
Lecture 7: Voronoi Diagrams

Presented by Allen Miu

6.838 Computational Geometry

September 27, 2001

Post Office: What is the area of service?

q

q : free point

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

Definition of Voronoi Diagram

• Let P be a set of n distinct points (sites) in the plane.

• The Voronoi diagram of P is the subdivision of the
plane into n cells, one for each site.

• A point q lies in the cell corresponding to a site pi ∈ P
iff
Euclidean_Distance(q, pi) < Euclidean_distance(q, pj),
for each pi ∈ P, j ≠ i.

Demo

http://www.diku.dk/students/duff/Fortune/
http://www.msi.umn.edu/~schaudt/voronoi/

voronoi.html

Voronoi Diagram Example:
1 site

Two sites form a perpendicular
bisector

Voronoi Diagram is a line
that extends infinitely in
both directions, and the
two half planes on either
side.

Collinear sites form a series of
parallel lines

Non-collinear sites form Voronoi
half lines that meet at a vertex

A Voronoi vertex is
the center of an empty
circle touching 3 or
more sites.

v

Half lines

A vertex has
degree ≥ 3

Voronoi Cells and Segments

v

Voronoi Cells and Segments

v

Unbounded CellBounded Cell

Segment

Who wants to be a Millionaire?

vWhich of the following is true for
2-D Voronoi diagrams?

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above

Who wants to be a Millionaire?

vWhich of the following is true for
2-D Voronoi diagrams?

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above

Degenerate Case:
no bounded cells!

v

Summary of Voronoi Properties
A point q lies on a Voronoi edge between sites pi and
pj iff the largest empty circle centered at q touches
only pi and pj

– A Voronoi edge is a subset of locus of points equidistant
from pi and pj

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

Summary of Voronoi Properties
A point q is a vertex iff the largest empty circle
centered at q touches at least 3 sites
– A Voronoi vertex is an intersection of 3 more segments,

each equidistant from a pair of sites

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

Voronoi diagrams have linear
complexity {|v|, |e| = O(n)}

Intuition: Not all bisectors are Voronoi edges!

e

e : Voronoi edge

pi

pi : site points

Voronoi diagrams have linear
complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6

Proof: (Easy Case)

…

Collinear sites � |v| = 0, |e| = n – 1

Voronoi diagrams have linear
complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6
Proof: (General Case)

• Euler’s Formula: for connected, planar graphs,
|v| – |e| + f = 2

Where:

|v| is the number of vertices

|e| is the number of edges

f is the number of faces

Voronoi diagrams have linear
complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6

Proof: (General Case)

• For Voronoi graphs, f = n � (|v| +1) – |e| + n = 2

epi

p∞

To apply Euler’s Formula, we
“planarize” the Voronoi diagram
by connecting half lines to
an extra vertex.

Voronoi diagrams have linear
complexity {|v|, |e| = O(n)}

Moreover,

and

so

together with

we get, for n ≥ 3

||2)deg(
)(

ev
PVorv

⋅=∑
∈

),(PVorv ∈∀ 3)deg(≥v

)1|(|3||2 +≥⋅ ve

2||)1|(| =+−+ nev

63||
52||

−≤
−≤

ne
nv

Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

Repeat for each site

Running Time:
O(n2 log n)

Constructing Voronoi Diagrams

• Half plane intersection O(n2 log n)

• Fortune’s Algorithm
– Sweep line algorithm

• Voronoi diagram constructed as horizontal line
sweeps the set of sites from top to bottom

• Incremental construction � maintains portion of
diagram which cannot change due to sites below
sweep line, keeping track of incremental changes for
each site (and Voronoi vertex) it “sweeps”

Constructing Voronoi Diagrams
What is the invariant we are looking for?

Maintain a representation of the locus of points q that
are closer to some site pi above the sweep line than to

the line itself (and thus to any site below the line).

e
v

pi

Sweep Line

q

Constructing Voronoi Diagrams
Which points are closer to a site above the sweep

line than to the sweep line itself?

Sweep Line

pi

q

The set of parabolic arcs form a beach-line that bounds
the locus of all such points

Equidistance

Constructing Voronoi Diagrams
Break points trace out Voronoi edges.

Equidistance

Sweep Line

pi

q

Constructing Voronoi Diagrams
Arcs flatten out as sweep line moves down.

Sweep Line

pi

q

Eventually, the middle arc disappears.
Constructing Voronoi Diagrams

Sweep Line

pi

q

We have detected a circle that is empty (contains no
sites) and touches 3 or more sites.

Constructing Voronoi Diagrams

Sweep Line

pi

q

Voronoi vertex!

Beach Line properties

• Voronoi edges are traced by the break
points as the sweep line moves down.
– Emergence of a new break point(s) (from

formation of a new arc or a fusion of two
existing break points) identifies a new edge

• Voronoi vertices are identified when two
break points meet (fuse).
– Decimation of an old arc identifies new vertex

Data Structures

• Current state of the Voronoi diagram
– Doubly linked list of half-edge, vertex, cell records

• Current state of the beach line
– Keep track of break points

– Keep track of arcs currently on beach line

• Current state of the sweep line
– Priority event queue sorted on decreasing y-coordinate

Doubly Linked List (D)
• Goal: a simple data structure that allows an

algorithm to traverse a Voronoi diagram’s
segments, cells and vertices

e
v

Cell(pi)

Doubly Linked List (D)
• Divide segments into uni-directional half-edges

• A chain of counter-clockwise half-edges forms a cell

• Define a half-edge’s “twin” to be its opposite half-edge of the
same segment

e
v

Cell(pi)

Doubly Linked List (D)

• Cell Table
– Cell(pi) : pointer to any incident half-edge

• Vertex Table
– vi : list of pointers to all incident half-edges

• Doubly Linked-List of half-edges; each has:
– Pointer to Cell Table entry
– Pointers to start/end vertices of half-edge
– Pointers to previous/next half-edges in the CCW chain
– Pointer to twin half-edge

Balanced Binary Tree (T)
• Internal nodes represent break points between two arcs

– Also contains a pointer to the D record of the edge being traced

• Leaf nodes represent arcs, each arc is in turn represented
by the site that generated it
– Also contains a pointer to a potential circle event

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

pi

pj
pk

pl

l

Event Queue (Q)

• An event is an interesting point encountered by the
sweep line as it sweeps from top to bottom
– Sweep line makes discrete stops, rather than a

continuous sweep

• Consists of Site Events (when the sweep line
encounters a new site point) and Circle Events
(when the sweep line encounters the bottom of an
empty circle touching 3 or more sites).

• Events are prioritized based on y-coordinate

Site Event
A new arc appears when a new site appears.

l

Site Event
A new arc appears when a new site appears.

l

Site Event
Original arc above the new site is broken into two

� Number of arcs on beach line is O(n)

l

Circle Event
An arc disappears whenever an empty circle touches

three or more sites and is tangent to the sweep line.

Sweep line helps determine that the circle is indeed empty.

Circle Event!
Sweep Line

pi

q

Voronoi vertex!

Event Queue Summary
• Site Events are

– given as input
– represented by the xy-coordinate of the site point

• Circle Events are
– computed on the fly (intersection of the two bisectors in

between the three sites)
– represented by the xy-coordinate of the lowest point of

an empty circle touching three or more sites
– “anticipated”, these newly generated events may be

false and need to be removed later

• Event Queue prioritizes events based on their y-
coordinates

Summarizing Data Structures

• Current state of the Voronoi diagram
– Doubly linked list of half-edge, vertex, cell records

• Current state of the beach line
– Keep track of break points

• Inner nodes of binary search tree; represented by a tuple

– Keep track of arcs currently on beach line
• Leaf nodes of binary search tree; represented by a site that

generated the arc

• Current state of the sweep line
– Priority event queue sorted on decreasing y-coordinate

Algorithm

1. Initialize
• Event queue Q � all site events

• Binary search tree T � ∅
• Doubly linked list D � ∅

2. While Q not ∅ ,
• Remove event (e) from Q with largest y-

coordinate
• HandleEvent(e, T, D)

Handling Site Events

1. Locate the existing arc (if any) that is above the
new site

2. Break the arc by replacing the leaf node with a
sub tree representing the new arc and its break
points

3. Add two half-edge records in the doubly linked
list

4. Check for potential circle event(s), add them to
event queue if they exist

Locate the existing arc that is above
the new site

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

• The x coordinate of the new site is used for the binary search
• The x coordinate of each breakpoint along the root to leaf path

is computed on the fly

pi

pj
pk

pl

lpm

Break the Arc

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

Corresponding leaf replaced by a new sub-tree

pi

pj
pk

pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl
Different arcs can be identified
by the same site!

Add a new edge record in the doubly
linked list

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pm pl

< pl, pm>

< pm, pl>

pl

pi

pj
pk

pl

l
pm

New Half Edge Record
Endpoints� ∅

Pointers to two half-edge
records

l
pm

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not have

break points that converge

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not have

break points that converge

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not have

break points that converge

Converging break points may not
always yield a circle event

• Appearance of a new site before the circle
event makes the potential circle non-empty

l

(The original circle event becomes a false alarm)

Handling Site Events

1. Locate the leaf representing the existing arc that is
above the new site

– Delete the potential circle event in the event queue

2. Break the arc by replacing the leaf node with a
sub tree representing the new arc and break points

3. Add a new edge record in the doubly linked list
4. Check for potential circle event(s), add them to

queue if they exist
– Store in the corresponding leaf of T a pointer to the

new circle event in the queue

Handling Circle Events

1. Add vertex to corresponding edge record in doubly
linked list

2. Delete from T the leaf node of the disappearing arc
and its associated circle events in the event queue

3. Create new edge record in doubly linked list

4. Check the new triplets formed by the former
neighboring arcs for potential circle events

A Circle Event

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Add vertex to corresponding edge record

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Half Edge Record
Endpoints.add(x, y)

Half Edge Record
Endpoints.add(x, y)

Link!

Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>

Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

Create new edge record

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

New Half Edge Record
Endpoints.add(x, y)

A new edge is traced out by the new
break point < pk, pm>

Check the new triplets for
potential circle events

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

Q y…

new circle event

Minor Detail

• Algorithm terminates when Q = ∅ , but the
beach line and its break points continue to
trace the Voronoi edges
– Terminate these “half-infinite” edges via a

bounding box

Algorithm Termination

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l

pmpm pl

< pm, pl>

< pk, pm>

Q ∅

Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅

Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅

Terminate half-lines
with a bounding box!

Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

Handling Site Events

1. Locate the leaf representing the existing arc
that is above the new site

– Delete the potential circle event in the event queue

2. Break the arc by replacing the leaf node with a
sub tree representing the new arc and break
points

3. Add a new edge record in the link list
4. Check for potential circle event(s), add them to

queue if they exist
– Store in the corresponding leaf of T a pointer to the

new circle event in the queue

Running Time

O(log n)

O(1)

O(1)

O(1)

Handling Circle Events

1. Delete from T the leaf node of the
disappearing arc and its associated
circle events in the event queue

2. Add vertex record in doubly link list
3. Create new edge record in doubly

link list
4. Check the new triplets formed by the

former neighboring arcs for potential
circle events

Running Time

O(log n)

O(1)

O(1)

O(1)

Total Running Time

• Each new site can generate at most two new
arcs
�beach line can have at most 2n – 1 arcs

�at most O(n) site and circle events in the queue

• Site/Circle Event Handler O(log n)

� O(n log n) total running time

Is Fortune’s Algorithm Optimal?
• We can sort numbers using any algorithm that

constructs a Voronoi diagram!

• Map input numbers to a position on the number
line. The resulting Voronoi diagram is doubly
linked list that forms a chain of unbounded cells in
the left-to-right (sorted) order.

-5 1 3 6 7

Number
Line

Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

Voronoi Diagram/Convex Hull Duality

Sites sharing a half-infinite edge are convex hull vertices

e
v

pi

Degenerate Cases

• Events in Q share the same y-coordinate
– Can additionally sort them using x-coordinate

• Circle event involving more than 3 sites
– Current algorithm produces multiple degree 3

Voronoi vertices joined by zero-length edges

– Can be fixed in post processing

Degenerate Cases

• Site points are collinear (break points
neither converge or diverge)
– Bounding box takes care of this

• One of the sites coincides with the lowest
point of the circle event
– Do nothing

Site coincides with circle event:
the same algorithm applies!

1. New site detected
2. Break one of the arcs an infinitesimal distance

away from the arc’s end point

Site coincides with circle event

Summary

• Voronoi diagram is a useful planar
subdivision of a discrete point set

• Voronoi diagrams have linear complexity
and can be constructed in O(n log n) time

• Fortune’s algorithm (optimal)

