Distributed Quota Enfor cement
for Spam Control

Michael Walfish, J.D. Zamfirescu,
Hari Balakrishnan, David Karger, and Scott Shenker”

MIT Computer Science and Al Lab
*UC Berkele y and 1CST

09 May 2006

GLASEEFREE.]

“..and you spent 5.73 years of your life
deleting spam from your e-mail.”

Email Has Gone from Unusableto Unrdiable

Culprit: spam (unsolicited bulk email)
Inboxes flooded = email unusable
50-70% of email today is spam [Messagelabs]

Common solution: filters (examine email text)
Reject, e.g., mortg@ges, Viagra, vi@gr@, Nigeria

Copyright 2004 by Randy Glasbergen.
www.glasbergen.com

“Our anti-spam software deleted your report because the
flow chart was shaped sort of like a Nigerian prince.”

Email Has Gone from Unusableto Unrdiable

Culprit: spam (unsolicited bulk email)
Inboxes flooded = email unusable
50-70% of email today is spam [Messagelabs]

Common solution: filters (examine email text)
Reject, e.g., mortg@ges, Viagra, vi@gr@, Nigeria
But valid email blocked > email unreliable

Whitelisting (Re, Goodmail)
Many other solutions... [FUSSP]

Our Solution: Restore Reliability w/ Quotas

Quotas on the # of mails a sender can send
Limit volumes w/out semantic discrimination
Set to make level of spam negligible

TEST({})
quota Of\jender U%uj receive
stamps SET({ §) | detivkr
e —————G©®HI—FLLLLLBERSS S

L

Implement quotas with stamps
If stamp reused: receiver blocks mail (assumes spam)
If stamp fresh: receiver delivers mail and SETs stamp

Valid email <& fresh stamp > delivered

What thisTalk Isand |s Not About

Not about quota allocation (social/econ. problem)

In our system, trusted a/locators decide policy
(e.g., payment, proof of human identity, ...)

Our system works with any policy
Not about detailed justification for quotas

Not about disrespecting your favorite spam solution
Or about the adoption paths for ours

About the technical problems in quota enforcement
Minimal and fault-tolerant distributed system

DOE: A Spam Control System .
Doe o

‘.....‘g‘uotas TEST(])n ISET(0
sender |>\/{3] receive

Guiding Principles:
Never label valid email as spam
Separate allocation and enforcement
Handle world email volume (100 B msgs/day)

Don't trust the enforcer
(make it distrusted and distrust/ing)

Rest of the Talk:

Stamps and Protocols

Design of the Enforcer

Allocation and Enforcement Protocols

QOpub : globally known public key of quota allocator
(Priv, Pub).: sender’s public-private key pair

email msg r

sender | i{ {={cert, {i,date}p.,} | [receive

cert = {Pub, daily_quotay .,

Tells world how many stamps sender can "mint”
stamp = {cert, {/,date} p,; }

/ must be unused; 1 < /< daily_guota
Receiver must check: msg under guota?

First test: /s stamp authentic? Requires only Qpub
Second test: Has stamp been used before?

Enforcement Protocol, Continued

TEST(H(H(stamp)))

e . |receiver

err?;?lmrr?sg stamp) or “fresh”
................................. SET e s
(H is a hard-to-invert hash function)

No email with fresh stamps flagged as spam
Protocol distrusts enforcer

Privacy: replace stamp with H(stamp)

Stamps and Protocols

Design of the Enforcer

30,000-Foot View of the Enforcer

Purpose: prevent too much stamp reuse

Best-effort storage of key-value pairs
Not a (traditional) DHT

nodes
(H(v1),v1)
TEST(H(H(stamp))) = “TEST(k)”
e ————————————————————————
SET(H(H(stamp)), H(stamp)) = (H(v2),v2)

“SET(H(V),v)" portal

Design is agnostic about where nodes come from
Can be one org or many, LAN or wide-area

It is practical to build an enforcer to handle the
world’s e-malil

Enforcer’s Distribution and Trust M odd

Why must the enforcer be multiple machines?
100 B emails/day = 1-2 M stamp checks per sec.
40 bytes/stamp - 4 Tbytes of storage per day

Setup: enforcer is 7 machines

Assume: they know each other (justified later)
For now, we seek to minimize required # of machines

They do not trust each other
They can have crash or Byzantine faults

How the Enforcer Stores Key-Value Pairs

LI

w portal PUT(H(v), v) (k,v)

1 /

Each key, k, maps to
r derived in paper; based on expected faults and n

Internal enforcer interface: PUT(H(v),v), GET(k)
SET() - portal PUTs at a random potential node

How the Enforcer Stores Key-Value Pairs

X
TEST(k) ny \

— 3 | portal GET(K) (k,v)

_Q. H(v) :k/

Each key, k, maps to
r derived in paper; based on expected faults and n

Internal enforcer interface: PUT(H(v),v), GET(k)
SET() - portal PUTs at a random potential node
TEST() - portal GETs at up to r potential nodes
PUT once (instead of r) to minimize resource use

Why isthis Design Fault-Tolerant?

TEST(K)

— | portal | e——mr—mr—m,—) [(K,V)

“fresh”

GET(K) X

w s.t. H(w) 1=Kk

Let’s investigate a Byzantine failure

Assume
Failures ¢
Failures c

portal good; paper relaxes that assumption
0 not cause fresh stamp to look reused
O Cause.

Reused

stamp to look fresh (so, more spam)

Why isthis Design Fault-Tolerant?

SET(H(V), V) /

portal ’0(/7

Let’s investigate a Byzantine failure

Assume
Failures ¢
Failures c

portal good; paper relaxes that assumption
0 not cause fresh stamp to look reused
O Cause.

Reused

stamp to look fresh (so, more spam)

Which causes another SET and another PUT
If most nodes good, stamp quickly PUT to good one

Experimental Evidence for Fault-Tolerance

21 Analytic upper
1.8 { bound (-1 + 3p)
N\

Avg # 1.6 -
uses/stamp 14 -

. T Observed uses

1.2 -
1

15 175 20 225 25
% nodes bad (p)

40 nodes connected to LAN; models cluster
Each stamp queried 32 times at random portals

The reuse is acceptable because quotas already
set spam to a negligible level

The Required Scaleis Manageable

Understanding the system bottleneck:
TEST of fresh stamp: response is fast
TEST of reused stamp: may require a disk seek
Worst case: every spam generates one disk seek

To calculate the required number of machines:
100B emails/day; 65% spam - 65 B spams/day
One disk: 400 seeks/sec. > 35 M seeks/day
So, ~2000 disks needed: ~700 high-end servers

The Enforcer 1sPractical and Plausible

Its one trust assumption is realistic, we believe
Human-scale job to distribute daily list of 77 hodes

Minimal design
No request routing
No keeping track of other nodes
No replica maintenance
But some engineering required; see paper

We discussed fault-tolerance, mutual distrust, scale
Paper discusses attack resistance

Summary

Quotas: economic mechanism to control volume
Enforcer: technical mechanism to enforce quotas

Our focus: a practical enforcer that

Can handle workload from world’s email volume
without much mechanism

By exploiting weak application semantics
Almost always blocks spam
Always lets valid email through

http://nms.csail.mit.edu/dqge

Appendix Slides

Resour ce Attacks

Internal attacks (by adversarial nodes)
Spurious PUTs and GETs to exhaust storage
Defense: nodes have “"PUT/GET quotas” for each other

|\\

External attacks (by adversarial “receivers”)
Spurious TESTs and SETs to waste enforcer’s resources
Defense 1: profile-and-block anomalous requesters
Defense 2: "make requests cost bandwidth”

Assumes attackers have some bandwidth constraint
Then, enforcer can limit volume of TESTs and SETs

Can Stamps be Stolen?

Need to hack outbound mail server to steal
Because that's where stamps are stored
But this vulnerability is not introduced by DQE

You might think, "What about botted hosts?” But:
Most bots not running /egitimate mail servers

Attack must be bot impersonating sender to
outbound mail server. Can thwart by:

Authenticating the sender
Provider contacting customer out-of-band

What If Portal isAdversarial?

Client can choose portal
Random choice likely to find good one

If much spam appears to have fresh stamps:
Client can switch portals
Client can contact multiple portals

Other Spam Solutions (Incomplete List)

Postage:
Sender pays receiver in $$; if sender good, receiver refunds
Sender pays receiver in computation [hashcash, camram]

Bankable Postage (closest to quotas):
Sender gets stamps offline. [Penny Black, SHRED, Goodmail]
Existing proposals don’t meet our “quiding principles”

Other:
Sender-address validation (RBLs, DomainKeys, SPF)
Throttle untrusted heavy senders [Templeton]
Bounce suspected spam (Mail Avenger)

Possible Deployment Paths for DQE
Note: only mail servers need to work with stamps

Deployment possibilities:
(1) Large email providers drive

They could federate, agree on stamp format, and
allocate quotas to their users

Or each could run its own separate enforcer
(2) Organization-by-organization adoption

Treat in-quota stamps as whitelisting tool

Stamp identifies “guaranteed valid” mail

Mailing Listsand DQE

Moderated lists: sender spends one stamp and
List owner can sign the message or
List owner can spend stamps for each receiver

Unmoderated lists: problematic.

Partially moderated lists?
Monitor messages from new contributors, only?

How to Set Quotas?

Can reduce spam by factor f with per-mail price:
Assume spammers are profit-maximizing ...
... and make $P by sending m messages
Per-stamp cost of $¢ 2> # msgs limited to P/c
Sosetc="f*(P/m)
But this was a very pessimistic calculation

How to accommodate legitimate heavy senders?
Whitelists or refunds

What about people in poorer parts of the world?

Bounding Stamp Reuse Analytically

Model:

Define “good”: node remains up and follows protocol
Let p = prob. a node isn't “"good” while a stamp is “live”

Analysis:
Once PUT to a “"good” node, stamp s no longer reused ...
... and if most nodes “good”, this event happens soon
Let U = E[uses of s]. Paper shows: U < 1/(1-2p) + p'n
Choose r = 1+ logy,, n. Then U <1 + 3p
For example, if p = .1, U < 1.3 uses

This reuse Is acceptable because the guotas
already set spam to a negligible level.

The Required Scale Per mits Static Config.

Trusted “bunker” vets nodes
Distributes “in-list” daily

7
~

38.1.2.3
9.3.1.2

2.1.1.2

e

would-be

\

8.1.2.3]

<

enforcer

9.3.1.2|

Does not track whether nodes are “up”
We believe bunker is realistic assumption
Vetting can be light

Human-scale job for 100s or 1000s of PCs

nodes

