Mayday: Distributed DoS Filtering

David Andersen

MIT Laboratory for Computer Science

March 2003

http://nms.lcs.mit.edu/ron/
Proactive Defense against DoS

- Many systems trace DoS attacks
- Some react to DoS attacks
- A few prevent, but
 - Require near-global deployment, or
 - Don’t protect outside of your own network

✔ Mayday:
 - incrementally deployable
 - proactive defense
Flooding Attacks

- Overload servers (not “ping of death”)
- Probably have lots of attack machines...
- ... and can spoof IP addresses
- We’ll discuss more powerful attackers later
Overlay Nodes and Filtering Routers

Borrow an idea from SOS
(Secure Overlay Services, [Sigcomm 2002]):

Use overlay nodes and normal routers to protect servers.
• Routers allow only “good” traffic in

• Overlay nodes are “good” traffic
 - verify that clients allowed to use service

→ How?
Making it practical

- Effective filtering must be near “core”
- Set of allowed clients dynamic or large
- Core routers can’t do heavy-duty filtering
- Let’s use existing router capabilities

❌ IPsec to the filter routers is a no-go.
Architecture

- Clients authenticate to overlay nodes
 (Can be heavy, not our concern)
- Overlay nodes authenticate to filter ring
 ➔ Lightweight Authenticator
Lightweight Authenticators

- Source Address
 - ✔ Well understood, good with no spoofing
 - ✗ Limited # of correspondant nodes
 - ✗ Updated by filter changes
Lightweight Authenticators

- Source Address
 - ✔ Well understood, good with no spoofing
 - ✘ Limited # of correspondant nodes
 - ✘ Updated by filter changes

- Server Destination Port
 - ✔ Larger key space (65,000)
 - Many correspondant nodes
 - ✘ Updated by filter changes
Lightweight Authenticators 2

- Server Destination Address
 - Small key space
 - Changes IP address
- Updated via fast routing protocols
Lightweight Authenticators 2

- Server Destination *Address*
 - ✗ Small key space
 - ✗ Changes IP address
 - ✔ Updated via fast routing protocols
- Other header fields
 - ✔ Adds to key space
 - ✗ Not all routers support
Overlay Routing Improves Security

- Fewer nodes have direct access to server

Choice of routing depends on authenticators, paranoia.
 Overlay Routing: Proximity

✔ Like Akamai, great performance

✘ All nodes possess authenticator

✘ Can’t rely on source address auth
Overlay Routing

- Proximity Routing

- Singly-Indirect Routing
 - Ingress node passes to egress node
 - ✔ Fewer nodes know authenticator
 ✔ Fewer nodes know authenticator
 (except for source address)
Overlay Routing

- Proximity Routing
- Singly-Indirect Routing
- Doubly-Indirect Routing
 - Only a few nodes know the egress node
 ✔ Keeps source auth secret
 ✗ Overhead grows...
Overlay Routing

- Proximity Routing
- Singly-Indirect Routing
- Doubly-Indirect Routing
- Random or Mix Routing
 - Route through many overlay nodes
 - ✔ Resistant to node compromises
 - ✗ Overhead grows more...
Choose protection vs. Overhead

What authenticator / routing combinations?

- **Performance**: Proximity non-source
 - vulnerable to eavesdroppers

- **Eavesdropping**: Singly-indirect non-source
 - Random eavesdroppers don’t know secret
 - Equivalent security to SOS, fewer hops
Choose protection vs. Overhead

What authenticator / routing combinations?

- **Agility**: Singly-indirect destination
 - Routing updates can change filters
 - Resists adaptive attacks (discussed next)

- **Maximum Security**: Mix routing
 - Like Freenet
 - Resists some overlay node compromises

Using more authenticators boosts the key space
Attacks and Defenses

- Basic flooding resistance shown already
- Real networks have third parties, traffic can be sniffed, etc.
Probing: Basic

❌ About 30 seconds to find destination port

✅ Secondary Key -
server only responds to good requests.
Probing: Secondary Key

- Use Firewalking against intermediate routers
- ... about five minutes to port scan.
- Fix intermediate routers (ick)
- Use source address authentication
Probing: Secondary Key + Source

Use Idlescan via overlay nodes
Fix overlay nodes
Probing: Secondary Key + Source

- Next-hop scan via routers
- Fix everything...
Further Attacks

- Timing Attacks
determine egress node

- Adaptive Flooding
 smarter flooding, detect slowdown

- Request floods, compromised nodes...

- Shameless plug: All discussed in paper
How big are attacks?

(most data from Savage et al.)

- 30% of attacks ≥ 1000 pps
- 5% $\geq 10,000$ pps
Large keyspace + Agility

At 1000 pps, how long can we resist attack?

✘ Port-scan dest port: 5 minutes

✘ Locate egress node: 50 seconds

✔ Find both: 4 days

- Agility: update when discovered
Is any of this practical?
We think so!

✔ Akamai has a few thousand nodes
 (And offers “mayday-lite”)

✔ New core routers can filter at line-speed

 • Useful in a service-provider context
 – Amortize costs, load spikes
 – Not everyone attacked at once.
Conclusions

- Practical, proactive DoS resistance
- Flexible choices of overhead vs. protection
- Better understanding of attacks
 (next-hop attack and adaptive flooding novel)
- Only the first line of defense!
 Security starts at home.