The paper begins on the next page.
Before you begin reading, we have a request...

Please Help Make This Study Better.
Take Part by Contributing Datal

The data in our study is collected by a script that has been carefully designed
to anonymize data so as to protect your privacy while providing us with only
enough information to publish aggregated data on the potential threat described
in our paper. By contributing to this study, you help to ensure that our results
best reflect SSH usage in environments like yours. Further, we encourage you
to run the script on as many hosts as possible as this will greatly improve the
quality of our data set and accuracy of our results. Anyone on a Macintosh
(OS X or higher), UNIX, or UNIX derivative (BSD/Linux/Sun, etc.) operating
system can participate.

To get the data collection script, download
http://nms.csail.mit.edu/projects/ssh/collect-ssh.tar.gz

If you have wget, you can do this from the command line using the following

command:

wget http://nms.csail.mit.edu/projects/ssh/collect-ssh.tar.gz
Then, execute the following four commands to configure the script.

gzip -d collect-ssh.tar.gz
tar xvf collect-ssh.tar
cd collect-ssh

sh build-CR.sh

Finally, run the script with the following command. If you are an authorized
administrator of this host, please consider running the script as root so that we
can collect the full set of data from all ssh user configurations on the host.

perl collect-ssh.pl

You will then be shown the data being collected. When collection is complete,
you will be asked if you are willing to submit it to us and prompted for a trans-
mission method. If you are behind a firewall, we recommend email submission.
Regardless of how the data is transmitted, it will be encrypted first. If you
experience trouble in your environment with the default options, read section
IT of the README file that comes with the script for more information.

Further information about protecting your site from information harvesting by
patching an existing OpenSSH installation or upgrading to OpenSSH 4.0 is
available on our project website at

http://nms.lcs.mit.edu/projects/ssh/

We greatly appreciate your support!

http://nms.csail.mit.edu/projects/ssh/collect-ssh.tar.gz
http://nms.lcs.mit.edu/projects/ssh/README.collect-ssh
http://nms.lcs.mit.edu/projects/ssh/

Inoculating SSH Against Address-Harvesting Worms*

Stuart E. Schechter

ses@ll.mit.edu

Jaeyeon Jung
jyjung@mit .edu

Abstract

Address harvesting is the act of searching a compro-
mised host for addresses of other hosts to attack. Secure
Shell (SSH), the tool of choice for administering and
communicating with mission-critical hosts, security-
critical hosts, and even some routers, leaves each user’s
list of previously contacted hosts open to harvest by any-
one who compromises the user’s account. Attackers
have combined address harvesting with myriad mech-
anisms for impersonating a host’s legitimate users to
obtain a remote shell via SSH. They have succeeded
in breaching systems at major academic, commercial,
and government institutions. In this paper, we detail the
threat posed should attackers automate this mode of at-
tack to create a self-propagating worm. We then present
a countermeasure to defend against address harvesting
attacks, with an implementation written for OpenSSH.
We also present the first study to measure how much in-
formation is available to attackers who harvest addresses
from users’ known_host s databases and search for un-
encrypted identity key files. We found that a surpris-
ingly large fraction of the known_hosts entries were
to hosts on distant networks, that the bulk of these en-
tries could be reached by compromising a small fraction
of the user accounts in our survey, and that 62.8% of
identity keys encountered were stored unencrypted.

1 Introduction

The SSH protocol has done much to popularize the use
of cryptography for remote command execution, file
transfer, and other services. However, cryptographic
channels alone are not enough to ensure these services
will only be accessed by their intended users for the pur-
poses they authorize. As SSH has become one of our
most trusted services, attacks that highlight its limita-

*This work is sponsored by the United States Air Force under Air
Force Conract F19628-00-C-0002. Opinions, interpretations, conclu-
sions and recommendations are those of the author and are not neces-
sarily endorsed by the United States Government.

bigwill@mit.edu

Will Stockwell Cynthia McLain

cdmclain@ll.mit.edu

tions have become widespread. A small set of attackers
have exploited weaknesses in SSH authentication prac-
tices to impersonate legitimate users and compromise
systems at a large number of major universities, corpora-
tions, national laboratories, supercomputing centers, and
even military installations [8, 17, 33, 21].

One reason these attackers have been able to target such
a large number of institutions is that SSH clients store
known_hosts databases, which map the list of remote
hosts each user has previously contacted via SSH to their
public keys. When a host is compromised and an at-
tacker learns how to impersonate one of its users, the
list of addresses in the known_hosts database is eas-
ily harvested for use in targeting other hosts. Such re-
liable target lists reduce both the time required to find
vulnerable hosts and the likelihood that attacks will raise
alarms due to failed connections or authentications. Se-
curity practitioners have observed attackers using the
known_hosts database to identify target hosts for fu-
ture compromise [8].

In Section 2, we will describe a number of weaknesses in
authentication and credential management practices that
expose SSH servers to impersonation attacks, such as the
re-use of weak passwords on multiple hosts and reliance
on the operating system to protect identity key cre-
dentials. Impersonation mechanisms that exploit these
weaknesses include attacks that use stolen authentica-
tion credentials and that insert fraudulent credentials into
password files or authorized_keys files [21]. We
describe how these impersonation attacks could be used
to construct a worm in Section 3.

In Section 4, we describe how these machanisms were
used to carry out the recent attacks. We also present re-
cent trends in malicious code that indicate these same
techniques may soon be fully automated to create a
worm, or self-propagating malicious program. These
trends include the use of automated tools to perform on-
line dictionary attacks against SSH and the emergence
of worms that perform online dictionary attacks on other
protocols.

To better understand the consequences of attacks that

harvest addresses from SSH, we have initiated the first
multi-institution study, on SSH known_host s relation-
ships and key management, collecting data from 2,077
user accounts on 92 hosts. We use the data from this
study, presented in Section 5, to explain how these
known_hosts databases have enabled attackers to re-
peatedly compromise host after host, and network after
network.

In Section 6, we discuss the countermeasures that can be
used to safeguard against address harvesting, as well as
the trade-offs they require. As a result of this work, one
of these countermeasures has now been implemented
into OpenSSH 4.0.

2 SSH Impersonation Attacks

Before we can adequately describe the recent attacks
on SSH and the potential of SSH worms, we must first
explain the mechanisms that can be used to imperson-
ate users. These mechanisms require no protocol or
software vulnerability in SSH. Instead, an attacker who
compromises one user account on a host can employ
other exploits to compromise other user accounts on that
host. The mechanisms described below, and summa-
rized in Table 1, leverage access to one compromised
user account on a source host in order to enable the at-
tacker to impersonate that user when authenticating to a
target host on which that user also has an account.

2.1 Exploiting misplaced trust

SSH servers and user accounts are often configured to
trust other hosts to act on their behalf, to authenticate
users, or to safely store user credentials. All of these
practices are potential targets of attack.

T1 — Exploiting reliance on other host’s security

If an attack comes from a compromised host that is
listed in the shosts.equivorhosts.equiv filein
the target server’s /etc directory, or the . shosts or
.rhosts file of the targeted user, the attacker will be
permitted to connect to a target user’s account without
presenting user credentials.

Even if no hosts are explicitly trusted to authenticate on
behalf of the target host, such trust is often implicit.
Many users place their public identity keys in their
authorized keys files on SSH servers and leave
their secret identity key unencrypted on hosts they use as
SSH clients, trusting that these accounts will not be com-

promised. If one such client account or host is compro-
mised, then the attacker can read the unencrypted iden-
tity key and use it to authenticate to the target host.

T2 — Abuse of forwarded authentication agent
Authentication agents are programs employed by users
to authenticate on their behalf. They free users from the
need to retype the pass phrases that protect their identity-
key credentials each time that they authenticate.

A user can configure his agent to authenticate on his be-
half when accessing services from an application run on
a remote host. However, most SSH agents do not ver-
ify that the actions a remote host performs are the ac-
tions the user intended to authorize. Thus, when the user
believes he is authorizing a CVS transaction he may in-
stead be authorizing an SSH connection to a host tar-
geted by the attacker.!

2.2 Credential theft

An attacker who can obtain a user’s credentials can im-
personate that user on any host that accepts these cre-
dentials. An attacker may choose from any of a number
of approaches to steal credentials.

C1 — Password theft by compromised SSH server
When authenticating via passwords, the SSH client will
send the user’s password credentials to the server over an
encrypted channel. When the user’s password arrives,
it is then decrypted into plaintext before it is checked
against the password file. If the server belongs to or has
been compromised by the attacker, then the attacker can
modify the SSH server to collect these passwords. The
attacker can then proceed to gain access to other hosts
on which this password is used for authentication.

This attack can be thwarted if the client is configured to
authenticate via a challenge-response protocol, such as
SSH identity-key authentication or the Secure Remote
Password (SRP) extension [30].

C2 — Extraction of keys from authentication agents
To free users from the need to retype the pass phrases
that protect their identity key credentials, an authentica-
tion agent must keep these credentials in its memory.

Once an account is compromised, an attacker can search
the process table for active authentication agent pro-
cesses. He can then copy, dump, or directly inspect the

IThe agent in Michael Kaminsky’s remote shell client, REX [11,
12], provides a partial solution to this problem by verifying that the
service being authorized (but not the command or parameters passed
to the service) is indeed the one that the user intended.

memory space of those processes to which he has access
in order to locate identity key credentials.

C3 — Online dictionary attacks

An online dictionary attack is staged by repeatedly at-
tempting to authenticate to a remote host using common
passwords. Intrusion detection systems can be trained to
detect these attacks and terminate communications with
attacking hosts. However, if an attacking host is per-
mitted to continue these attacks and chooses a large set
of targets, it will eventually find servers that allow con-
tinued connection attempts and employ common pass-
words.

C4 — Offline dictionary attacks

After obtaining the password file on a compromised
host, an attacker can test candidate passwords against
the password file or try to decrypt identity key files in
user home directories. While it is likely that an attacker
who could access the password file could compromise
this account without the password, chances are that the
user employs this password to authenticate to other hosts
as well. Such offline dictionary attacks also differ from
their online counterparts in that the attacker need not
run the authentication protocol. This is advantageous
because executing a network protocol increases the risk
that alarms will be activated and introduces a network
delay for each password tested. Once a user’s creden-
tials have been compromised, the attacker can use them
to gain access to other hosts on which they are accepted.?

C5 — Eavesdropping by client software or host

A patient attacker who has compromised a user’s ac-
count can modify or observe the SSH client and agent
to collect passwords and identity key pass phrases as the
user types them. It can then either store the host address,
username, and password triplets that it observes, or it
can send them directly to the attacker.

Many users find it convenient or necessary to open SSH
clients on hosts to which they are already connected via
SSH. We use the term gateway hosts to describe those
hosts to which a user connects via SSH from a client and
from which the user then initiates a new SSH connection
to another host running the SSH server. It is often neces-
sary to use gateway hosts when firewalls prevent direct
access from the user’s immediate client to his or her de-
sired destination host. SSH may also be employed to
protect file transfers, CVS commands, or other services

2A 1995 study by Bishop and Klein [2] showed that 40% of pass-
words were crackable. More recent reliable statistics on the percent
of crackable passwords are harder to find. Suffice it to say that while
user awareness of weak passwords may have improved since then, the
sophistication of cracking algorithms has also improved and the speed
of computers used to crack passwords has followed the expontential
growth of Moore’s law.

required by software that is run at a gateway host. At-
tackers can strike users on these gateway hosts even if
an SSH server is not run on the user’s immediate client.

2.3 Insertion attacks

An attacker may be able to insert his own commands
into a user session or insert his own credentials in place
of a legitimate user’s credentials. The former attack, in
which the attacker impersonates the user for part of the
SSH session, can be used to perform the latter attack,
which allows the attacker to impersonate the user in fu-
ture sessions.

I1 — Session capture and command insertion

While proper use of identity keys, authentication agents,
and agent forwarding can protect against credential theft
at gateway hosts, these practices offer very little real pro-
tection if connection is routed through a compromised
client or host. All communications are decrypted and
then re-encrypted at the client, and software at this host
can insert, modify, or delete information at will.

I2 — Credential insertion or replacement

An attacker can insert an identity key into the user’s
authorized_keys file. The SSH server depends on
this file to determine which keys the user has authorized
to serve as his credentials. If the compromised user’s
home directory is located on a shared file system, the
attacker then uses the inserted identity keys to authen-
ticate as that user to other hosts that mount the user’s
shared home directory.

If the attacker can write to the system password file, he
can replace any or all user passwords with those of his
choosing.

3 Components of an SSH Worm

The success of a worm depends on the number of hosts
that are vulnerable to attack, the speed at which the
worm can propagate, and its ability to evade detection
to avoid triggering a response. Depending on the avail-
ability of certain classes of vulnerabilities and the skill
of the author, a worm could target SSH using a variety
of the attacks from Section 2, as summarized in Table 1.

To spread quickly, an SSH worm will need to infect
as many new hosts as possible immediately after each
host is compromised. Upon compromising a new host,
such a worm could impersonate that host’s users by tak-

-
g =
- S
= =
S 0
5 B
o (o] 72}
=] g
E | & g
g% | =
Attack Event triggering attack opportunity 2 8 <
T1 | Unencrypted identity key file located User’s account or host compromised * X X
. Compromise of account or host alread
T2 | Forwarded agent used to authenticate attacker P v * X X
running forwarded agents
. New password-authenticated session
C1 | Password stolen by compromised SSH server oW P . X X
initiated to compromised server
o Identity key extracted from SSH agent pro- | Compromise of host running agent pro- N X X
cesses cesses
. . Authentication protocol executed with
C3 | Online dictionary attack on password file P X X
correct username/password guess
ca Offline dictionary attack on passwords and | Password hash computation completed X X
identity keys with correct password guess
Password or key entered into previously com- | SSH client/agent executed on compro-
(68 . . . X X
promised SSH client or agent mised host
I1 | Session insertion attack User’s account or host compromised * X X

Table 1: Attacks on SSH and the properties that affect their effectiveness when used in a worm. An ‘X’ indicates
either that an attack can be run from a user account (root not required), need not wait for interactive user events in
order to spread (non-interactive) or would not require excessive network traffic (labeled stealthy). A star (*) indicates
that the attack can run without root privileges, but only against accounts available to the compromised user.

ing immediate advantage of any unencrypted identity
keys (T1), extracting identity keys from running agents
(C2), taking over any existing SSH client sessions (T2),
and using forwarded agents to authenticate on its behalf
(T2). Obtaining root access to the compromised hosts
would enable these attacks to be carried out using data
from all of the host’s users, and would then allow the
worm to begin an offline dictionary attack to obtain any
credentials that it does not already have.

After the worm has exhausted all immediate targets, it
could steal passwords from users that login to its SSH
server (C1) and observe clients and agents to collect cre-
dentials (C5). While this may be unlikely to speed the
overall spread, the worm can take advantage of any ac-
tivity that may have caused it to be detected — the admin-
istrators may be next to login and his credentials may be
the most valuable of all. While online dictionary attacks
(C3) are likely the slowest and most overt, worms may
still benefit from employing them after all other vectors
have been exhausted.

Of course, a remote exploit in SSH that allows the at-
tacker to impersonate any user could enable a worm to
spread to the set of all accessible hosts running vulner-
able SSH servers. Such a worm could spread unencum-
bered by the delays incurred by attacks that wait for user
interaction, search for credentials, or repeatedly run au-
thentication protocols. The speed and stealth of such a
worm would be bounded by its ability to correctly iden-
tify and contact other vulnerable hosts.

Regardless of how a worm performs impersonation, it
will need to identify target hosts. For attacks that em-
ploy stolen credentials or forwarded agents, it will need
to identify hosts on which a specific user has an ac-
count. Attackers could not hope for a better repository
of prospective target hosts addresses than that provided
by the SSH client’s known_host s database.® For each
user, this database stores addresses of the hosts to which
the user has connected, each of which is mapped to the
host’s public key. Most implementations store this list
sorted in the order in which the hosts were first con-
tacted, allowing the attacker to first focus on those hosts
that are newer and less likely to have been moved or re-
tired.

The user’s known_hosts database is not the only
source of addresses of potential targets. When present,
the administrator-configured global known_hosts file
provides a list of targets that are likely to be receptive
to connections from any user on the infected host. Once
this wealth of information is exhausted, it may be pos-
sible to find more host names in configuration files and
SSH server logs. These log files list, in plaintext, the
names of clients that have connected to the server and
the user accounts to which they connected.

In the upcoming sections, we will describe how attackers
have used impersonation attacks to compromise remote
hosts and used known_host s databases to identify ad-

3While called the known_hosts database, OpenSSH and other
implementations store this data in a flat file within a subdirectory of
the user’s home directory.

ditional targets.

4 Is an SSH Worm Imminent?

As automated patching has helped to reduce the avail-
ability of hosts with vulnerable software, attacks that
target authentication mechanisms have been on the rise.
As more attackers target SSH and these attacks become
more automated, the onset of worms that attack SSH ap-
pears imminent.

Worms such as Lovgate [26], Deloader [24, 6], and
Gaobot [25] already use online dictionary attacks in or-
der to spread, though using protocols other than SSH.
While such brute force attacks are among the least ef-
fective, they are frequently found in the wild because
they are among the easiest to write.

While we are not aware of a worm that employs online
dictionary attacks against SSH, online dictionary attacks
targeting the protocol have been automated and made
publicly available [20]. Evidence of their use appears
in reports from the SANS Internet Storm Center [3] and
from the anecdotal reports of security professionals and
network researchers.

Trojaned SSH clients have also become widespread,
and a number of these have been lifted from compro-
mised hosts [4]. While such clients have been known
to exist for some time, the incidents of attacks using
them has been rising dramatically. In 2004, a number
of high profile attacks were staged using trojaned SSH
clients and offline dictionary attacks. Hosts were com-
promised at a large number sites including major uni-
versities, national laboratories, and supercomputing cen-
ters [17, 33], as well as major corporations and mili-
tary installations [8]. Logs at at least one installation
recorded attackers in action and show SSH connections
to hosts in the known_hosts database being initiated
immediately after the known_host s database was read
by the attacker [8].

The consequences of these attacks were significant.
Source code used to control routers was stolen from
Cisco Systems [13]. Some sites had to be taken offline
for multiple days [17, 8, 33]. One of the educational
institutions that contributed to our anonymized study re-
ported that they had been forced to initiate a policy of
disallowing all SSH connections from outside networks.

The scope of these attacks appears to be limited only by
the time available to the attackers, a factor that would not
constrain a worm. Given that most of the components a

worm writer would require are already available, there
may be little time left to improve our defenses before
they put the pieces together.

In fact, such a worm attack would not be without his-
torical precedent. The Morris worm of 1988 used of-
fline dictionary attacks to crack passwords. The Mor-
ris worm also harvested target addresses from files such
as .rhosts and . forward [22]. Because the Morris
worm preceded the advent of SSH, the known_hosts
database was not available to it.

5 Empirical Data

To better understand how an SSH worm might spread,
we have undertaken a multi-institution effort to collect
data from users’ known_hosts database entries and
their overall SSH configuration. We made available a
data collection and reporting script, written in Perl, that
could be run on each host either by individual users to
collect data from their own account or by system ad-
ministrators to collect data from all user accounts. The
data collection and reporting script is publicly available
at http://nms.lcs.mit.edu/projects/ssh/.

5.1 Collection methodology

A summary of the information submitted by our data
collection and reporting script, collect—-ssh.pl, is
shown in Table 2.

All IP addresses collected, marked with a star (*), have
been anonymized twice using the prefix preserving al-
gorithm of Xu et al. [31]. The prefix preserving prop-
erty ensures that two addresses within the same network
before anonymization will fall into the network after
anonymization. The addresses were first anonymized by
the data collection script as it executed on the submit-
ting host. The second anonymization step, performed
by us after the data were collected, is necessary to pre-
vent the anonymization key in that data collection script
from being used to reverse the anonymization function
and identify hosts in our published results. Public keys
and usernames, marked with two stars (**), are replaced
by their SHA1 [15] hashes.

When our data collection script runs on a submitting
host, it queries that host’s IP address and includes the
anonymized address as part of the submission report.
When we receive the submitted report over a TCP con-
nection, we compare this submitted address with the IP

host information

OS and version
SSH and version
IP address*
Netmask

user identification

Username**
IP address* of host exporting user’s home dir

known_hosts file for each user

IP address* of each host for which key is

authorized keys file for each user

Public identity keys**

identity key files for each user

Public identity keys**
Flag: set if matching private key is encrypted
SSH key version

Table 2: The contents of the report generated by
collect-ssh.pl, organized by data source.

source address field as seen by our servers. Collecting
the address at its source allows us to differentiate hosts
within a local network even if these hosts are behind a
network address translation (NAT) box. Though the ad-
dresses are anonymized, we can still use the IP source
addresses as seen by our servers to differentiate hosts on
two distinct networks, even if they use the same local IP
address behind their respective NATS.

Before submitting the report, the script encrypts the con-
tents using a public key to ensure that the report cannot
be read by an eavesdropper or an attacker who might at-
tempt to compromise the server we use to store submit-
ted data. Users can opt to send the encrypted report to
our collecting server via either HTTP or SMTP, or they
can save it to a file for manual submission.

5.2 Results

At the time of writing we have collected data from
2,077 user accounts that contain known_hosts files

that were submitted from 92 distinct hosts. These files
contain a total of 31,446 known_host s entries to 8,009
unique destination addresses. Of those, 14 submissions
came from hosts on which the collection script was run
as root and on which data were submitted from all users.
For 78 hosts, we received a total of 82 individual user
submissions with at most two user submissions per host.

The median number of unique known_hosts ad-
dresses was 251 on hosts for which we collected data
from all users, but only 24 for hosts on which we had to
rely on individual submissions. Thus it is reasonable to
assume that our data exclude a significant subset of the
known_host s entries on hosts from which we received
individual submissions.

To illustrate the relationships between hosts represented
by known_hosts entries, we generated graphs in
which the nodes represent hosts from which we received
submitted data. Each edge represents an entry, in a
known_host s database located on the host represented
by the source node, that contains the address and key of
the host represented by the destination node.

Figure 5 (attached as an appendix) is a graph of the
known_hosts relationships within the institution from
which we collected the most data. Of all the hosts in
the graph, only the 3 hosts represented by rectangular
nodes ran the script as root and provided us with their
full set of known_hosts relationships. Even though
we collected data from a subset users, themselves on a
small subset of the hosts on the network, the connec-
tivity of known_host s relationships is quite extensive,
spanning 1,290 nodes within the organization.

The set of nodes and edges visible in Figure 5 is also
deceiving, as space constraints prevented us from dis-
playing terminal nodes — those that are the destinations
of known_hosts edges but from which we have not
collected any data. We have placed below the label of
each node the number of outgoing edges that would ex-
ist if terminal nodes were included in the local network
graph.

The series of graphs in Figures 1(a), 1(b), and 1(c), show
the spread of known_hosts edges starting at a single
host, node 63 in Figure 5, and spreading through the in-
stitution. Figure 1(a) shows the nodes at the institution
that are destinations of the origin node’s known_hosts
entries. A total of six terminal destination nodes are not
displayed. Figure 1(b) overlays the nonterminal nodes
at the institution that are destinations of known_hosts
entries of the hosts in Figure 1(a). Figure 1(c) shows the
next iteration of these known_host s relationships.

(a)

]

e %)

(] NEOY

%
S A

\

Figure 1: Host nodes that are reachable in 1 (a), 2
(b), and 3 (c) steps from a source host by traversing
known_hosts edges.

(©)

empirical data
0 reference ling =s=======-
X
£
= 08
1%
g !
% _:—"—'J_'_‘
e 06 F=
X
kS
c
k<]
§ 0.4 .
@
=
©
5 02 =
E ’_,_r’
3
r—'—"_IJ

0 o
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
bit-wise network distance from source host

Figure 2: The fraction of known_hosts entries for
which the destination host falls within a given bit-wise
network distance of the source host. For reference, the
dotted line represents, for a given source host, the prob-
ability that a destination selected uniformly from the IP
space would fall within the given bit-wise distance from
a source host.

Among the eight hosts that are a step away from our
origin is one that itself has 574 outward edges. A total
of 574 nodes can be reached with two steps from the
origin, and an additional 177 can be reached with a third
step. These graphs illustrate that, regardless where an
attack starts, once a node with a large number of outward
edges can be reached the attack can spread to the rest of
the internal network in a very small number of steps.

To understand how extensively known_hosts rela-
tionships span organizations, we look at the bit-wise
network distance between each known_hosts entry’s
source and destination host. For IPv4 addresses, bit-wise
network distance is calculated by subtracting the num-
ber of common high order bits (prefix) from the length
of the address (32). Figure 2 is a cumulative distribution
function that shows the fraction of known_hosts en-
tries that fall within a given bit-wise network distance.
As expected, the distribution shows that known_hosts
relationships are biased towards nearby hosts. Despite
this bias, we observe that nearly 40% of the relationships
span different /16 (Class B) networks and 30% span dif-
ferent /8 (Class A) networks, which helps to explain why
SSH attacks can so easily spread between organizations.

In fact, the known_host s relationships from this small
set of hosts span 88 /8 (class A) prefixes, or 55% of all
valid /8 networks.* Compromise of a single gateway

4The 160 valid class A networks are those that exclude two private
/8 networks and 94 unallocated /8 networks, as documented by the

09 /.

0.7

0.6 /
0:4 ;'

0.3 +*

0.2 e
0.1 b7

CDF of # of destinations

1 10 100 1000
User accounts sorted by the known_hosts entries

10000

Figure 3: At any point x = ¢, the y value represents
the fraction of destination hosts reachable from user ac-
counts 1.. .7, where the user accounts on the X axis are
sorted such that the first account has the known_hosts
file with the most unique destination hosts.

host can yield accounts on many networks. We identified
a single host, outside of the network shown in Figure 5,
that had known_host s relationships with 74 unique /8
networks.

Figure 6 shows known_hosts relationships that span
organizations. The nodes represent either distinct edu-
cational institutions (labeled .edu), firms (.com), or /8
networks (labeled with the most significant byte of the
anonymized IP address). Once again, space constraints
prevent us from showing terminal nodes.

Given the extensive interconnections between hosts, we
were next led to ask just how much of this information
a worm would need in order to spread. We observed
a wide variance in the number of destinations in users’
known_hosts databases. About 70% of user accounts
have less than 10 unique destinations recorded in their
known_hosts database, whereas over 10% of user ac-
counts have used SSH to contact more than 50 distinct
hosts. To assess the contribution of each user account to
the set of unique known_hosts destinations, we sort
the user accounts starting with the user account that has
the most known_hosts entries. The second is the one
with the most known_host s entries to destinations not
reached by the first user account, the third is the one with
the most known_host s entries not reached by the first
or second user account, and so on.

Figure 3 shows that the number of distinct destinations
grows rapidly, with the first 100 user accounts (less than
5% of the total) contributing 5,885 unique destinations
(more than 74% of all unique destinations). This im-

Internet Assigned Numbers Authority [9, 10]

plies that it may be possible to compromise the bulk of
all hosts by compromising only a small subset of user
accounts.

In addition to collecting known_hosts data, our col-
lection script also checked to see if SSH2 identity keys
were present and whether users had encrypted them with
pass phrases. Of 274 identity key files collected, 172
(62.8%) were unencrypted and open to abuse by anyone
able to read them.

6 Countering Address Harvesting Attacks

One way to thwart the spread of address-harvesting SSH
worms is to hinder their ability to harvest target host
names and addresses from the hosts they infect. If
worms can be forced to resort to IP scanning to find tar-
gets, then they can be detected using existing scan de-
tection techniques [18, 28].

These host names and addresses cannot be completely
removed as they represent important information about
the software’s configuration before execution, state be-
tween executions (known_hosts), and history for
forensic purposes (log files). Each type of file has differ-
ent restrictions regarding which parties need to be able to
read or write to it, as illustrated in Table 3, and so differ-
ent solutions (or variants on solutions) are best for each.
The most challenging file to manage is known_hosts,
as it must be read and modified both by SSH and by
those that use and administer it. We will take advantage
of the fact that the common case is for the file to be read
by SSH, and that users only need to access the file man-
ually when locating, copying, or removing an entry.

SSH User/Admin
Reads ‘ Writes | Reads ‘ Writes
known_hosts X X X X
config files X X X
log files X X

Table 3: Of the files read or written by SSH that
contain host names/addresses of other hosts, only
known_hosts must be readable and writable by both
SSH and its users.

6.1 Protecting known _hosts

To understand how SSH implementations could hide
addresses in known_hosts databases, it is instruc-

| Contents of known_hosts entry

Harvest resistance

Additional usability cost

0 name, ip_addr, key None

None

(s1, h(s1 o name)),
(1 (82, h(sz o ip_addr)),
key

Resists plaintext
harvesting

New commands required to find/delete
entries

(s1, h(s1 o name)),
2) (82, h(s2 o name, ip-addr)),

Resists offline dictionary
attacks on IPv4
key addresses

User can no longer locate entries in
known_hosts using only their IP
address

(s1, h(s1 o name o key)),
3) (82, h(s2 o name o ip_addr o key)),
date_and_time_entry_added

Resists offline dictionary
attacks on the IPv4
address space and on
host names

User can’t distinguish between
changed key from known host and new
key presented by unknown host. Adds
need for key revocation lists.

Table 4: A summary of possible organizations for SSH known_hosts entries, where & is a one-way collision-
resistant hash function and s; and s are randomly generated values (salts). Each approach is incrementally more
resistant to harvesting than the one above it, but incurs an incremental cost in usability.

tive to look at how password databases evolved to de-
fend against similar threats. Early multi-user com-
puters stored passwords in plaintext files and, like
known_hosts files, relied upon the file system to pre-
vent their misuse by keeping them secret. In 1974,
Evans, Kantrowitz and Weiss [5] proposed that pass-
words be hashed with a one-way function before being
stored in the password file.> Their key observation was
that the host did not need to store the passwords them-
selves, but only enough information to later verify that a
password provided to the host was the same one the user
had previously provided. Surely similar approaches can
be used to protect SSH known_host s databases.

We present three possible approaches with which one-
way collision-resistant hash functions can be used to
hide the identity of hosts in known_hosts databases.
In Table 4 we summarize these approaches and contrast
them with the original known_hosts format. Each
solution is more harvest-resistant than the last, but this
added resistance comes at a cost in usability.

Approach (1) — Simple name/address hashing

The simplest approach to prevent harvesting of plaintext
host names and addresses is to hash their values as one
would hash a password in the password file. The use
of randomly generated salts, s;, and s2 ensure that the
work required to stage a dictionary attack against one
entry cannot be re-used on other entries. This simple
hashing strategy can be summarized by the information

SFor details on the adoption of this approach, see the early work
of Robert Morris (Sr.) and Ken Thompson [14] or more recently
Garfinkel et al. [7].

stored in each known_hosts entry.

(s1,h(s1 o name)),
(82, h(sq oip-addr)),
key

We first implemented this approach into OpenSSH 3.9
using SHA1 [15] as our hash function /& and base64 en-
codings of random 64 bit numbers as salts. In response
to earlier drafts of this paper, the OpenSSH development
team coded their own implementation of this approach,
which first appeared in OpenSSH 4.0.

When the SSH client is called upon to initiate a new
connection, it checks the destination host name and ad-
dress against the known_hosts database entry by en-
try. A special string (‘<’ in our implementation and |1|’
in the OpenSSH 4.0 implementation) indicates that the
host name or address has been replaced with a hashed
token. In this case, the destination host name or address
is hashed using the salt extracted from the token, base64
encoded, and then compared to the hash encoded in the
token. Matching encodings imply with reasonably high
probability that the addresses match. To maintain back-
wards compatibility with earlier SSH implementations,
a plaintext comparison between addresses takes place
when the address in the known_hosts database is not
hashed.

Since entries in the known_hosts database are cre-
ated and verified automatically by the SSH client, its be-
havior will remain unchanged from the user’s perspec-
tive. We implemented two new commands for manip-
ulating the known_hosts file should the user need to
do so. remove-knownhost deletes a host entry from
known_hosts by name and ssh-showkey returns
the key of a host specified by name or address. In the

OpenSSH 4.0 implementation, these commands are in-
tegrated as options in ssh-keygen.

To speed the transition to hashed host addresses we
provide a program, ssh-hostname-encoder, that
hashes all of the addresses in an existing known_hosts
file. In OpenSSH 4.0, this functionality is accessible via
a command option in ssh-keygen. We have also pro-
vided a Perl script, convert_known_hosts.pl, that
can be run to convert all known_host s files on a given
filesystem into hashed host address format. As no such
script was provided by the OpenSSH 4.0 team for their
implementation, we have provided one. It can be down-
loaded from
http://nms.lcs.mit.edu/projects/ssh

Approach (2) — Resisting IPv4 dictionary attacks

As with password files, the hashing approach is poten-
tially vulnerable to an offline dictionary attack. On IPv4
networks, the attacker can expect to identify an IP ad-
dress with a worst-case average of 231 SHA1 calcula-
tions. While this might be time consuming enough to
slow spread and raise alarms, an attacker can decrease
the expected work by starting with addresses near that
of the compromised host (recall Figure 2). All of the
nodes on the victim host’s class C can be identified by
performing less than 256 SHAL1 calculations for each
known_hosts entry.

The possibility of dictionary attacks leads us to suggest
that SSH client implementations may not want to store
IP addresses at all. It should only be necessary to asso-
ciate the key with the address used by the user on the
command line, which is most often the domain name.
If hashed IP addresses must be stored, than we propose
that it should be salted both with a random salt and with
the host name. This will significantly increase the cost
of attack in networks where reverse DNS lookups are
disabled, and increase the likelihood of detection where
these lookups are enabled but monitored.

(s1, h(s1 o name)),
(82, h(s2 o name, ip_addr)) ,

key
Approach (3) — Resisting all offline dictionary attacks

Host names are also subject to dictionary attack, es-
pecially if common names such as “gateway”, “mail”,
and “database” are used. A design approach to elimi-
nate offline dictionary attacks requires more fundamental
changes to way that SSH clients confirm that the host be-
ing contacted is indeed one that was last contacted at the
same address. We propose that rather than storing en-

tries that consist of hashed names and address mapped to

10

the host’s key, the SSH client should instead concatenate
the host key onto the value to be hashed for the name and
address entries as illustrated below.

(s1, h(s1 o name o key)) ,
(82, h(s2 o name o ip_addr o key)) ,
date_and_time_entry_added

When a host is contacted in the future, its key will be re-
trieved before the known_hosts file is searched and so
it is still quite possible to check whether the key is asso-
ciated with any known host name/address pairs. Obtain-
ing the keys requires the attacker stage an online dic-
tionary attack, contacting hosts that it may not be able
to authenticate to and increasing the likelihood of de-
tection. Passing a large dictionary of these keys around
with a worm would be bandwidth intensive and likely to
raise alarms.

The additional benefit incurs a significantly higher us-
ability cost than the previous approaches. First, both the
host name and the key are required in order to identify
or remove an entry from the known_hosts database.
If a key was lost and needed to be revoked, a revoca-
tion list would need to be employed to revoke all keys
assigned to that host before the date on which the key
was replaced. What’s more, users would not differenti-
ate between the response received when they first con-
tacted a host and the response received when a host’s
key changed. Fortunately, the correct security behavior
in both cases should be the same — the user should check
the host key’s hash against a hash obtained through a se-
cure alternate channel.

While this alternative design will counter offfine dic-
tionary attacks, online dictionary attacks remain a con-
cern, especially if no system is in place to detect them.
An attacker staging an online dictionary attack can
fetch the host key once and test it against each user’s
known_hosts database on the compromised host. To
make online dictionary attacks less effective, it would be
beneficial if the key the client expected from the server
changed for each user. This approach would be most
acceptable for protocols in which clients and servers, af-
ter authenticating in a first communication, agreed upon
a symmetric key for future sessions. Alternatively, the
user’s identity key could be used to create a certificate
that the server could use in future communications with
the user to assert the authenticity of its key.

6.2 Protecting configuration files

Host address hashing can also be used to protect ad-
dresses in user-configured files such as the trusted host

file (. shosts) and the user’s main configuration file,
so long as the host name need not be read until the host
to be contacted has been identified. However, using in-
comprehensible tokens in place of plaintext addresses in
these files may raise concerns for any sophisticated user
or system administrator who may want to audit these
files to ensure they do not place trust in the wrong re-
mote hosts.

Fortunately, there is more flexibility in designing solu-
tions to this problem than that of the known_hosts
database, as configuration files are not written by SSH.
Thus, solutions do not need to support mechanisms
through which the SSH client or server can change the
file.

To ensure that configuration files could be audited, hash-
ing approach (2) could be modified to use a deterministic
public key encryption algorithm as its hashing function.
While the function remains one way and collision resis-
tant to those without the key, an auditor with the key can
reverse the function.

Some may find it simpler to use hashing approach (2)
and to maintain an encrypted master configuration file
in which host names and addresses are not hashed. To
modify the configuration, the administrator decrypts the
master file to plaintext, makes changes to this plaintext
master, copies it, obfuscates the addresses in the copy,
and finally re-encrypts the master file. However, if the
file is changed it may not be possible to determine how
it was changed.

6.3 Protecting log files

The log files generated by the SSH server not only con-
tain the names of other hosts running the SSH protocol
suite, but also the names of the user accounts on those
hosts. While this information is dangerous in the hands
of a worm, its presence can be essential to detect and
track intrusions. Logs should be easily converted back
to plaintext form for processing. Fortunately, in explor-
ing the solution space to this problem we can take ad-
vantage of the fact that logs need not be written by users
or administrators and, more importantly, that they need
not be processed by anyone other than the system’s ad-
ministrators.

We can prevent log entries from being harvested if we
can encrypt these entries to ensure that, once written,
they can only be read using a secret key. A naive al-
gorithm to accomplish this would encode each entry
using a public key cryptosystem. Less computation-
ally intensive approaches to securing audit logs have

11

been introduced by Yee and Bellare [32], Schneier and
Kelsey [19], and Waters et al. [27].

A simplified algorithm that meets our requirements can
be constructed using a public key pair. When the SSH
server begins executing, it creates a random session key
ko for use with a faster symmetric cryptosystem. It then
encrypts this kg with the public key, encodes the result
into base64, and writes it to the log.

Each log entry then begins with its sequence number,
i, followed by the entry contents encrypted with sym-
metric key k;, where k; = h(k;—1). Once the logging
function has encoded the entry, it immediately calculates
k;+1 and discards k; from memory. To derive k; from
k;+1 would require breaking the one-way hash function.

When the system administrator wants to review the log
he must provide his private key, which is password pro-
tected and ideally stored on a a host other than the one
generating the log. The private key is used to decrypt k.
The key for any entry ¢ can then be derived by calculat-

6.4 Protecting gateway hosts

While hindering attempts to harvest addresses can help
to thwart the spread of attacks through gateway hosts,
it is preferable to avoid running SSH clients on these
hosts altogether. An ideal SSH gateway is one on which
the SSH server, but not the SSH client, is installed, and
through which users can forward TCP connections but
execute no other operations. To initiate a connection
from a local client to a server through such a gateway,
users first initiate an SSH connection to the gateway and
then initiate a second SSH connection from the local
client to the server through the gateway. This is one of
the approaches recommended in the text SSH, the Secure
Shell: The Definitive Guide [1].

Unfortunately, the methods available to forward connec-
tions through the gateway are less than straightforward
and beyond the knowledge and abilities of most users.
One method of constructing forwarded SSH connections
is to setup a proxy in the configuration file, but this must
be created for each gateway and makes the user’s config-
uration file a more attractive target for harvesting. This
method also presents problems if the gateway uses any
form of interactive authentication, such as host password
authentication.

Another means to accomplish a forwarded connection
is to use local port forwarding. However, this opens
up the gateway to abuse from others on the same

myclient> ssh -H lazlo@gateway -H server
Establishing forwarded connection. Be sure to
close this shell window immediately after your
session is complete.

Authenticating user ’lazlo’ to ’'gateway’:

PASSWOLdA: ks kkkkkkk*

to

Authenticating user ’"hollyfeld’ "server’ :

\\ password: Kk kk ok ok ok ok k ok ok ok ok

Connected to ’server’.

server>

Figure 4: A forwarded connection using the —H option.
Boundary boxes surround interactive authentication ses-
sions, ensuring that the gateway host cannot use the ses-
sion to fool the user into issuing commands intended for
the client or server hosts.

client host with access to the forwarded port. This
method also requires that the user learn how to use the
HostKeyAlias configuration option so that the con-
nection forwarded through the local portisn’t treated as a
connection to localhost in the known_host s database.
Finally, the user must use two different shells on the
client host to initiate clients and their connections to the
gateway and server. If a single shell is used, the gateway
can initiate an interactive authentication session during
which it spoofs the behavior the user expects after the
gateway connection is completed. The user may then
end up typing commands (and even passwords) to the
gateway while thinking he is sending them to the server.

Given the complexity of the available options, it’s little
wonder that most users simply issue a command to the
SSH client on the gateway host if one is available. To
ease the process of constructing forwarded connections,
we propose a SSH client command option, which we are
currently implementing.

ssh -H gateway —-H server

The —H option indicates the start of a new connection in
a connection chain. In the above example, the client es-
tablishes a connection with the gateway and then uses a
forwarded connection to contact the server. Any number
of gateway hosts can be used, each of which is contacted
using a separate SSH client process. Local port forward-
ing is performed using UNIX domain sockets to avoid
opening TCP/IP ports accessible to other users. Options
specified before the first —H are applied to all forwarded
connections if appropriate. Options specified between a
—H and a host name are applied only to that connection.

12

If interactive authentication is used, the authentication
interaction is confined within a box that clearly indicates
the host to which the user is authenticating as shown in
Figure 4. All characters used to manipulate the cursor
position are ignored, with the exception of line feeds
which cause a new line to be created within the box. If
characters exceed the length of the screen a new line is
created within the box.

7 Conclusion

We have explored the emerging threat to hosts that rely
on SSH for their security and the form in which future
attacks may take. In particular, we have articulated eight
impersonation attacks on SSH that either exploit mis-
placed trust, use stolen credentials, or insert new com-
mands or credentials through stolen SSH sessions. Each
of these attacks can be exploited by an SSH worm when
combined with address harvesting of known_hosts
databases and other files.

To show the scope of the threat of an SSH worm, we col-
lected data from 92 hosts and located known_hosts
relationships with 8,009 hosts on 55% of all valid /8
networks. We have also collected evidence indicating
that identity keys are, more often than not, stored unen-
crypted. These facts help to explain why attackers that
target SSH have been able to quickly compromise new
hosts on new networks.

To address the ease with which host names and addresses
of SSH servers can be harvested from the client’s file
system, we have presented a series approaches for hid-
ing these addresses using hashing. These approaches
include countermeasures not only against plaintext har-
vesting, but also against attempts to guess host names
and addresses. Finally, we suggest improvements to
existing approaches to forwarding SSH connections
through gateway hosts in order to reduce the effective-
ness of attacks on these hosts.

8 Epilog

This paper was first conceived in early 2004 and drafts
have been in private circulation since June of that year.
Only late in the year did we first learn of the profusion
of real world impersonation attacks taking place against
installations of SSH.

On February 15, 2005 an updated draft was submitted

to officials at F-Secure, SSH Communications Security
Corp., and the OpenSSH development team with a noti-
fication that public release of this work was imminent.

OpenSSH responded with by creating their own imple-
mentation of host address hashing as part of OpenSSH
4.0 on March 9, 2005. Unfortunately, this implementa-
tion is turned off by default and does not come with a
script with which a system administrator can update all
of known_hosts files on a system. We have provided
such a script and instructions for turning hashing on at
http://nms.lcs.mit.edu/projects/ssh/.

WRQ, which took over the F-Secure SSH product line
in October of 2004 and re-branded the product under the
“reflection” name, has also since committed to provide
an option to store host names in a hashed format [29].

Petri Sakkinen of SSH Communications Security Corp.
wrote in an email [16] on May 17, 2005 that “SSH
will consider adding key hashing support in future ver-
sions of SSH Tectia, if our enterprise customers want
to deploy that approach.” The email, and the subse-
quent statement posted to the company’s web site [23],
point out that the company’s products need not use
known_hosts databases when host keys are managed
through the use of host certificates (and the public key
infrastructure on which such certificates rely). The state-
ment also points out (as many others have) that attack-
ers may also harvest host names and addresses from
shell history files. Fortunately, these files are unlike
known_hosts in that the information they store is not
needed for any security purpose and so they are trivial
to cleanse. What’s more, danger posed by shell history
files is already widely known to system administrators.

9 Acknowledgments

The authors offer our gratitude to all of those who have
anonymously contributed data to our efforts at the ex-
pense of their own time and effort.

The authors would like to thank Lou Anschuetz, Hari
Balakrishnan, Robert Cunningham, David Dagon, Vic-
tor Hazlewood, Glenn Holloway, Roger Khazan, Cyn-
thia McLain, David Molnar, Scott Pinkerton, Michael
D. Smith, and Bill Yurcik for their advice and com-
ments. Stuart Schechter would like to thank the National
Science Foundation for supporting this work while he
was at Harvard under grant number CCR-0310877, and
the MIT Lincoln Laboratory Advanced Concepts Com-

mittee for its support since his arrival at the laboratory. 13

Jaeyeon Jung and Will Stockwell would like to thank the
NSF for support under Cooperative Agreement number
ANI-0225660.

References

[1] Daniel J. Barrett and Richard E. Silverman. SSH,
the Secure Shell: The Definitive Guide. O’Reilly
Media, Inc., Sebastopol, CA, February 2001.

[2] Matt Bishop and Daniel V. Klein. Improving Sys-
tem Security via Proactive Password Checking.
Computers and Security, 14(3):233-249, 1995.

[3] SANS Internet Storm Center. Port Graph (for port
22). http://isc.sans.org/port_details.
php?port=22&days=70.

[4] David Dagon. Georgia Institute of Technology,
Email correspondence, December 10, 2004.

[5] Arthur Evans Jr., William Kantrowitz, and Edwin
Weiss. A User Authentication Scheme Not Requir-
ing Secrecy in the Computer. Communications of
the ACM, 17(8):437-442, 1974.

[6] F-Secure. F-Secure Virus Descriptions: Deloder.
http://www.f-secure.com/v-descs/
deloader.shtml.

[7] Simson Garfinkel, Gene Spafford, and Alan
Schwartz. Practical UNIX & Internet Security.
O’Reilly Media, Inc., Sebastopol, CA, 3rd edition,
February 2003.

[8] Victor Hazlewood. Security Technologies Man-
ager, San Diego Supercomputer Center (SDSC),
Telephone correspondence, January 18, 2005.

[9] Internet Assigned Numbers Authority. Internet
Protocol V4 Address Space. http://www.iana.
org/assignments/ipv4-address—-space.

[10] Internet Assigned Numbers Authority. RFC 3330:
Special Use IPv4 Addresses. 1ETF, September
2002.

[11] Michael Kaminsky. User Authentication and Re-
mote Execution Across Administrative Domains.
PhD thesis, Massachusetts Institute of Technology,
September 2004.

[12] Michael Kaminsky, Eric Peterson, Daniel B. Gif-
fin, Kevin Fu, David Mazires, and M. Frans

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Kaashoek. REX: Secure, Extensible Remote Ex-
ecution. In Proceedings of the 2004 USENIX An-
nual Technical Conference, pages 199-212, June
2004.

John Markoff and Lowell Bergman. Internet attack
called broad and long lasting by investigators. The
New York Times, May 10, 2005.

Robert Morris and Ken Thompson. Password Se-
curity: A Case History. Communications of the
ACM, 22(11):594-597, 1979.

National Institute of Standards and Technology.
Secure Hash Standard. FIPS PUB 180-1, April 17,
1995.

Petri Sakkinen, Director, Solution Marketing, SSH
Communications Security. “SSH Worm” and SSH
Communications Security. Email correspondence,
archived at http://nms.csail.mit.edu/
projects/ssh/SSHIncEmail.html, May 17,
2005.

Scott C. Pinkerton. Network Solutions Manager,
Argonne National Laboratory, Email correspon-
dence, February 4, 2005.

Stuart E. Schechter, Jaeyeon Jung, and Arthur W.
Berger. Fast Detection of Scanning Worm Infec-
tions. In Proceedings of the Seventh International
Symposium on Recent Advances in Intrusion De-
tection (RAID 2004), September 15-17, 2004.

Bruce Schneier and John Kelsey. Secure Audit
Logs to Support Computer Forensics. ACM Trans-
actions on Information and System Security (TIS-
SEC), 2(2):159-176, 1999.

K-OTIK = Security. SSH Remote
password Brute Force Cracker

http://www.k-otik.com/exploits/
08202004 .brutessh2.c.php, August
2004.

Root
Utility.

20,

Abe Singer. Tempting Fate. ;login: The USENIX
Magazine, 30(1), February 2005.

Eugene H. Spafford. The Internet Worm Program:
An Analysis. Technical Report CSD-TR-823, Pur-
due Univerisity Department of Computer Sciences,
1998.

SSH Communications
ment:

Security. State-
Secure Shell and Address Harvesting.
http://www.ssh.com/company/newsroom/
20050518 mit.html, May 18, 2005.

14

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Symantec.
W32.HLLW.Deloder.

http://securityresponse.symantec.com/

Security response—

avcenter/venc/data/w32.hllw.deloder.
html.

Symantec.
W32 HLLW.Gaobot. AA.

http://securityresponse.symantec.com/

Security Response—

avcenter/venc/data/w32.hllw.gaobot.
aa.html.

Symantec. Security Response—~W32.Lovgate.mm.
http://securityresponse.symantec.com/
avcenter/venc/data/w32.hllw.lovgate@
mm.html.

Brent R. Waters, Dirk Balfanz, Glenn Durfee, and
D. K. Smetters. Building an Encrypted and Search-
able Audit Log. In Proceedings of the 11th An-
nual Network and Distributed Security Symposium
(NDSS *04), February 1-6, 2004.

Nicholas Weaver, Stuart Staniford, and Vern Pax-
son. Very Fast Containment of Scanning Worms.
In Proceedings of the 13th USENIX Security Sym-
posium, August 9—13, 2004.

WRQ. A hypothetical threat to SSH: What
customers need to know.
com/products/whitepapers/0976.html,
June 2005.

http://www.wrqg.

Thomas Wu. The Secure Remote Password Pro-
tocol. In Proceedings of the 1998 Internet Society
Network and Distributed System Security Sympo-
sium, pages 97-111, March 1998.

Jun Xu, Jinliang Fan, Mostafa H. Ammar,
and Sue B. Moon. Prefix-Preserving IP Ad-
dress Anonymization: Measurement-based Secu-
rity Evaluation and a New Cryptography-based
Scheme. In Proceedings of the 10th IEEE Inter-
national Conference on Network Protocols (ICNP
’02), November 12—15, 2002.

Bennet S. Yee and Mihir Bellare. Forward In-
tegrity for Secure Audit Logs. Technical report,
University of California at San Diego Department
of Computer Science and Engineering, November
1997.

William Yurcik. Senior Systems Security En-
gineer, The National Center for Supercomputing
Applications (NCSA), Telephone correspondence,
January 28, 2005.

"JOOI SB Uel
1d110s UONO9[[02 BIEP INO YOIYM UO SAUO JY} I8 SOPOU Je[nSuL}ody] "PIPN[OXS I8 ‘SOLIIUD JOI[[0D JOU PIP 9M UYOIYM WOIJ Jng SALNUS S ISOY UMOUY JO SUOIBUIISIP

QIe Jey) SIOMIOU) UT SOPOU JSOY) ‘SOPOU [BUTULIS) [GZ] "SOINUS S 3SOY UMOUI PIPTWIQNS JBy) Uonmusul S[Suls & Uriim sjsoy ¢ syuasardor ydeas sy, :¢ oS

Sabpo N0 2

— 89
Bpe N0 0T /SBpa N0 G5\ /S9Bpe 10 T2\, [59Bpe N0 BTT| /SaBpa 110 6. /SBpa 110 0
o 61 o1 i o P

15

2 %P0 10 5%
S6pe 0 T /SBpe 10 €8 /%0Bpe 10 4T, ' Bp0 10 89
19 24 6

"SJUNOJOE JASN IOW JO U} WOIJ BIBP 109[[0D 0} A[qL 9I9M M [YOIYM WOIJ SYI0MISU 9SO} SIpOU Je[NSurIOaY "PIpN[oXe aIe
SOpPOU [BUIULID) ()/, “SOMISU UOTIBULISIP B 0] SHI0MISU 90In0s € wol] sdIySuone[or S 3S0Y UMOUY JY) JO [[& 1uasaIdor 01 pasn ST o5pe 9[3urs y YIom1au (Y Sse[))
8/ © 10 ‘(W0D’) JI0MIQU SSAUISNq ‘(NPI°) JIOMIOU S, UOMNISUT JIWIPLIL UL JAYIS WOI) SISOy JO 39S 10 Isoy e syuasardar ydeIS oyy ur sapou oy Jo yoey :9 oS

16

sebpo o € safipe 10 9
8/S.T 88T 8/TLT
sefpe 1o /T safpe o € safpe 1o 8 —
8/erT 8/ecT 8/00¢
sobpe 1o 0g S36pe 1o gg
wioo'} npe9
sobps 1no 6
8/0TC ozt
sebpa 10 22
npae
8/602
8/66T
safps 1no 0T
89T
safpe 1o 6§
npeo
sebpe 10 0T
8/LT
'SoBpo 10 6T s3fpe o ¢
8//2T 8/6€
sabps 1no 95 safps 1no g L
npep npaq
safps 1no T¢
8/ELT
Safpa 1o
8/ES
Sobpe N0 TT
8/L02
safpe 1n0 0g
8/2LT
safipe 100 OT

8/0cT

