
Distributed Quota Enforcement
for Spam Control

Michael Walfish, J.D. Zamfirescu,

Hari Balakrishnan, David Karger, and Scott Shenker*

MIT Computer Science and AI Lab
*UC Berkeley and ICSI

09 May 2006

Email Has Gone from Unusable to Unreliable

• Culprit: spam (unsolicited bulk email)
Inboxes flooded email unusable
50-70% of email today is spam [MessageLabs]

• Common solution: filters (examine email text)
Reject, e.g., mortg@ges, Viagra, v!@gr@, Nigeria

• Culprit: spam (unsolicited bulk email)
Inboxes flooded email unusable
50-70% of email today is spam [MessageLabs]

• Common solution: filters (examine email text)
Reject, e.g., mortg@ges, Viagra, v!@gr@, Nigeria
But valid email blocked email unreliable

• Whitelisting (Re, Goodmail)

• Many other solutions… [FUSSP]

Email Has Gone from Unusable to Unreliable

Our Solution: Restore Reliability w/ Quotas
• Quotas on the # of mails a sender can send

Limit volumes w/out semantic discrimination
Set to make level of spam negligible

sender receiveenforcer
TEST()

SET()
quota of
stamps blockdeliver

“reused”“fresh”

• Implement quotas with stamps
If stamp reused: receiver blocks mail (assumes spam)
If stamp fresh: receiver delivers mail and SETs stamp

• Valid email fresh stamp delivered

What this Talk Is and Is Not About

• Not about quota allocation (social/econ. problem)
In our system, trusted allocators decide policy
(e.g., payment, proof of human identity, …)
Our system works with any policy

• Not about detailed justification for quotas

• Not about disrespecting your favorite spam solution
Or about the adoption paths for ours

• About the technical problems in quota enforcement
Minimal and fault-tolerant distributed system

DQE: A Spam Control System

sender receive

enforcer

TEST() SET()

quota
allocator

quotas

Guiding Principles:
• Never label valid email as spam
• Separate allocation and enforcement
• Handle world email volume (100 B msgs/day)
• Don’t trust the enforcer

(make it distrusted and distrusting)

Rest of the Talk:

I. Stamps and Protocols

II. Design of the Enforcer

Allocation and Enforcement Protocols
• Qpub : globally known public key of quota allocator
• (Priv, Pub): sender’s public-private key pair

• cert = {Pub, daily_quota}Qpriv
Tells world how many stamps sender can “mint”

• stamp = {cert, {i,date}Priv}
i must be unused; 1 ≤ i ≤ daily_quota

• Receiver must check: msg under quota?
First test: Is stamp authentic? Requires only Qpub
Second test: Has stamp been used before?

sendercertquota
alloc.

= {cert, {i,date}Priv} receive
remail msg

Enforcement Protocol, Continued

(H is a hard-to-invert hash function)

receiver

email msg
enforcer

TEST(H(stamp))H()
stamp stamp or “fresh”

SET(H(stamp) , stamp)

H()

H() H()

• No email with fresh stamps flagged as spam
• Protocol distrusts enforcer
• Privacy: replace stamp with H(stamp)

I. Stamps and Protocols

II. Design of the Enforcer

30,000-Foot View of the Enforcer
• Purpose: prevent too much stamp reuse
• Best-effort storage of key-value pairs

Not a (traditional) DHT

(H(v2),v2)

TEST(H(H(stamp))) = “TEST(k)”

portal

nodes

SET(H(H(stamp)), H(stamp)) =
“SET(H(v),v)”

(H(v1),v1)

• Design is agnostic about where nodes come from
Can be one org or many, LAN or wide-area

• It is practical to build an enforcer to handle the
world’s e-mail

Enforcer’s Distribution and Trust Model
Why must the enforcer be multiple machines?
• 100 B emails/day 1-2 M stamp checks per sec.
• 40 bytes/stamp 4 Tbytes of storage per day

Setup: enforcer is n machines
• Assume: they know each other (justified later)

For now, we seek to minimize required # of machines

• They do not trust each other
• They can have crash or Byzantine faults

How the Enforcer Stores Key-Value Pairs

SET(H(v), v) PUT(H(v), v)portal (k,v)

• Each key, k, maps to r potential nodes. r « n.
r derived in paper; based on expected faults and n

• Internal enforcer interface: PUT(H(v),v), GET(k)
• SET() portal PUTs at a random potential node

How the Enforcer Stores Key-Value Pairs

GET(k)portal
v s.t. H(v) = k

(k,v)
GET(k)

TEST(k)

• Each key, k, maps to r potential nodes. r « n.
r derived in paper; based on expected faults and n

• Internal enforcer interface: PUT(H(v),v), GET(k)
• SET() portal PUTs at a random potential node
• TEST() portal GETs at up to r potential nodes
• PUT once (instead of r) to minimize resource use

Why is this Design Fault-Tolerant?

• Let’s investigate a Byzantine failure
Assume portal good; paper relaxes that assumption

• Failures do not cause fresh stamp to look reused
• Failures do cause:

Reused stamp to look fresh (so, more spam)

TEST(k)
portal

GET(k)
X(k,v)

GET(k)

GET(k)

w s.t. H(w) != k“fresh”

Why is this Design Fault-Tolerant?

• Let’s investigate a Byzantine failure
Assume portal good; paper relaxes that assumption

• Failures do not cause fresh stamp to look reused
• Failures do cause:

Reused stamp to look fresh (so, more spam)
Which causes another SET and another PUT

• If most nodes good, stamp quickly PUT to good one

portal PUT(H(v), v)

SET(H(v), v) X

(k,v)

(k,v)

Experimental Evidence for Fault-Tolerance

• 40 nodes connected to LAN; models cluster
• Each stamp queried 32 times at random portals
• The reuse is acceptable because quotas already

set spam to a negligible level

% nodes bad (p)

Avg #
uses/stamp

1

2

1.8

1.6

1.4

1.2

15 17.5 20 22.5 25

Observed uses

Analytic upper
bound (~1 + 3p)

The Required Scale is Manageable
• Understanding the system bottleneck:

TEST of fresh stamp: response is fast
TEST of reused stamp: may require a disk seek
Worst case: every spam generates one disk seek

• To calculate the required number of machines:
100B emails/day; 65% spam 65 B spams/day
One disk: 400 seeks/sec. 35 M seeks/day
So, ~2000 disks needed: ~700 high-end servers

The Enforcer is Practical and Plausible
• Its one trust assumption is realistic, we believe

Human-scale job to distribute daily list of n nodes

• Minimal design
No request routing
No keeping track of other nodes
No replica maintenance
But some engineering required; see paper

• We discussed fault-tolerance, mutual distrust, scale
Paper discusses attack resistance

Summary
• Quotas: economic mechanism to control volume
• Enforcer: technical mechanism to enforce quotas

Our focus: a practical enforcer that

• Can handle workload from world’s email volume
without much mechanism

By exploiting weak application semantics

• Almost always blocks spam

• Always lets valid email through

http://nms.csail.mit.edu/dqe

Appendix Slides

Resource Attacks

• Internal attacks (by adversarial nodes)
Spurious PUTs and GETs to exhaust storage
Defense: nodes have “PUT/GET quotas” for each other

• External attacks (by adversarial “receivers”)
Spurious TESTs and SETs to waste enforcer’s resources
Defense 1: profile-and-block anomalous requesters
Defense 2: “make requests cost bandwidth”
• Assumes attackers have some bandwidth constraint
• Then, enforcer can limit volume of TESTs and SETs

Can Stamps be Stolen?
• Need to hack outbound mail server to steal

Because that’s where stamps are stored
But this vulnerability is not introduced by DQE

• You might think, “What about botted hosts?” But:
Most bots not running legitimate mail servers
Attack must be bot impersonating sender to
outbound mail server. Can thwart by:
• Authenticating the sender
• Provider contacting customer out-of-band

What if Portal is Adversarial?

• Client can choose portal
Random choice likely to find good one

• If much spam appears to have fresh stamps:
Client can switch portals
Client can contact multiple portals

Other Spam Solutions (Incomplete List)
Postage:
• Sender pays receiver in $$; if sender good, receiver refunds
• Sender pays receiver in computation [hashcash, camram]

Bankable Postage (closest to quotas):
• Sender gets stamps offline. [Penny Black, SHRED, Goodmail]
• Existing proposals don’t meet our “guiding principles”

Other:
• Sender-address validation (RBLs, DomainKeys, SPF)
• Throttle untrusted heavy senders [Templeton]
• Bounce suspected spam (Mail Avenger)

Possible Deployment Paths for DQE

• Note: only mail servers need to work with stamps

Deployment possibilities:
(1) Large email providers drive

They could federate, agree on stamp format, and
allocate quotas to their users
Or each could run its own separate enforcer

(2) Organization-by-organization adoption
Treat in-quota stamps as whitelisting tool
Stamp identifies “guaranteed valid” mail

Mailing Lists and DQE

• Moderated lists: sender spends one stamp and
List owner can sign the message or
List owner can spend stamps for each receiver

• Unmoderated lists: problematic.

• Partially moderated lists?
Monitor messages from new contributors, only?

How to Set Quotas?
• Can reduce spam by factor f with per-mail price:

Assume spammers are profit-maximizing …
… and make $P by sending m messages
Per-stamp cost of $c # msgs limited to P/c
So set c = f * (P/m)
But this was a very pessimistic calculation

• How to accommodate legitimate heavy senders?
Whitelists or refunds

• What about people in poorer parts of the world?

Bounding Stamp Reuse Analytically
• Model:

Define “good”: node remains up and follows protocol
Let p = prob. a node isn’t “good” while a stamp is “live”

• Analysis:
Once PUT to a “good” node, stamp s no longer reused …
… and if most nodes “good”, this event happens soon
Let U = E[uses of s]. Paper shows: U < 1/(1-2p) + prn
Choose r = 1+ log1/p n. Then U < 1 + 3p
For example, if p = .1, U < 1.3 uses

This reuse is acceptable because the quotas
already set spam to a negligible level.

The Required Scale Permits Static Config.
• Trusted “bunker” vets nodes
• Distributes “in-list” daily

bunker enforcer

8.1.2.3
9.3.1.2 8.1.2.3

9.3.1.2
2.1.1.2

2.1.1.2

would-be
nodes

…

• Does not track whether nodes are “up”
• We believe bunker is realistic assumption

Vetting can be light
Human-scale job for 100s or 1000s of PCs

