DDoS Defense by Offense

Michael Walfish, Mythili Vutukuru,
Hari Balakrishnan, David Karger, and Scott Shenker”

MIT Computer Science and Al Lab
“UC Berkele y and ICS/

14 September 2006

Today’s DDoS Attackers and Defenders

The modern DDoS attacker
Strong motives - attacks evolving
Tries to make its traffic look legitimate

The modern DDoS defender
Ethos: “detect, then deny”

The post-modern DDoS defender (us)
No attempt at reliable differentiation:

When a server IS under
attack, encourage a//
clients to send /more

traffic to the server

Justification
Realization

Discussion

Justification: Where? Why?
Realization

Discussion

Application-level Attacks

Bots send requests that look legitimate

[IRLRTRRIRIRRIRN

[l GET /flights?f=BOS&t=PSA

GET /flights?f=PSA&t=SFO

Key Challenge:
Can't tell request was issued with ill intent

Clientele may be unknown
Proof-of-humanity not sufficient

Overloads resource like CPU, disk (not link)

Web
server

E

App-Level DDoS on Defenseless Server

good __—>

L =
bot —'5 server DR
bot _'5

Server overloaded; drops randomly
Thus, attackers get the bulk of the server
This server allocation is greed-proportional

Must change the allocation ...
.. Wwithout differentiating good and bad

Our Goal: Bandwidth-Proportional Alloc.

®
AR RERN NN ENN NN L
[]

good b/w greed- bandwidth-
legit proportional proportional
demand |i| =\
bad b/w { \ /
_ server’s

Dole out units of service based on client b/w

Why better than greed-proportional?
Because good clients have more spare capacity

(For now, assuming bot b/w — good b/w)

What Should the Goal Be?

Ideal: fair allocation
Best possible if you can’t detect bad clients

But this i1deal is hard to achieve
Proxies

IP addr hijacking and harvesting (bots
reachable at stolen IP addresses)

Settle for approximately fair allocation

Why Choose Bandwidth-Proportional?

Clients can’'t fake b/w and b/w is measurable
Provided clients are forced to consume It

When a server IS under
attack, encourage a//
clients to send /more

traffic to the server

Why Choose Bandwidth-Proportional?

Clients can’t fake b/w and b/w Is measurable
Provided clients are forced to consume it
“Taxation without identification”

/"
CPU also a possibility (proof of work)
Though harder to set the price ...

... and pegging link better than pegging CPU
— _

How to achieve? With our system, speak-up

Justification: Where? Why?

Realization:
{Design, Impl, Eval} of Speak-up

Discussion

Speak-up in a Nutshell

'%nt—end

L

Only under server overload:

Front-end admits requests periodically

réquest
reQuest
réquest

server

Speak-up in a Nutshell

request '%nt-end
WS, server

“W / -

Only under server overload:
Front-end admits requests periodically

Speak-up in a Nutshell

congestion- request '%nt—end
controlled { server

stream of

dummy bits request
./ B
Only under server overload:
Front-end admits requests periodically

Speak-up in a Nutshell

congestion- request '%nt—end
controlled { server

stream of

dummy bits request

| I
./
Only under server overload:
Front-end admits requests periodically

Speak-up in a Nutshell

congestion- request '%nt—end
controlled { server

stream of

dummy bits request

| I
./
Only under server overload:

Front-end admits requests periodically
Which request to admit?

Speak-up in a Nutshell

congestion- reguest front-end

controlled % server
stream of ‘[

dummy bits request

| I
./
Only under server overload:

Front-end admits requests periodically
Which request to admit? “Highest” sender

Speak-up in a Nutshell

congestion- request
controlled
stream of ‘[

dummy bits request

—

front-end
server
} -

Only under server overload:
Front-end admits requests periodically

Which request to admit? “Highest” sender
Others keep sending and eventually win

Speak-up in a Nutshell

congestion-
controlled
stream of

dummy bits

{

regquest

request
—

wt—end
2

Only under server overload:

Front-end admits requests periodically

server

Which request to admit? “Highest” sender
Others keep sending and eventually win
(Allocation prop. to b/w: proved In paper.)

Implementation (Needs No Client Changes)

browser - GET /flights?f=SFO&t=BOS

AT .
EScript JavaScrlpt:
s C ol

: i 1| 3sa8fdf98uwqrwq8u7wel8alsdfsdf
T """""" sd1234023fasd24sf23asdf234.......

|
hidden JavaScript:

Web
Proxy

Web
server

form Client constructs 1MByte string

POSTs string in form

Proxy: ends POST after client wins

The Implementation Roughly Meets Its Goal
1.0

fraction of 4 g. b/w-prop.
server 0.6
allocated to 0'4, with speak-up
good clients
0.2 o 4-40l_speak-up

0 10 30 50 70 90

% good clients
50 clients; all have 2 Mbits/s bandwidth
Vary number of good and bad
Good clients: 2 reqgs/s; bad clients: 40 reqgs/s
Server capacity: 100 regs/s

Justification: Where? Why?
Realization: Design, Impl, Eval

Discussion: Applicability, Objections,
Related Work, Summary

Conditions That Call for Speak-up

Application-level attack

Hard to filter, hard to rate-limit explicitly
Botnet not much larger than good clientele
Front-end has a lot of bandwidth

difficulty of filtering, rate-limiting
— >

size of botnet |traditional solns, | speak-up
relative to speak-up
good clientele|traditional solns |???72?

\4

How Often do the Conditions Hold?

Hard to know definitively, but:

Attacks moving toward application-level

Proxies widespread; IP adc

Botnet size vs good cliente

r stealing happens

e slze:

Many less than 10k or even smaller [Symantec,

Rajab et al. IMCO6, Arbor, LADS,

McCarty IEEE SecPriv03]

Anecdotally, botnets getting smaller

(Smaller botnets will drive

smarter attacks)

Many sites have access to a lot of bandwidth

Some Objections to Speak-up

Won't it harm the network?
Inflation only in traffic to attacked sites

Clients have unequal bandwidth
True: speak-up is only roughly fair
Possible solution using proxies

Many others (see paper)

Other Defenses to App-Level DDoS

Detect and block attackers

CAPTCHAS [Morein et al. CCS03, Gligor IWSP03, Kandula et
al. NSDIO5]

Profiling [Mazu, Arbor, Ranjan et al. INFOCOMOS, etc.]

Rate-limiting [rair Queuing, Banga et al. 0SDI99, Kandula et
al. NSDIO5]

Proof-of-work [Dwork & Naor 92, Juels & Brainard NDSS99,
Aura et al. IWSP0O, Mankins et al. ACSACO01, Wang & Reiter
Oakland03, Hashcash, etc.]

“Dilute” attackers (make clients repeat
requests) [Gunter et al. NDSS04, Sherr et al. WSNPO5]

Summary and Take-home Points

DDoS evolving = traditional methods
(detection, rate-limiting) less effective

Taxation fairer than explicit identification

For app-level attacks, we propose speak-up
Allocates server according to client b/w

Speak-up trades b/w for server computation

	Today’s DDoS Attackers and Defenders
	Application-level Attacks
	App-Level DDoS on Defenseless Server
	Our Goal: Bandwidth-Proportional Alloc.
	What Should the Goal Be?
	Why Choose Bandwidth-Proportional?
	Why Choose Bandwidth-Proportional?
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Speak-up in a Nutshell
	Implementation (Needs No Client Changes)
	The Implementation Roughly Meets Its Goal
	Conditions That Call for Speak-up
	How Often do the Conditions Hold?
	Some Objections to Speak-up
	Other Defenses to App-Level DDoS
	Summary and Take-home Points

