of every hour, a 1 MB file anda 300 KB file was
downloadedfrom seneri. To increasehe accurag of our
sampleswe repeateceachdownloadfive times. Oncethe
file wasdownloadedserially, the sametwo files weredown-
loadedfrom a randomlychosensetof threeseners,a ran-
domly chosenrsetof five seners,andfinally from all seven
seners.Again, eachof thesedownloadswvasperformedives
times. This procedurevasrepeatedor eachof thethreesets
of mirror senerslistedabove.

As the downloadsproceededyve tracked various statis-
tics abouteachconnectiorsuchastheresponsédime, down-
loadtime, andthe schedulingoverheador eachblock. The
responsdime is the time betweensendinga block request
andreceving thefirst byte of the datablock. Typically, this
is the sumof the roundtrip time andthe sener processing
overhead.The downloadtime is the time betweensending
ablock requestandreceving thelastbyte of the datablock.
The schedulingoverheads the amountof time thatthe con-
nectionremainidle while waiting for the scheduleto assign
thenext block request.

6.2 Results and Analysis

In this section,only theresultsfor the MIT/MARSparaload-
ing experimentsare presented\\e are still in the processof
gatheringandanalyzingthe resultsof the other experiments
mentionedn the previoussection.We will presenthesere-
sultsin the forthcomingversion of this paper

Beforeanalyzingthe data,we first averagedhefive trials
perdegreeof parallelismat eachhour. This averageformed
a paraloadsampleper setfor thathour. For eachdegreeof
parallelismwe thenaveragedeachparaloadsamplefor each
hour acrosssevendays. This averageforms a datapoint on
thegraphfor the specificnumberof senersused.

In figure 1, we graphthe time to downloada 1 MB file
from eachof the senersthroughouta singleday. In addi-

tion, we determinedthe averagetime to download the file
fromonesener, if thesenerwerechoserrandomlyfrom M.
This is doneby summingthe single-serer downloadtimes
at eachhour and dividing by the total numberof seners.
For comparisonye alsographtheideal downloadtime that
would resultif a bandwidthof p;4.4; @sdefinedin Equation
1 wasused. The value of p;geq; is calculatedoy summing
the experimentalvaluesof y, ; ateachhour.
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Figurel: Averagdimeto downloadal MB file seriallyfrom
several MARS web mirrorsthroughouta singleday (S = 1
MB, F' = 32KB, |[M'| =1).

As shawn, the downloadtime for the file variesconsid-
erablyto someof the senersusedthroughoutthe day. For
example,the slowestsener (Denmark)takesbetweend and
130 seconddo deliver thefile asthe day progressesHow-
ever, thedownloadtime for thefastsenersseemdo befairly
stablethroughoutan entire day For example, the USA2
senerdownloadsthefile consistentlyin 2 to 4 seconds.

In figure 2, we graphthetime to downloada 1 MB file us-
ing variousdegreesof parallelism.Thesenersexaminedare
againMARS mirrors. Thesinglesener caserepresentshe
averageof theindividual downloadtimesof eachsener. In
additionto graphingthedownloadtime for differentdegrees
of parallelism,we also graphedthe downloadtime derived
from figeqr @and poptimai. The valueof p;qeq; is calculated
asbeforeandthe valueof p,pima is obtainedby summing
the simulatedvaluesof p, ; for all 5. The valueof yu, ; is
simulatedby subtractinghe measuredchedulingoverhead
timesandthe responsdimes from the total downloadtime
for all blocksin connectioni. This numbemwasthendivided
into B; F;, thetotal numberof bytesdownloadedfrom con-
nection:. As shavnin figure 2, thetimesto downloadfrom
parallel connectiondgs clearly lessthanthe time to down-
load from an averagesener. This meansthat on average,
paraloadingperformsbetterthandownloadingfrom asingle
sener. Moreover, thedownloadtime decreaseasmoremir-
ror senersareadded.For example,the averagetime reduc-
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Figure2: The downloadtime for a 1 MB file is compared
amongdifferentdegreesof parallelism(S = 1 MB, F = 32
KB, |M'| =1,3,5,7)

tion betweenthe oneandthreesenerscaseis about7.93s.
Theaveragdaifferencebetweertheoneandfive senercases
is about12.3s. Finally, the averagedifferencebetweerthe
oneandsevensenerscases 13.5s.

Oneinterestingfeatureto noteis thatas|M'| increases
from five to seven, the performancegain is lessdramatic.
A possiblereasorfor this behaior is thattwo slow seners
wereadded.The senersprobablydid not contributein fur-
therreducingthe downloadtime.

Anotherinterestingfeatureof this graphis thatthe down-
loadtime usingtheoptimalbandwidthis neartheidealband-
width. However, this doesnot provide any knowledgeabout
thebottleneck-disjointnesat the client. We will explain this
in detailin a forthcomingpaper

In figure 3, we againgraphthe time to downloada 1 MB
file usingvariousdegreef parallelism.Thistime, however,
the |M'| = 1 caserepresentshe time to downloadthe file
from the fastessener (USA2). Again, we alsographedhe
downloadtime derivedfrom p;geqr and poptimai- The most
surprisingresultshovn by thesegraphss thatthe download
times when paraloadingis actually worse when compared
to the fastestsener. This resultseemgo contradictthe re-
sults obtainedin [21], wherethe authorsfound consistent
performancegain in all their dynamic paraloadingexperi-
ments. We will attemptto resole theseinconsistenciesn
thenext section.

In figures4 and5, we shav thetimesto downloada 300
KB file with varyingdegreesof parallelismandafixedblock
sizeof 32 KB (sameasbefore). In figure 4, the |[M'| = 1
caserepresenttheaverageof theindividual downloadtimes
from eachsener. In figure5, the |M'| = 1 caserepresents
thetimeto downloadfrom thefastessener (USA2). In gen-
eral,the performanceyainedovertheaveragecasefrom par
aloadingthe smallfile is lessthanthe performancegained
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Figure 3: The downloadtime for a 1 MB file is compared
amongdifferent degreesof parallelismwheredegreel is

representedby the fastestsener (S = 1 MB, F = 32 KB,

|M'|=1,3,5,7)

from paraloadinghelargefile. In someinstancege.g.when
|M'| = 3), the paraloadingoerformances worsethanthe
averageserial download case. Theseresultsare expected
becausethe effectivenessof load balancingthe block as-
signmentshasdecreasedueto the reducedotal numberof
blocks. Hence,we canconcludethat paraloadingbecomes
lesseffective whenit is usedfor downloadinga smallfile 2.

6.3 Comparison with Rodriguez et al. re-
sults

Our experimentalresultshave shonn that paraloadingdoes
not provide significantperformancegain over from the best
singlesener case.Thisis in contrastto theresultsreported
in [21]. In this section,we will compareand contrastour
experimentsetupagainstthat reportby Rodriguezet al. in

anattemptto explain why our resultsdiffer.

In our experimentthefile sizesandblock sizesusedwere
roughly the samesizeasthosein [21]. In addition,the de-
greeof parallelismusedwasalsoapproximateljthesamejn
mostof their experimentsthey use|M'| = 4, while we use
|M'| = 3,5. However, our experimentdiffer in the follow-
ing majorways:

1. Thesenersusedin their experimentwereroughly one
orderof magnitudg7 times)slower thanours. The av-
eragesinglesourcethroughputhatwasreportedanged

1However, we do not rule out the possibility for achieing high perfor

mancegain by using a paraloadeto retrieve manysmall files in parallel.
Suchaschemewill mostdefinitelybe usefulfor webbrowsingapplications.
Although Rodriguezhassuggestedhatsmallfiles, suchasweb objects,be
combinedinto a larger file in orderto increaseparaloadingeffectiveness,
combiningthe smallfiles togethemwill causeexcessie delaysbecausehe
largerfile might have to be entirelyretrieved beforethe applicationcanac-
cessary oneof thesmallfiles.
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Figure4: The downloadtime for a 300KB file is compared
usingdifferentdegreesof parallelism(S = 300 KB, F' = 32
KB, |M'| =1,3,5,7)

from 40 to 120 Kbps. In our experiment,the single
sourcethroughputrangedirom 210to 890Kbps.

2. Fromtheir paper it is likely that their paraloadeem-
ployeda differentstrategyy for obtainingthefile length.
More specifically they did notimplementthe optimiza-
tion that combinesthe first block requestwith the file
lengthquery

3. The paraloademsedby Rodriguezet al. employs a
different stratgy for minimizing the last block delay
Specifically their stratgy doesnot require the idle
connectiongo wait for the paraloadetto identify the
last block, but downloadsredundantdatafor the last
|M'| — 1 blocks.

We now shaw thatthesedifferencescanaffect the perfor
manceof the paraloadeim thefollowing ways:

1. High speechetworkswill increaseheratio betweerre-
guestidle time anddatablock transfertime. Hence,if
we assumehat the roundtrip timesaresimilar for all
connectionsn both experiments,our experimentwill
suffer from a higherratio of wastedbandwidth.

2. In analyzingthe file length query optimization, we
found a bug in our paraloader Ideally, full scalepar
aloadingshouldbegin assoonasthe file lengthinfor-
mationis obtained,.e. whenthe HTTP headerarrives
attheparaloaderHowever, our paraloadedoesnot be-
gin paraloadinguntil aftertheentirefirst blockhasbeen
receved. Thus,the bug addsa total delay of the time
requiredto download a datablock, which canbe sig-
nificant if a slow connectionwere chosenfor the file
length query To testthe effect of this bug, we have
simulatednew resultsby subtractingthe datatransfer
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Figure5: Thedownloadtime for a 300KB file is compared
usingdifferentdegreesof parallelismwheredegreel is rep-
resentecdy the fastestsener (S = 300 KB, F' = 32 KB,

|M'| =1,3,5,7)

time for thefirst block of datafrom the original results.
The simulatedresultsfor paraloadinga 1 MB file from
the MARS mirror senersto MIT areshown in Tablel.
Fortunatelyfor us, thereis no significantperformance
differencebetweerthe simulatedandoriginal results.

Tablel: The performancempactof a bug introducedn our

paraloaders shovn. Thetime for paraloadinga 1 MB file is

the averageof the 24 hour averages Hencethetimesin the

first columncorrespondso theaverage®f the 24 datapoints
for each|M'| > 1) in figure 2. Thetimesin the second
columncorresponds$o the samesetof averagesubtracthe
averagedirst block datatransfertime.

1y Original Simulated Speedup
paraloading paraloading
time, averagedss) | time,averageds)
3 11.025 10.466 5.74%
5 6.548 6.114 7.29%
7 5.462 5.134 6.87%

3. It turns out that the differencein the last block opti-
mization(LBO) policy hasanenormousmpacton par
aloadingperformance.We have simulatednew results
by subtractingthe fastestconnections wait time from
thetotal time. Thefastesttonnections wait time is the
differencebetweenthe time when the fastestconnec-
tion becomesdle dueto anemptyblock requesigueue
andthetime whenthe lastblock requesis assignedo
it. In Table2, we shav the gainrealizedby simulating
this optimization.While we recognizehe simulatede-
sultscanreportanoverly optimisticparaloadingerfor



mance the significanttime differencebetweerthe two
resultsstill givesa goodideaof how muchbandwidth
waswastedduringthe fastestonnections wait period.

Table 2: Compareshe performanceof a paraloademwith
LBO. The sameaveragingmethodusedin Table1 wasalso
usedhereto constructhetablevalues.

| M| Averagetime | Averagetime | Speedup
withoutLBO (s) | with LBO (s)
3 11.025 10.785 2.08%
5 6.548 5.269 23.05%
7 5.462 3.671 48.13%

We believe that the combinationof the threekey differ-
encesoutlinedabove have reducedherealizedperformance
gainin our experiments Hence we believe thatafterresolv-
ing the implementationdifferences,the performancegain
shouldmatchthosereportedn [21].

Oneimportantlessonto belearnedis thatthe implemen-
tation differencesamongparaloadergsangreatlyimpactthe
performanceof the paraloader Becauseparaloadinghas
sucha large parametesspace the numberof possibleopti-
mizing designsaarenumerous.

6.4 Pipelining Simulation

We have alsosimulatechew resultsfor examiningtheperfor
mancegainedby pipelining block requests.Our paraloader
haskept a recordof the responsdime betweensendinga
requestandreceving thefirst byte of datafor eachblockre-
guested.To simulatethe pipelining results,we summedhe
total downloadtime and then subtractedhe responsdime
for the individual blocks. This gives us a setof new val-
uesindicatingtheamountof time eachconnectiorhadspent
downloadingblocks. We thentake the maximumover this
setof valuesto bethe new totaltime for paraloadingheen-
tire file by pipelining requests Notice this simulationgives
a consenative estimateof the theoreticalpipelining caseas
theremay be a betterrequestissignmenamongthe connec-
tions.

Table 3 shaws the simulatedresultsfor the differentde-
greesof |M'|. The averageimprovementof pipelining
over the non-pipelinedcaseis about38%. As shawn, the
pipelined simulation shavs a significant performanceim-
provementin our experiment. Also, we note that the im-
provementswe have obtainedin the pipeline simulationis
much greaterthan the improvementsdue to pipelining ob-
tainedin [21]. We believe thatthis is causedby the higher
averagebandwidthsof the network we used. As explained
above, higherbandwidthdeadto a higherratio betweendle
time and datatransfertime. Sincethe pipelining optimiza-
tion is designedo eliminatethis waste, it is not surprising

Table3: Comparesheperformancef a paraloadewith the
pipelinedrequesbptimization. The sameaveragingmethod
usedin Tablel wasalsousedhereto constructhetableval-
ues.

|M'| | Averagetime | Averagetime | Speedup
without with
pipelining(s) | pipelining(s)
3 11.025 8.320 36.15%
5 6.548 4.787 38.70%
7 5.462 3.948 42.09%

to seea greaterperformancemprovementin our simulated
experiment.

7 Discussion

Up to this point, the paperhasfocusedon performances-
sues.In this section,we attemptto discussotherissueghat
may becomeimportantfor deploying a complete,efficient
paraloadingsystem.

7.1 Cost of paraloading

While paraloadingnaysignificantlyimprove downloadper
formance,it doesnot comewithout cost. A good paraload-
ing systemshouldconsiderthe costof its design. Here,we
outlinethreegeneralypesof coststhatwould appeain ary
paraloadingscheme:

1. First, aswe have seen,thereis a processingverhead
atthereceverfor schedulingblock assignmentamong
theparallelconnections.

2. Second,thereis a memory overheadassociatedvith
creatinganapplicationbuffer large enoughto hold data
blocksthatarrive outof order In ourcurrentimplemen-
tation, the memorycostis |M'| - F' bytes. In addition,
thereis alsoa memorycostassociatedvith openinga
new receiversocletfor eachparallelconnection.

3. Third, thereis the costfor the block requestmessages
to generateextra traffic in the network. The magnitude
of thiscostdependgreatlyontheblock sizeandonthe
paraloades underlyingprotocol.

4. Fourth,thereis anincreasen senerresourceonsump-
tion as paraloaderopen multiple connections. Con-
sequently the maximumnumberof clients per set of
mirror senerswill decreaseWe will usethefollowing
algebrato illustrate what we mean. The consequence
of this costis thatthe total resourcesat all the mirror
senersmustincreaseby a factor A (definedbelow) if
thosesenerswish to provide serviceto the samenum-
berof clientsasthe serialdownloadingcase.



Define M to be numberof mirror senersand N be the
maximumnumberof simultaneousonnectionger sener.
Let A be the averagenumberof parallel connectionsper
client whereeachconnectionconnectdo a differentsener
and C be the averagenumberof parallel connectiongper
clientwhereeachconnectiorconnectdo asinglesener. Let
V bethetotal numberof clientssened.

In the serial downloadingcase,Vieriqt = NM, in the
paraloadingcase,Vparaioad = (NM)/A, andin the cases
where parallel connectionsare openedto a single sener,
Vparallel = (NM)/C

7.2 When To Use Paraloading

Therearesituationswvherewe do not wantto startparaload-
ing. An intelligent paraloademustdevise heuristicsto de-

terminewhenit shouldstartparaloadingr whento revertto

theserialdownloadschemeWe outlinethreesuchsituations
below.

e As alreadyshowvn in our results,paraloadingdoesnot
provide much of a performancegain whenit is used
to retrieve a single small file. Whenthe performance
gain is too small, a paraloadeishouldrevert to serial
downloadingto consere network resources.

¢ In the casewheretherearea few outlying connections
with relatively high bandwidthsthatis, whenall other
connectionshave very low bandwidthsrelative to the
outliers, almostall block requestswill be assignedo
theoutlying connectionslin this case a paraloademay
wishto droptheslow connectionso conseresenerre-
sourceswithout significantlyaffecting performanceln
thecasewherethereis only oneoutlying connectionan
intelligentparaloadeshouldrevertto a serialdownload
from thesingleoutlierin orderto savetheblockrequest
overheadsNote thatthis effect canbe emulatedoy in-
creasinghe block sizedynamically

e Finally, aswe alreadymentionedin the Assumptions
section,we note that paraloadingmay becomeoverly
aggressiein acongestedhetwork andstartto dominate
other TCP-friendly flows. An intelligent paraloader
should be conserative and drop connectionghat are
sharinga bottleneck. However, detectingwhich setof
connectionsharea bottleneckis a very difficult prob-
lemt?.

7.3 Open Research Issues

Hereis alist of openresearclissueselevantto the designof
asuccessfuparaloadingystem.

12\We believe that the paraloadingschemewill provide mary interest-
ing waysto attackthis or a similar problem. For example,the paraloader
can treat block requestmessagess “probe” paclets to measurethe re-
sponsdime of the connection Also, it is not necessaryo drop bottleneck-
sharingconnections.The paraloadercaninterleare block requestsamong
thebottleneck-sharingonnectiondo countertheir aggressie behaior.

¢ Detectingsharedbottlenecksand minimize the poten-
tial aggressienessvhensharinga bottleneckwith ex-
isting connections.

e DevelopingacommonAPI thatoffers paraloadingser
vices to a variety of different applications(e.g. ftp,
http).

e Determining whether paraloadingshould be imple-
mentedat the applicationlevel or atthe network level.

e Designinga directoryservicethatreportsthelocations
of all themirror senerscontainingthe samedocument.

e Determiningwhethemetwork scopeaffectsthroughput
of mirror seners.If we canfind outhow network scope
affectsthroughputthena paraloadecanopenparallel
connectiongo a specificsetof mirror senerswithout
relying on explicit network metricinformation.

¢ Designingaprocesdor acheapgasyfast,safe,andse-
curemirror updateandreplicationthatcanhandleongo-
ing paraloadingessionsWhenthereis anongoingpar
aloadingsessionafile cannotbe updatedeasilyacross
all seners. Also, updatesshouldbe donecheaplyand
easily A paraloadecannotbe widely deplojedunless
thereis a robustmirroring infrastructureavailable. Fi-
nally, we needa mechanismnto verify theintegrity of a
file thathasits variouspartsdownloadedrom different
mirror seners.

e Determininganddevelopingsolutionsto thesecurityis-
suegelatedto paraloading.

e Determiningthe implications of the wide-spreaduse
of paraloading. More specifically could paraloading
shift network congestiorpointscloserto the edge(the
clients) of the network? If so, whatimpactwould it
have on the existing network ervironment?

8 Future Research

Our immediateresearctgoal is to conductmore paraload-
ing experimentson differentnetworksusingdifferentsetsof

mirror seners. We will attemptto implementas mary op-

timizationsaswe canto seehow consistentand how large
the performancegainsare. A coupleof the optimizations
that we are especiallyinterestedin include pipelining and
dynamicblock sizeadjustment.

Sincethe Internetis driven mainly by web applications
today we will be especiallyinterestedin examining how
paraloadingcan be optimizedto provide performancegain
for retrieving web objects from different mirror seners.
Initially, we plan to conducta seriesof experimentswith
the non-optimizedparaloaderto help us designthe web-
optimizedparaloader

We alsowant to explore whetherwe canincorporatethe
applicationlevelframing(ALF) [7] ideainto determininghe



block sizefor retrieving webobjects.Doing somay give the
pardloadetheflexibility to performout-of-orderdeliveryfor
webapplications.

9 Conclusion

In this paper we have describeda simple methodof de-
creasingdownloadtime. By paraloadingopeningparallel
connectiongo multiple mirrors, downloadtime canbe de-
creased. Moreover, becauseopeningmultiple connections
provides an aggregation of the individual bandwidths,the
improvementcanbe significant.

In an attemptto explore whetherparaloadingvould per
form better than traditional downloading, we performed
some paraloadingexperimentsto various mirror seners.
During the courseof our experiment,we determinedthat
the numberof senersused(the degreeof parallelism)and
the sizeof blocksafile is brokeninto canhave greatimpact
on the downloadtime. Overall, our resultsshav that par
aloadingconsistentlydownloadsfiles fasterthantraditional
downloadingon the averagecase.In addition,we simulated
severaldifferentoptimizationsusingthedatacollectedasthe
startingfoundation. We discoveredthat downloadtime can
be further decreasetby addinga numberof enhancements.
In particular pipelining requestdor blocks and employing
anintelligentpolicy for downloadingthelastblock canhave
tremendousmpacton downloadtime.

In conclusion,basedon our results,we believe that par
aloadingcanbe beneficialin any network environmentpro-
videdtheimplementatiorof the paraloadeapplicationis ro-
bust.
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Appendix A

Some Peculiarities of HTTP 1.1 implemen-
tations

During the courseof our experiment,we discovered sev-
eral peculiaritieswith the HTTP 1.1 specificationthat can
causeproblemsfor our paraloader While the HTTP 1.1
specifications designedo have morestringentrequirements
thanHTTP 1.0, implementorsof the specificationstill have
agreatdealof leeway. As aresult,senerbehaior oncertain
typesof requestsan be unpredictable.The following is a
list of sener behaior thatwe hadto payattentionto during
analysis:

e Senersare not requiredto honor every RANGE RE-
QUEST command.Theonly requiremenfor senersis
thatthey mustrespondwith somedatathat coversthe
requestedange. This meansthat the sener cansend
dataexactly in the requestedange,somedatathatin-
cludesandexceedgherequestedangeor eventheen-
tire file itself. Clearly, if a senerchoosego sendmore
datathanthat requestedtherewill be addedoverhead
for the paraloader Furthermorethe efficiency of par
aloadingcan be dramaticallydecreased.In the worst
casejf everyconnectiorchooseso sendtheentirefile,
therewould be no gainin downloadperformance.

e Seners may choosenot to honor rangerequestsfor
certaintypesof files. We discoveredthat senersmay
not allow rangerequestdor HTML files suchasi n-
dex. ht m . However, rangerequestsvasallowed for
larger binary files suchasJPEGandGIF files. Hence,
ary implementatiorof the paraloademustnot assume
thatrangerequestarehonoredfor everyfile format.

e TheHTTP 1.1specificatiordoesnotrequireall seners
to support persistentconnections. Furthermore,for
those seners that do support persistentconnections
have the option to closeit after any requesttransac-
tions. Hence,ary implementationof the paraloader
mustcheckfor this conditioncarefullyandavoid using
HTTP1.1senersthatdonotsupport'persistent’persis-
tent connnections.Otherwise reopeninga connection
onevery block requestvould incurtoo muchoverhead,
thusdegradingthe overalldownloadperformance.



