
Michael Walfish,

Hari Balakrishnan, David Karger, and Scott Shenker*

15 November 2005

MIT Computer Science and AI Lab

*UC Berkeley and ICSI

DoS: Fighting Fire with Fire

The Scenario and the Problem

good

good

bot
server

(Web, DB, etc.)

• DDoS: many legitimate-looking requests from bots
• Hard to differentiate bots and good clients

 Bots not anomalous, just heavy users
 Proofs-of-humanity (CAPTCHAs) not ideal

• Server with scarce computational resources:
 CPU, memory, expensive DB software, etc.

. . .

Goal: Bots Behaving Like Good Clients
One Possibility (e.g.,

IP throttling, proof of work)

good

good

bot

Our Approach

“Speed up the good clients”

. . .

. . .

“Slow down the bots”

For now, assume more good clients than bots

I. Mechanism

II. When useful?

III. Compare to other defenses

Rest of the Talk

Assumptions and Status Quo

cap.

server

Assumptions

• Each bot sends at high rate

• More goods than bots
 Will revisit

• Server capacity is known

• All requests cost server same
 Paper relaxes this

Status Quo

Approach in a Nutshell

cap.
request

(1) Thinner (server front-end) randomly drops excess

X

thinner

server

server

Status Quo

Approach in a Nutshell

cap.

thinner

server

server

(1) Thinner (server front-end) randomly drops excess
(2) Thinner asks clients to retry request

“please retry”

• War of attrition

Status Quo

• War of attrition
• Pay bandwidth to reach server: proof of net-work

Approach in a Nutshell

cap.

thinner

(1) Thinner (server front-end) randomly drops excess
(2) Thinner asks clients to retry

server

request

“please retry”
serverStatus Quo

• Thinner is HTTP front-end

• “please retry” is automatic, zero-delay HTML refresh

Web server

GET / HTTP/1.0

Net-work for Web; No Client Changes

thinner

<head>
<meta http-equiv=“refresh”
content=0></head>

GET / HTTP/1.0

We Think This Won’t Harm the Network

• Standpoint of total capacity:
 Core is over-provisioned (by rumor)
 Inflation only in traffic to attacked sites

• Standpoint of transient congestion:
 Application does consume more bandwidth …
 … but controls congestion with packet conservation:

request

client

“please retry”

thinnerX
backoff

I. Mechanism

II. When useful?

III. Compare to other defenses

Outline

When is Net-work Useful?

• You might think: goods need much more b/w than bots

• Not true!

Net-work Levels the Playing Field

• Net-work lets good clients capture up to

• Is a level playing field enough?
 To satisfy good clients, need ≥ g

 Translates to provisioning reqt: C ≥ g(1 + B/G)

C

B (attacker b/w)

G (good b/w)

g (legit. demand)

server’s
resources

server’s
resources

Status Quo With Net-work
g()g + B C G()G + B C

G()CG + B

G()CG + B

Answering “When is Net-work Useful?”

• Provisioning reqt. now g(1 + B/G); was g(1 + B/g)

• If G >> B or G ≈ B, provisioning reqt. not terrible

• If G << B? Likely, C < g(1 + B/G). (eg, tiny flower shop)
 Good clients still get better ratio
 Global abilities of bots decrease
 These are weak answers. Is there hope?

• Anecdotally: DDoS victims are popular sites and services
 Not small flower shop

I. Mechanism

II. When useful?

III. Compare to other defenses

Outline

Net-work Uses Bandwidth as a Currency

• Other currencies: CPU cycles, mem cycles, money

• Price under net-work: # of retries (calc’d in paper)

• All currency schemes: attackers still get service
 C ≥ g(1 + B/G) applies to all
 To do better: must tell apart legit. and bot
 Not always feasible, as discussed on slide 1

We now compare bandwidth to other currencies . . .

Advantages of Bandwidth as Currency

• Price (# of retries) emerges “naturally”
 Clients aren’t told price
 They need not guess; just keep retrying

• Payment is observable (puzzles can be broken)

• Bandwidth plays a role in other currencies anyway:

client

puzzle solution
busy
server“solve harder puzzle”

Disadvantages of Bandwidth as Currency

• Possibly undemocratic: low bandwidth clients

 Good point

• Some customers pay per-byte

 But most servers aren’t attacked most of the time

At the End of the Day

• Is this Internet vigilantism?

• Net-work treats bots and legitimates equally
 Is a level playing field enough?
 Depends

• Is bandwidth the right way to level the playing field?
 Possibly more undemocratic
 More natural than other currencies

Appendix Slides

Thinner Needs Lots of Bandwidth

• So much bandwidth may be expensive. Solutions?
 Co-locate thinner?
 Service provider or overlay? (i3, Mayday, SOS…)

• Thinner must be uncongested

X
request

thinner
backoff

client

Why not . . .

• . . . Proof-of-humanity (CAPTCHA)?
 Assumes human clientele
 Not all humans want to answer CAPTCHA [Killbots]

• . . . IP throttling?
 Source address spoofing for UDP requests
 Attackers hijack IP space with bogus BGP advts.
 NAT (many clients, lots of bandwidth; one IP addr)

• . . . Capabilities?
 Good point
 These aren’t exclusive; combine them?

How Many Retries?

• Recall provisioning requirement: C ≥ g(1 + B/G)

• If provisioning requirement satisfied:
 Average number of retries is B/(C – g)
 See paper for simple derivation

• If provisioning requirement not satisfied:
 Good clients spend everything, G
 Allow probability is C/(B + G)
 Average number of retries is (B + G)/C

Extension

• If request-retry loop brings unacceptable latency…

• … thinner can explicitly calculate price, r retries

• Price is ratio of inbound request rate to capacity

• Thinner communicates price, r, to clients
 Clients send r-1 retries over cong.-controlled stream

• Still “natural”?
 Yes.
 Easy for thinner to calculate price

Is Upload Bandwidth the Right Constraint?

• What if constraint is clients’ download bandwidth?
 Much of net-work still applies

• Why think server’s computational resources more
expensive than its bandwidth?
 Enterprise application licenses are expensive
 Requests can be tiny yet cause much work (e.g.,

travel sites)

“But Bots Won’t Control Congestion . . .”

• Bots won’t be so polite in their malfeasance
• True
• But failing to back off is a link attack; exists today

request

client

“please retry”

thinnerX
backoff

• Recall picture:

