
Michael Walfish, Mythili Vutukuru,

Hari Balakrishnan, David Karger, and Scott Shenker*

14 September 2006

MIT Computer Science and AI Lab
*UC Berkeley and ICSI

DDoS Defense by Offense



Today’s DDoS Attackers and Defenders
• The modern DDoS attacker

Strong motives attacks evolving
Tries to make its traffic look legitimate

• The modern DDoS defender
Ethos: “detect, then deny”

• The post-modern DDoS defender (us)
No attempt at reliable differentiation:



When a server is under 
attack, encourage all 
clients to send more 
traffic to the server



I. Justification

II. Realization

III. Discussion



I. Justification: Where? Why?

II. Realization

III. Discussion



Application-level Attacks
• Bots send requests that look legitimate

Overloads resource like CPU, disk (not link)

GET /flights?f=BOS&t=PSA

GET /flights?f=PSA&t=SFO

. . .

. . .

. . . Web
server

DB
Key Challenge:
• Can’t tell request was issued with ill intent

Clientele may be unknown
Proof-of-humanity not sufficient



good
good

bot
server DB

• Server overloaded; drops randomly
• Thus, attackers get the bulk of the server
• This server allocation is greed-proportional

Must change the allocation …
… without differentiating good and bad

bot

App-Level DDoS on Defenseless Server



server’s 
resources

greed-
proportional

bandwidth-
proportional

good b/w

bad b/w

legit 
demand

• Dole out units of service based on client b/w
• Why better than greed-proportional?

Because good clients have more spare capacity

(For now, assuming bot b/w ~ good b/w)

?

Our Goal: Bandwidth-Proportional Alloc.



• Ideal: fair allocation
Best possible if you can’t detect bad clients

• But this ideal is hard to achieve
Proxies
IP addr hijacking and harvesting (bots 
reachable at stolen IP addresses)

• Settle for approximately fair allocation

What Should the Goal Be?



• Clients can’t fake b/w and b/w is measurable
Provided clients are forced to consume it

Why Choose Bandwidth-Proportional?



When a server is under 
attack, encourage all 
clients to send more 
traffic to the server



• Clients can’t fake b/w and b/w is measurable
Provided clients are forced to consume it
“Taxation without identification”

• CPU also a possibility (proof of work)
Though harder to set the price …
… and pegging link better than pegging CPU

• How to achieve? With our system, speak-up

Why Choose Bandwidth-Proportional?



I. Justification: Where? Why?

II. Realization:
{Design, Impl, Eval} of Speak-up

III. Discussion



server

Only under server overload:
• Front-end admits requests periodically

front-end

request
request

request

Speak-up in a Nutshell



server

Only under server overload:
• Front-end admits requests periodically

request

“send bits”
front-end

Speak-up in a Nutshell

request

“send bits”



server

Only under server overload:
• Front-end admits requests periodically

request front-endcongestion-
controlled 
stream of 

dummy bits

Speak-up in a Nutshell

request



server

Only under server overload:
• Front-end admits requests periodically

request front-endcongestion-
controlled 
stream of 

dummy bits

Speak-up in a Nutshell

request



server

Only under server overload:
• Front-end admits requests periodically
• Which request to admit?

request front-endcongestion-
controlled 
stream of 

dummy bits

Speak-up in a Nutshell

request



server

Only under server overload:
• Front-end admits requests periodically
• Which request to admit?

request front-endcongestion-
controlled 
stream of 

dummy bits

“Highest” sender

Speak-up in a Nutshell

request



server

Only under server overload:
• Front-end admits requests periodically
• Which request to admit?
• Others keep sending and eventually win

request front-endcongestion-
controlled 
stream of 

dummy bits

“Highest” sender

Speak-up in a Nutshell

request



server

Only under server overload:
• Front-end admits requests periodically
• Which request to admit?
• Others keep sending and eventually win
(Allocation prop. to b/w: proved in paper.)

request front-endcongestion-
controlled 
stream of 

dummy bits

“Highest” sender

Speak-up in a Nutshell

request



Web
server

GET /flights?f=SFO&t=BOS Web 
proxy

browser

JavaScript:
……………………………………

JavaScript:
• Client constructs 1MByte string
• POSTs string in form
Proxy: ends POST after client wins

POST /dummyform
3sa8fdf98uwqrwq8u7wel8alsdfsdf
sd1234023fasd24sf23asdf234…….

hidden 
form

Java
Script

Implementation (Needs No Client Changes)



• 50 clients; all have 2 Mbits/s bandwidth
• Vary number of good and bad
• Good clients: 2 reqs/s; bad clients: 40 reqs/s
• Server capacity: 100 reqs/s

with speak-up

no speak-up

b/w-prop.fraction of 
server 

allocated to 
good clients

0

1.0
0.8
0.6
0.4
0.2

% good clients
10 30 50 70 90

The Implementation Roughly Meets Its Goal



I. Justification: Where? Why?

II. Realization: Design, Impl, Eval

III. Discussion: Applicability, Objections, 
Related Work, Summary



1. Application-level attack
2. Hard to filter, hard to rate-limit explicitly
3. Botnet not much larger than good clientele
4. Front-end has a lot of bandwidth

traditional solns, 
speak-up

speak-up

traditional solns ?????

size of botnet
relative to 
good clientele

difficulty of filtering, rate-limiting

Conditions That Call for Speak-up



How Often do the Conditions Hold?
Hard to know definitively, but:

• Attacks moving toward application-level

• Proxies widespread; IP addr stealing happens

• Botnet size vs good clientele size:
Many less than 10k or even smaller [Symantec, 
Rajab et al. IMC06, Arbor, LADS, McCarty IEEE SecPriv03]

Anecdotally, botnets getting smaller
(Smaller botnets will drive smarter attacks)

• Many sites have access to a lot of bandwidth



Some Objections to Speak-up

• Won’t it harm the network?
Inflation only in traffic to attacked sites

• Clients have unequal bandwidth
True: speak-up is only roughly fair
Possible solution using proxies

• Many others (see paper)



Other Defenses to App-Level DDoS
• Detect and block attackers

CAPTCHAs [Morein et al. CCS03, Gligor IWSP03, Kandula et 
al. NSDI05]

Profiling [Mazu, Arbor, Ranjan et al. INFOCOM06, etc.]

• Rate-limiting [Fair Queuing, Banga et al. OSDI99, Kandula et 
al. NSDI05]

• Proof-of-work [Dwork & Naor 92, Juels & Brainard NDSS99, 
Aura et al. IWSP00, Mankins et al. ACSAC01, Wang & Reiter 
Oakland03, Hashcash, etc.]

• “Dilute” attackers (make clients repeat 
requests) [Gunter et al. NDSS04, Sherr et al. WSNP05]



Summary and Take-home Points

• DDoS evolving traditional methods 
(detection, rate-limiting) less effective

• Taxation fairer than explicit identification

• For app-level attacks, we propose speak-up
Allocates server according to client b/w

• Speak-up trades b/w for server computation


	Today’s DDoS Attackers and Defenders
	Application-level Attacks
	App-Level DDoS on Defenseless Server
	Our Goal: Bandwidth-Proportional Alloc.
	What Should the Goal Be?
	Why Choose Bandwidth-Proportional?
	Why Choose Bandwidth-Proportional?
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Implementation (Needs No Client Changes)
	The Implementation Roughly Meets Its Goal
	Conditions That Call for Speak-up
	How Often do the Conditions Hold?
	Some Objections to Speak-up
	Other Defenses to App-Level DDoS
	Summary and Take-home Points

