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Abstract
A variety of location-based vehicular services are cur-

rently being woven into the national transportation in-
frastructure in many countries. These include usage- or
congestion-based road pricing, traffic law enforcement,
traffic monitoring, “pay-as-you-go” insurance, and vehi-
cle safety systems. Although such applications promise
clear benefits, there are significant potential violations
of the location privacy of drivers under standard imple-
mentations (i.e., GPS monitoring of cars as they drive,
surveillance cameras, and toll transponders).

In this paper, we develop and evaluate VPriv, a sys-
tem that can be used by several such applications with-
out violating the location privacy of drivers. The start-
ing point is the observation that in many applications,
some centralized server needs to compute a function of a
user’s path—a list of time-position tuples. VPriv pro-
vides two components: 1) the first practical protocol
to compute path functions for various kinds of tolling,
speed and delay estimation, and insurance calculations
in a way that does not reveal anything more than the re-
sult of the function to the server, and 2) an out-of-band
enforcement mechanism using random spot checks that
allows the server and application to handle misbehav-
ing users. Our implementation and experimental eval-
uation of VPriv shows that a modest infrastructure of a
few multi-core PCs can easily serve 1 million cars. Us-
ing analysis and simulation based on real vehicular data
collected over one year from the CarTel project’s testbed
of 27 taxis running in the Boston area, we demonstrate
that VPriv is resistant to a range of possible attacks.

1 Introduction

Over the next few years, location-based vehicular ser-
vices using a combination of in-car devices and road-
side surveillance systems will become a standard fea-
ture of the transportation infrastructure in many coun-
tries. Already, there is a burgeoning array of applications

of such technology, including electronic toll collection,
automated traffic law enforcement, traffic statistic collec-
tion, insurance pricing using measured driving behavior,
vehicle safety systems, and so on.

These services promise substantial improvements to
the efficiency of the transportation network as well as
to the daily experience of drivers. Electronic toll col-
lection reduces bottlenecks at toll plazas, and more so-
phisticated forms of congestion tolling and usage pric-
ing (e.g., the London congestion tolling system [24]) re-
duce traffic at peak times and generate revenue for tran-
sit improvements. Although the efficacy of automated
traffic enforcement (e.g., stop-light cameras) is contro-
versial, many municipalities are exploring the possibility
that it will improve compliance with traffic laws and re-
duce accidents. Rapid collection and analysis of traffic
statistics can guide drivers to choose optimal routes and
allows for rational analysis of the benefits of specific al-
locations of transportation investments. Some insurance
companies (e.g. [21]) are now testing or even deploying
“pay-as-you-go” insurance programs in which insurance
premiums are adjusted using information about driving
behavior collected by GPS-equipped in-car devices.

Unfortunately, along with the tremendous promise of
these services come very serious threats to the location
privacy of drivers (see Section 3 for a precise definition).
For instance, some current implementations of these ser-
vices involve pervasive tracking—toll transponder trans-
mitting client/account ID, license-plate cameras, manda-
tory in-car GPS [32], and insurance “black boxes” that
monitor location and other driving information—with
the data aggregated centrally by various government and
corporate entities.

Furthermore, as a pragmatic matter, the widespread
deployment and adoption of traffic monitoring is greatly
impaired by public concern about privacy issues. A siz-
able impediment to further electronic tolling penetration
in the San Francisco Bay Area is the refusal of a sig-
nificant minority of drivers to install the devices due to



privacy concerns [31]. Privacy worries also affect the
willingness of drivers to participate in the collection of
traffic statistics.

This paper proposes VPriv, a practical system to pro-
tect a user’s locational privacy while efficiently support-
ing a range of location-based vehicular services. VPriv
supports applications that compute functions over the
paths traveled by individual cars. A path is simply a se-
quence of points, where each point has a random time-
varying identifier, a timestamp, and a position. Usage-
based tolling, delay and speed estimation, as well as
pay-as-you-go calculations can all be computed given the
paths of each driver.

VPriv has two components. The first component is an
efficient protocol for tolling and speed or delay estima-
tion that protects the location privacy of the drivers. This
protocol, which belongs to the general family of secure
multi-party computations, guarantees that a joint com-
putation between server and client can proceed correctly
without revealing the private data of the parties involved.
The result is that each driver (car) is guaranteed that no
other information about his paths can be inferred from
the computation, other than what is revealed by the result
of the computed function. The idea of using multi-party
secure computation in the vehicular setting is inspired
from previous work [2, 3, 30]; however, these papers use
multi-party computations as a black box, relying on gen-
eral reductions from the literature. Unfortunately, these
are extremely slow and complex, at least three orders of
magnitude slower than our implementation in our exper-
iments (see Section 8.2), which makes them unpractical.

Our main contribution here is the first practically effi-
cient design, software implementation, and experimental
evaluation of multi-party secure protocols for functions
computed over driving paths. Our protocols exploit the
specificity of cost functions over path time-location tu-
ples: the path functions we are interested in consist of
sums of costs of tuples, and we use homomorphic en-
cryption [29] to allow the server to compute such sums
using encrypted data.

The second component of VPriv addresses a signifi-
cant concern: making VPriv robust to physical attacks.
Although we can prove security against “cryptographic
attacks” using the mathematical properties of our pro-
tocols, it is very difficult to protect against physical at-
tacks in this fashion (e.g., drivers turning off their de-
vices). However, one of the interesting aspects of the
problem is that the embedding in a social and physical
context provides a framework for discovering misbehav-
ior. We propose and analyze a method using sporadic
random spot-checks of vehicle locations that are linked
to the actual identity of the driver. This scheme is gen-
eral and independent of the function to be computed be-
cause it checks that the argument (driver paths) to the

secure two-party protocol is highly likely to be correct.
Our analysis shows that this goal can be achieved with a
small number of such checks, making this enforcement
method inexpensive and minimally invasive.

We have implemented VPriv in C++ (and also
Javascript for a browser-based demonstration). Our mea-
surements show that the protocol runs in 100 seconds per
car on a standard computer. We estimate that 30 cores
of 2.4GHz speed, connected over a 100 Megabits/s link,
can easily handle 1 million cars. Thus, the infrastruc-
ture required to handle an entire state’s vehicular pop-
ulation is relatively modest. Our code is available at
http://cartel.csail.mit.edu/#vpriv.

2 Related work

VPriv is inspired by recent work on designing crypto-
graphic protocols for vehicular applications [2, 3, 30].
These works also discuss using random vehicle iden-
tifiers combined with secure multi-party computation
or zero-knowledge proofs to perform various vehicu-
lar computations. However, these papers employ multi-
party computations as a black box, relying on general re-
sults from the literature for reducing arbitrary functions
to secure protocols [34]. Such protocols tend to be very
complex and slow. The state of the art “general purpose”
compiler for secure function evaluation, Fairplay [26],
produces implementations which run more than three or-
ders of magnitude more slowly than the VPriv protocol,
and scale very poorly with the number of participating
drivers (see Section 8.2). Given present hardware con-
straints, general purpose solutions for implementing se-
cure computations are simply not viable for this kind of
application. A key contribution of this paper is to present
a protocol for the specific class of cost functions on time-
location pairs, which maintains privacy and is efficient
enough to be run on practical devices and suitable for
deployment.

Electronic tolling and public transit fare collection
were some of the early application areas for anonymous
electronic cash. Satisfactory solutions to certain classes
of road-pricing problems (e.g., cordon-based tolling) can
be developed using electronic cash algorithms in con-
cert with anonymous credentials [6, 25, 1]. There has
been a substantial amount of work on practical proto-
cols for these problems so that they run efficiently on
small devices (e.g., [5]). Physical attacks based on the
details of the implementation and the associated bureau-
cratic structures remain a persistent problem, however
[13]. We explicitly attempt to address such attacks in
VPriv. Our “spot check” methodology provides a novel
approach to validating user participation in the crypto-
graphic protocols, and we prove its efficiency empiri-
cally. Furthermore, unlike VPriv, the electronic cash
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approach is significantly less suitable for more sophisti-
cated road pricing applications, and does not apply at all
to the broader class of vehicular location-based services
such as “pay-as-you-go” insurance, automated traffic law
enforcement, and aggregate traffic statistic collection.

There has also been a great deal of related work on
protecting location privacy and anonymity while collect-
ing vehicular data (e.g., traffic flow data) [18, 22, 16].
The focus of this work is different from ours, although it
can be used in conjunction. It analyzes potential privacy
violations associated with the side channels present in
anonymized location databases (e.g., they conclude that
it is possible to infer to what driver some GPS traces be-
long in regions of low density).

Using spatial analogues of the notion of k-anonymity
[33], some work focused on using a trusted server to spa-
tially and temporally distort locational services [15, 10].
In addition, there has been a good deal of work on using
a trusted server to distort or degrade data before releas-
ing it. An interesting class of solutions to these prob-
lems were presented in the papers [19, 17], involving
“cloaking” the data using spatial and temporal subsam-
pling techniques. In addition, these papers [17, 19] de-
veloped tools to quantify the degree of mixing of cars
on a road needed to assure anonymity (notably the “time
to confusion” metric). However, these solutions treat a
different problem than VPriv, because most of them as-
sume a trusted server and a non-adversarial setting, in
which the user and server do not deviate from the pro-
tocol, unlike in the case of tolling or law enforcement.
Furthermore, for many of the protocols we are interested
in, it is not always possible to provide time-location tu-
ples for only a subset of the space.

Nonetheless, the work in these papers complements
our protocol nicely. Since VPriv does produce an
anonymized location database, the analysis in [17] about
designing “path upload” points that adequately preserve
privacy provides a method for placing tolling regions and
“spot checks” which do not violate the location privacy
of users. See Section 9 for further discussion of this
point.

3 Model

In this section, we describe the framework underlying
our scheme, goals, and threat model. The framework
captures a broad class of vehicular location-based ser-
vices.

3.1 Framework
The participants in the system are drivers, cars and a
server. Drivers operate cars, cars are equipped with
transponders that transmit information to the server, and

drivers also run client software which enacts the crypto-
graphic protocol on their behalf.

For any given problem (tolling, traffic statistics esti-
mation, insurance calculations, etc.), there is one logical
server and many drivers with their cars. The server com-
putes some function f for any given car; f takes the path
of the car generated during an interaction interval as its
argument. To compute f , the server must collect the set
of points corresponding to the path traveled by the car
during the desired interaction interval. Each point is a
tuple with three fields: 〈tag, time, location〉.

While driving, each car’s transponder generates a col-
lection of such tuples and sends them to the server. The
server computes f using the set of 〈time,location〉
pairs. If location privacy were not a concern, the tag
could uniquely identify the car. In such a case, the server
could aggregate all the tuples having the same tag and
know the path of the car. Thus, in our case, these tags will
be chosen at random so that they cannot be connected to
an individual car. However, the driver’s client applica-
tion will give the server a cryptographic commitment to
these tags (described in Sections 4.1, 5): in our protocol,
this commitment binds the driver to the particular tags
and hence the result of f (e.g., the tolling cost) without
revealing the tags to the server.

We are interested in developing protocols that preserve
location privacy for three important functions:

1. Usage-based tolls: The server assesses a path-
dependent toll on the car. The toll is some function
of the time and positions of the car, known to both
the driver and server. For example, we might have a
toll that sets a particular price per mile on any given
road, changing that price with time of day. We call
this form of tolling a path toll; VPriv also supports
a point toll, where a toll is charged whenever a ve-
hicle goes past a certain point.

2. Automated speeding tickets: The server detects vi-
olations of speed restrictions: for instance, did the
car ever travel at greater than 65 MPH? More gen-
erally, the server may wish to detect violations of
speed limits which vary across roads and are time-
dependent.

3. “Pay-as-you-go” insurance premiums: The server
computes a “safety score” based on the car’s path
to determine insurance premiums. Specifically, the
server computes some function of the time, posi-
tions, and speed of the car. For example, we might
wish to assess higher premiums on cars that persis-
tently drive close to the speed limit, or are operated
predominantly late at night.

These applications can be treated as essentially simi-
lar examples of the basic problem of computing a local-
ized cost function of the car’s path represented as points.
By localized we mean that the function can be decom-
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posed as a sum of costs associated to a specific point or
small number of specific points that are close together
in space-time. In fact, our general framework can be
applied to any function over path tuples because of the
general result that every polynomially computable func-
tion has a secure multi-party protocol [12, 34]. However,
as discussed in Section 8.2, these general results lead to
impractical implementations: instead, we devise efficient
protocols by exploiting the specific form of the cost func-
tions.

In our model, each car’s transponder (transponder may
be tampered with) obtains the point tuples as it drives and
delivers them to the server. These tasks can be performed
in several ways, depending on the infrastructure and re-
sources available. For example, tuples can be generated
as follows:
• A GPS device provides location and time, and the

car’s transponder prepares the tuples.
• Roadside devices sense passing cars, communicate

with a car’s transponder to receive a tag, and create
a tuple by attaching time information and the fixed
location of the roadside device.

Each car generates tuples periodically; depending on
the specific application, either at random intervals (e.g.,
roughly every 30 seconds) or potentially based on loca-
tion as well, for example at each intersection if the car
has GPS capability. The tuples can be delivered rapidly
(e.g., via roadside devices, the cellular network, or avail-
able WiFi [9]) or they can be batched until the end of
the day or of the month. Section 9 describes how to
avoid leaking private information when transmitting such
packets to the server.

Our protocol is independent of the way these tuples are
created and sent to the server, requiring only that tuples
need to reach the server before the function computation.
This abstract model is flexible and covers many practical
systems, including in-car device systems (such as Car-
Tel [20]), toll transponder systems such as E-ZPass [14],
and roadside surveillance systems.

3.2 Threat model

Many of the applications of VPriv are adversarial, in that
both the driver and the operator of the server may have
strong financial incentives to misbehave. VPriv is de-
signed to resist five types of attacks:

1. The driver attempts to cheat by using a modified
client application during the function computation
protocol to change the result of the function.

2. The driver attempts to cheat physically, by having
the car’s transponder upload incorrect tuples (pro-
viding incorrect inputs to the function computation
protocol):

(a) The driver turns off or selectively disables the
in-car transponder, so the car uploads no data
or only a subset of the actual path data.

(b) The transponder uploads synthetic data.
(c) The transponder eavesdrops on another car

and attempts to masquerade as that car.
3. The server guesses the path of the car from the up-

loaded tuples.
4. The server attempts to cheat during the function

computation protocol to change the result of the
function or obtain information about the path of the
car.

5. Some intermediate router synthesizes false packets
or systematically changes packets between the car’s
transponder and the server.

All these attacks are counteracted in our scheme as
discussed in Section 9. Note however that in the main
discussion of the protocol, for ease of exposition we treat
the server as a passive adversary; we assume that the
server attempts to violate the privacy of the driver by
inferring private data but correctly implements the pro-
tocol (e.g. does not claim the driver failed a verification
test, when she did not). We believe this is a reasonable
assumption since the server is likely to belong to an orga-
nization (e.g., the government or an insurance company)
which is unlikely to engage in active attacks. However,
as we discuss in Section 9, the protocol can be made re-
silient to a fully malicious server as well with very few
modifications.

3.3 Design goals
We have the following goals for the protocol between the
driver and the server, which allows the server to compute
a function over a private path.

Correctness. For the car C with path PC , the server
computes the correct value of f(PC).

Location privacy. We formalize our notion of loca-
tion privacy in this paper as follows:
Definition 1 (Location privacy) Let
• S denote the server’s database consisting of
〈tag,time,location〉 tuples.
• S′ denote the database generated from S by remov-

ing the tag associated to each tuple: for every tuple
〈tag, location, time〉 ∈ S, there is a tuple 〈location,
time〉 ∈ S′.
• C be an arbitrary car.
• V denote all the information available to the server

in VPriv (“the server’s view”). This comprises the
information sent by C to the server while execut-
ing the protocol (including the result of the function
computation) and any other information owned or
computed by the server during the computation of
f (path of C), (which includes S).
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• V ′ denote all the information contained in S′, the
result of applying f on C, and any other side chan-
nels present in the raw database S′.

The computation of f (path of C) preserves the locational
privacy of C if the server’s information about C’s tuples
is insignificantly larger in V than in V ′.

Here the “insignificant amount” refers to an amount of
information that cannot be exploited by a computation-
ally bounded machine. For instance, the encryption of
a text typically offers some insignificant amount of in-
formation about the text. This notion can be formalized
using simulators, as is standard for this kind of crypto-
graphic guarantee. Such a mathematical definition and
proof is left for an extended version of our paper.

Informally, this definition says that the privacy guar-
antees of VPriv are the same as those of a system
in which the server stores only tag-free path points
〈time,location〉 without any identifying informa-
tion and receives (from an oracle) the result of the func-
tion (without running any protocol). Note that this def-
inition means that any side channels present in the raw
data of S itself will remain in our protocols; for instance,
if one somehow knows that only a single car drives on
certain roads at a particular time, then that car’s privacy
will be violated. See Section 9 for further discussion of
this issue.

Efficiency. The protocol must be sufficiently efficient
so as to be feasible to run on inexpensive in-car devices.
This goal can be hard to achieve; modern cryptographic
protocols can be computationally intensive.

Note that we do not aim to hide the result of the
function; rather, we want to compute this result with-
out revealing private information. In some cases, such as
tolling, the result may reveal information about the path
of the driver. For example, a certain toll cost may be pos-
sible only by a combination of certain items. However,
if the toll period is large enough, there may be multiple
combinations of tolls that add to the result. Also, find-
ing such a combination is equivalent to the subset-sum
problem, which is NP-complete.

4 Architecture

This section gives an overview of the VPriv system and
its components. There are three software components:
the client application, which runs on the client’s com-
puter, a transponder device attached to the car, and the
server software attached to a tuple database. The only
requirements on the transponder are that it store a list of
random tags and generate tuples as described in Section
3.1. The client application is generally assumed to be ex-
ecuted on the driver’s home computer or mobile device
like a smart-phone.

Figure 1: Driving phase overview: A car with license
plate L1 is traveling from Location S1 at time 1 to Lo-
cation S2 at time 2 when it undergoes a spot check. It
uploads path tuples to the server.

The protocol consists of the following phases:
1. Registration. From time to time—say, upon re-

newing a car’s registration or driver license—the driver
must identify herself to the server by presenting a license
or registration information. At that time, the client ap-
plication generates a set of random tags that will be used
in the protocol. We assume that these are indistinguish-
able from random by a computationally bounded adver-
sary. The tags are also transferred to the car’s transpon-
der, but not given to the server. The client application
then cryptographically produces commitments to these
random tags. We describe the details of computing these
commitments in Sections 4.1 and 5. The client applica-
tion will provide the ciphertext of the commitments to
the server and these will be bound to the driver’s iden-
tity; however, they do not reveal any information about
the actual tags under cryptographic assumptions.

2. Driving. As the car is driven, the transponder gath-
ers time-location tuples and uploads them to the server.
Each path tuple is unique because the random tag is never
reused (or reused only in a precisely constrained fashion,
see Section 5). The server does not know which car up-
loaded a certain tuple. To ensure that the transponder
abides by the protocol, VPriv also uses sporadic random
spot checks that observe the physical locations of cars, as
described in Section 6. At a high level, this process gen-
erates tuples consisting of the actual license plate num-
ber, time, and location of observation. Since these spot
checks record license plate information, the server knows
which car they belong to. During the next phase, the
client application will have to prove that the tuples up-
loaded by the car’s transponder are consistent with these
spot checks. Figure 1 illustrates the driving phase.

3. Reconciliation. This stage happens at the end of
each interaction interval (e.g., at the end of the month,
when a driver pays a tolling bill) and computes the func-
tion f . The client authenticates itself via a web con-
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nection to the server. He does not need to transfer any
information from the transponder to the computer (un-
less the tuples can be corrupted or lost on their way to
the server and the client needs to check that they are
all there). It is enough if his computer knows the initial
tags (from registration). If the car had undergone a spot
check, the client application has to prove that the tuples
uploaded are consistent with the spot checks before pro-
ceeding (as explained in Section 6). Then, the client ap-
plication initiates the function computation. The server
has received tuples from the driver’s car, generated in
the driving phase. However, the server has also received
similar tuples from many other cars and does not know
which ones belong to a specific car. Based on this server
database of tuples as well as the driver’s commitment in-
formation from registration, the server and the client ap-
plication conduct a cryptographic protocol in which:

• The client computes the desired function on the
car’s path, the path being the private input.
• Using a zero-knowledge proof, the client applica-

tion proves to the server that the result of the func-
tion is correct, by answering correctly a series of
challenges posed by the server without revealing the
driver’s tags.

The reconciliation can be done transparently to the user
the client software; from the perspective of the user, he
only needs to perform an online payment.

To implement this protocol, VPriv uses a set of mod-
ern cryptographic tools: a homomorphic commitment
scheme and random function families. We provide a
brief overview of these tools below. The experienced
reader may skip to Section 5, where we provide efficient
realizations that exploit details of our restricted problem
setting.

4.1 Overview of cryptographic mecha-
nisms

A commitment scheme [4] consists of two algorithms,
Commit and Reveal or Decommit. Assume that Alice
wants to commit to a value v to Bob. In general terms,
Alice wants to provide a ciphertext to Bob from which
he cannot gain any information about v. However, Al-
ice needs to be bound to the value of v. This means
that, later when she wants to reveal v to Bob, she can-
not provide a different value, v′ 6= v, which matches
the same ciphertext. Specifically, she computes Com-
mit(v) → (c(v), d(v)), where c(v) is the resulting ci-
phertext and d(v) is a decommitment key with the fol-
lowing properties:

• Bob cannot feasibly gain any information from c.
• Alice cannot feasibly provide v′ 6= v such that Com-

mit(v′)→ (c(v), d′), for some d′.

COST Path tolling cost computed by the client
and reported to the server.

c(x), d(x) The ciphertext and decommitment
value resulting from commit-
ting to value x. That is, Com-
mit(x) = (c(x), d(x)).

vi The random tags used by the vehicle’s
transponder. A subset of these will be
used while driving.

(si, ti) A pair formed of a random tag uploaded
at the server and the toll cost the server
associates with it. {si} is the set of all
random tags the server received within
a tolling period with ti > 0.

Figure 2: Notation.

We say that Alice reveals v to Bob if she provides v
and d(v), the decommitment value, to Bob, who already
holds c(v). Note that c and d are not functions applied to
v; they are values resulting when computing Commit(v)
and stored for when v is revealed.

We use a homomorphic commitment scheme (such
as the one introduced by Pedersen [29]), in which per-
forming an arithmetic operation on the ciphertexts corre-
sponds to some arithmetic operation on the plaintext. For
instance, a commitment scheme that has the property that
c(v) · c(v′) = c(v + v′) is homomorphic. Here, the de-
commitment key of the sum of the plaintexts is the sum
of the decommitment keys d(v + v′) = d(v) + d(v′).

A secure multi-party computation [34] is a protocol
in which several parties hold private data and engage in
a protocol in which they compute the result of a function
on their private data. At the end of the protocol, the cor-
rect result is obtained and none of the participants can
learn the private information of any other beyond what
can be inferred from the result of the function. In this pa-
per, we designed a variant of a secure two-party protocol.
One party is the car/driver whose private data is the driv-
ing path, and the other is the server, which has no private
data. A zero-knowledge proof [12] is a related concept
that involves proving the truth of a statement without re-
vealing any other information.

A pseudorandom function family [27] is a collection
of functions {fk} : D → R with domainD and rangeR,
indexed by k. If one chooses k at random, for all v ∈ D,
fk(v) can be computed efficiently (that is, in polynomial
time) and fk is indistinguishable from a function with
random output for each input.

5 Protocols

This section presents a detailed description of the specific
interactive protocol for our applications, making precise
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the preceding informal description. For concreteness, we
describe the protocol first in the case of the tolling appli-
cation; the minor variations necessary to implement the
speeding ticket and insurance premium applications are
presented subsequently.

5.1 Tolling protocol

We first introduce the notation in Figure 2. For clarity,
we present the protocol in a schematic manner in Fig-
ure 3. For simplicity, the protocol is illustrated for only
one round. For multiple rounds, we need a different ran-
dom function for each round. (The reason is that if the
same random function is used across rounds, the server
could guess the tuples of the driver by posing a b = 0 and
a b = 1 challenge.) The registration phase is the same for
multiple rounds, with the exception that multiple random
functions are chosen in Step (a) and Steps (b) and (c) are
executed for each random function.

This protocol is a case of two party-secure computa-
tion (the car is a malicious party with private data and
the server is an honest but curious party) that takes the
form of zero-knowledge proof: the car first computes the
tolling cost and then it proves to the server that the re-
sult is correct. Intuitively, the idea of the protocol is that
the client provides the server an encrypted version of her
tags on which the server can compute the tolling cost in
ciphertext. The server has a way of verifying that the ci-
phertext provided by the client is correct. The privacy
property comes from the fact that the server can perform
only one of the two operations at the same time: either
check that the ciphertext is computed correctly, or com-
pute the tolling cost on the vehicle tags using the cipher-
text. Performing both means figuring out the driver’s tu-
ples.

These verifications and computations occur within a
round, and there are multiple rounds. During each round,
the server has a probability of at least 1/2 to detect
whether the client provided an incorrect COST, as argued
in the proof below. The round protocol should be re-
peated s times, until the server has enough confidence in
the correctness of the result. After s rounds, the probabil-
ity of detecting a misbehaving client is at least 1−(1/2)s,
which decreases exponentially. Thus, for s = 10, the
client is detected with 99.9% probability. The number of
rounds is fixed and during registration the client selects a
pseudorandom function fk for each round and provides
a set of commitments for each round.

Note that this protocol also reveals the number of
tolling tuples of the car because the server knows the size
of the intersection (i.e. the number of matching encryp-
tions fk(vi) = fk(sj) in iv) for b = 1). We do not
regard this as a significant problem, since the very fact
that a particular amount was paid may reveal this num-

ber (especially for cases where the tolls are about equal).
However, if desired, we can handle this problem by up-
loading some “junk tuples”. These tuples still use valid
driver tags, but the location or time can be an indication
to the server that they are junk and thus the server as-
signs a zero cost. These tuples will be included in the
tolling protocol when the server will see them encrypted
and will not know how many junk tuples are in the inter-
section of server and driver tuples and thus will not know
how many actual tolling tuples the driver has. Further
details of this scheme are not treated here due to space
considerations.

First, it is clear that if the client is honest, the server
will accept the tolling cost.

Theorem 1 If the server responds with “ACCEPT”, the
protocol in Figure 3 results in the correct tolling cost and
respects the driver’s location privacy.

Proof: Assume that the client has provided an incorrect
tolling cost in step 3b. Note first that all decommitment
keys provided to the server must be correct; otherwise
the server would have detected this when checking that
the commitment was computed correctly. Then, at least
one of the following data provided by the client provides
has to be incorrect:

• The encryption of the pairs (sj , tj) obtained from
the server. For instance, the car could have removed
some entries with high cost so that the server com-
putes a lower total cost in step iv).
• The computation of the total toll COST . That is,
COST 6=

∑
vi=sj

tj . For example, the car may
have reported a smaller cost.

For if both are correct, the tolling cost computed must be
correct.

During each round, the server chooses to test one of
these two conditions with a probability of 1/2. Thus, if
the tolling cost is incorrect, the server will detect the mis-
behavior with a probability of at least 1/2. As discussed,
the detection probability increases exponentially in the
number of rounds.

For location privacy, we prove that the server gains
no significant additional information about the car’s data
other than the tolling cost and the number of tuples in-
volved in the cost (and see above for how to avoid the lat-
ter). Let us examine the information the server receives
from the client:

Step (1c): The commitments c(k) and c(fk(vi)) do
not reveal information by the definition of a commitment
scheme.

Step (i): c(tj) does not reveal information by the def-
inition of a commitment scheme. By the definition of
the pseudorandom function, fk(si) looks random. After
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1. Registration phase:

(a) Each client chooses random vehicle tags, vi, and a random function, fk (one per round), by choosing k at
random.

(b) Encrypts the selected vehicle tags by computing fk(vi),∀i, commits to the random function by computing
c(k), commits to the encrypted vehicle tags by computing c(fk(vi)), and stores the associated decommit-
ment keys, (d(k), d(fk(vi))).

(c) Send c(k) and c(fk(vi)),∀i to the server. This will prevent the car from using different tags.

2. Driving phase: The car produces path tuples using the random tags, vi, and sends them to the server.
3. Reconciliation phase:

(a) The server computes the associated tolling cost, tj , for each random tag sj received at the server in the last
period based on the location and time where it was observed and sends (sj , tj) to the client only if tj > 0.

(b) The client computes the tolling cost COST =
∑

vi=sj
tj and sends it to the server.

(c) The round protocol (client proves that COST is correct) begins:

Client Server

(i) Shuffle at random the pairs (sj , tj) obtained from the
server. Encrypt sj according to the chosen fk random func-
tion by computing fk(sj),∀j. Compute c(tj) and store the
associated decommitments.

Send to server fk(sj) and c(tj) , ∀j →

(ii) The server picks a bit b at random. If b = 0, chal-
lenge the client to verify that the ciphertext provided
is correct; else (b = 1) challenge the client to verify
that the total cost based on the received ciphertext
matches COST .(iii) If b = 0, the client sends k and the set of (sj , tj) in

the shuffled order to the server and proves that these are the
values she committed to in step (i) by providing d(k) and
d(tj). If b = 1, the client sends the ciphertexts of all vi

(fk(vi)) and proves that these are the values she committed
to during registration by providing d(fk(vi)). The client
also computes the intersection of her and the server’s tags,
I = {vi,∀ i} ∩ {sj ,∀ j}. Let T = {tj : sj ∈ I} be the
set of associated tolls to sj in the intersection. Note that∑

T tj represents the total tolling cost the client has to pay.
By the homomorphic property discussed in Section 4.1, the
product of the commitments to these tolls tj ,

∏
tj∈T c(tj),

is a ciphertext of the total tolling cost whose decommitment
key is D =

∑
tj∈T d(tj). The server will compute the sum

of these costs in ciphertext in order to verify that COST is
correct; the client needs to provide D for this verification.

If b = 0, d(k), d(ti) else D, d(fk(vi)) →

← Challenge random bit b

(iv) If b = 0, the server verifies that all pairs (sj , tj)
have been correctly shuffled, encrypted with fk, and
committed. This verifies that the client computed the
ciphertext correctly. If b = 1, the server computes∏

j:∃ i, fk(vi)=fk(sj)
c(tj). As discussed, this yields

a ciphertext of the total tolling cost and the server
verifies if it is a commitment to COST using D.
If all checks succeed, the server accepts the tolling
cost, else it denies it.

Figure 3: VPriv’s protocol for computing the path tolling cost (small modifications of this basic protocol work for the
other applications). The arrows indicate data flow.

the client shuffles at random the pairs (sj , tj), the server
cannot tell which fk(sj) corresponds to which sj . With-
out such shuffling, even if the sj is encrypted, the server
would still know that the j-th ciphertext corresponds to
the j-th plaintext. This will break privacy in Step (iv) for
b = 1 when the server compares the ciphertext of sj to
the ciphertext of vj .

Step (iii): If b = 0, the client will reveal k and tj and

no further information from the client will be sent to the
server in this round. Thus, the values of fk(vi) remain
committed so the server has no other information about
vi other than these committed values, which do not leak
information. If b = 1, the client reveals fk(vi). How-
ever, since k is not revealed, the server does not know
which pseudorandom function was used and due to the
pseudorandom function property, the server cannot find
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vi. ProvidingD only provides decommitment to the sum
of the tolls which is the result of the function, and no
additional information is leaked (i.e., in the case of the
Pedersen scheme).

Information across rounds: A different pseudorandom
function is used during every round so the information
from one round cannot be used in the next round. Fur-
thermore, the commitment to the same value in different
rounds will be different and look random.

Therefore, we support our definition of location pri-
vacy because the road pricing protocol does not leak any
additional information about whom the tuple tags belong
to and the cars generated the tags randomly. �

The protocol is linear in the number of tuples the car
commits to during registration and the number of tuples
received from the server in step 3a. It is easy to modify
slightly the protocol to reduce the number of tuples that
need to be downloaded as discussed in Section 7.
Point tolls (replacement of tollbooths). The predomi-
nant existing method of assessing road tolls comes from
point-tolling; in such schemes, tolls are assessed at par-
ticular points, or linked to entrance/exit pairs. The lat-
ter is commonly used to charge for distance traveled on
public highways. Such tolling schemes are easily han-
dled by our protocol; tuples are generated corresponding
to the tolling points. Tolls that depend on the entrance/
exit pairs can be handled by uploading a pair of tuples
with the same tag; we discuss this refinement in detail for
computation of speed below in Section 5.2. The tolling
points can be “virtual”, or alternatively an implementa-
tion can utilize the existing E-Zpass infrastructure:
• The transponder knows a list of places where tuples

need to be generated, or simply generates a tuple
per intersection using GPS information.
• An (existing) roadside router infrastructure at

tolling places can signal cars when to generate tu-
ples.

Other tolls. Another useful toll function is charging cars
for driving in certain regions. For example, cars can be
charged for driving in the lower Manhattan core, which
is frequently congested. One can modify the tolling cost
protocol such that the server assigns a cost of 1 to every
tuple inside the perimeter of this region. If the result of
the function is positive, it means that the client was in the
specific region.

5.2 Speeding tickets
In this application, we wish to detect and charge a driver
who travels above some fixed speed limit L. For sim-
plicity, we will initially assume that the speed limit is the
same for all roads, but it is straightforward to extend the
solution to varying speed limits. this constraint. The idea
is to cast speed detection as a tolling problem, as follows.

We modify the driving phase to require that the car
uses each random vehicle tag vi twice; thus the car will
upload pairs of linked path tuples. The server can com-
pute the speed from a pair of linked tuples, and so during
the reconciliation phase, the server assigns a cost ti to
each linked pair: if the speed computed from the pair
is > L, the cost is non-zero, else it is zero. Now the
reconciliation phase proceeds as discussed above. The
spot check challenge during the reconciliation phase now
requires verification that a consistent pair of tuples was
generated, but is otherwise the same. If it deemed useful
that the car reveal information about where the speed-
ing violation occurred, the server can set the cost ti for a
violating pair to be a unique identifier for that speeding
incident.

Note that this protocol leaves “gaps” in coverage dur-
ing which speeding violations are not detected. Since
these occur every other upload period, it is hard to imag-
ine a realistic driver exploiting this. Likely, the driver
will be travelling over the speed limit for the duration of
several tuple creations. However, if this is deemed to be
a concern for a given application, a variant can be used in
which the period of changing tuples is divided and linked
pairs are interleaved so that the whole time range is cov-
ered: . . . v2 v1 v3 v2 v4 v3 v5 v4 v6 v5 . . .

The computational costs of this protocol are analogous
to the costs of the tolling protocol and so the experimen-
tal analysis of that protocol applies in this case as well.
There is a potential concern about additional side chan-
nels in the server’s database associated with the use of
linked tuples. Although the driver has the same guar-
antees as in the tolling application that her participation
in the protocol does not reveal any information beyond
the value of the function, the server has additional raw
information in the form of the linkage. The positional
information leaked in the linked tuple model is roughly
the same as in the tolling model with twice the time inter-
val between successive path tuples. Varying speed limits
on different roads can be accommodated by having the
prices ti incorporate location.

5.3 Insurance premium computation

In this application, we wish to assign a “safety score”
to a driver based on some function of their path which
assesses their accident risk for purposes of setting insur-
ance premiums. For example, the safety score might re-
flect the fraction of total driving time that is spent driving
above 45 MPH at night. Or the safety score might be a
count of incidents of violation of local speed limits.

As in the speeding ticket example, it is straightforward
to compute these sorts of quantities from the variant of
the protocol in which we require repeated use of a vehi-
cle identifier vi on successive tuples. If only a function
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of speed and position is required, in fact the exact frame-
work of the speeding ticket example will suffice.

6 Enforcement

The cryptographic protocol described in Section 5 en-
sures that a driver cannot lie about the result of the func-
tion to be computed given some private inputs to the
function (the path tuples). However, when implementing
such a protocol in a real setting, we need to ensure that
the inputs to the function are correct. For example, the
driver can turn off the transponder device on a toll road.
The server will have no path tuples from that car on this
road. The driver can then successfully participate in the
protocol and compute the tolling cost only for the roads
where the transponder was on and prove to the server that
the cost was “correct”.

In this section, we present a general enforcement
scheme that deals with security problems of this nature.
The enforcement scheme applies to any function com-
puted over a car’s path data.

The enforcement scheme needs to be able to detect a
variety of driver misbehaviors such as using tags other
than the ones committed to during registration, send-
ing incorrect path tuples by modifying the time and
location fields, failing to send path tuples, etc. To
this end, we employ an end-to-end approach using spo-
radic random spot checks. We assume that at random
places on the road, unknown to the drivers, there will
be physical observations of a path tuple 〈license
plate,time,location〉. We show in Section 8 that
such spot checks can be infrequent (and thus do not affect
driver privacy), while being effective.

The essential point is that the spot check tuples are
connected to the car’s physical identifier, the license
plate. For instance, such a spot check could be performed
by secret cameras that are able to take pictures of the li-
cense plates. At the end of the day or month, an officer
could extract license plate, time and location information
or this task could be automated. Alternatively, using the
existing surveillance infrastructure, spot checks can be
carried out by roving police cars that secretly record the
car information. This is similar to today’s “speed traps”
and the detection probability should be the same for the
same number of spot checks.

The data from the spot check is then used to vali-
date the entries in the server database. In the reconcil-
iation phase of the protocol from Section 5, the driver
is also required to prove that she uploaded a tuple that
is sufficiently close to the one observed during the spot
check (and verify that the tag used in this tuple was one
of the tags committed to during registration). Precisely,
given a spot check tuple (tc, `c), the driver must prove
she generated a tuple (t, `) such that |t − tc| < Ω1 and

|` − `c| < (Ω2)|t − tc|, where Ω1 is a threshold related
to the tuple production frequency and Ω2 is a threshold
related to the maximum rate of travel.

This proof can be performed in zero knowledge, al-
though since the spot check reveals the car’s location
at that point, this is not necessary. The driver can just
present as a proof the tuple it uploaded at that location.
If the driver did not upload such a tuple at the server
around the observation time and place, she will not be
able to claim that another driver’s tuple belongs to his
due to the commitment check. The server may allow a
threshold number of tuples to be missing in the database
to make up for accidental errors. Before starting the pro-
tocol, a driver can check if all his tuples were received at
the server and upload any missing ones.

Intuitively, we consider that the risk of being caught
tampering with the protocol is akin to the current risk of
being caught driving without a license plate or speeding.
It is also from this perspective that we regard the privacy
violation associated with the spot check method: the aug-
mented protocol by construction reveals the location of
the car at the spot check points. However, as we will
show in Section 8, the number of spot checks needed to
detect misbehaving drivers with high probability is very
small. This means that the privacy violation is limited,
and the burden on the server (or rather, whoever runs the
server) of doing the spot checks is manageable.

The spot check enforcement is feasible for organiza-
tions that can afford widespread deployment of such spot
checks; in practice, this would be restricted principally
to governmental entities. For some applications such as
insurance protocols, this assumption is unrealistic (al-
though depending on the nature of insurance regulation
in the region in question it may be the case that insurance
companies could benefit from governmental infrastruc-
ture).

In this case, the protocol can be enforced by requiring
auditable tamper-evident transponders. The transponder
should run correctly the driving phase with tuples from
registration. Correctness during the reconciliation phase
is ensured by the cryptographic protocol. The insurance
company can periodically check if the transponder has
been tampered with (and penalize the driver if neces-
sary). To handle the fact that the driver can temporarily
disable or remove the transponder, the insurance com-
pany can check the mileage recorded by the transponder
against that of the odometer, for example during annual
state inspections.

7 Implementation

We implemented the road pricing protocol in C++ (577
lines on the server side and 582 on the client side). It
consists of two modules, the client and the server. The
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source code is available at http://cartel.csail.
mit.edu/#vpriv. We implemented the tolling pro-
tocol from Figure 3, where we used the Pedersen com-
mitment scheme [29] and the random function family
in [27], and a typical security parameter (key size) of
128 bits (for more security, one could use a larger key
size although considering the large number of commit-
ments produced by the client, breaking a significant frac-
tion of them is unlikely). The implementation runs the
registration and reconciliation phases one after the other
for one client and the server. Note that the protocol for
each client is independent of the one for any other client
so a logical server (which can be formed of multi-core
or multiple commodity machines) could run the protocol
for multiple clients in parallel.

7.1 Downloading a subset of the server’s
database

In the protocols described above, the client downloads
the entire set of tags (along with their associated costs)
from the server. When there are many clients and cor-
respondingly the set of tags is large, this might impose
unreasonable costs in terms of bandwidth and running
time. In this section we discuss variants of the protocol
in which these costs are reduced, at some loss of privacy.

Specifically, making a client’s tags unknown among
the tags of all users may not be necessary. For example,
one might decide that a client’s privacy would still be
adequately protected if her tags cannot be distinguished
in a collection of one thousand other clients’ tags. Using
this observation, we can trade off privacy for improved
performance.

In the revised protocol, the client downloads only a
subset of the total list of tags. For correctness, the client
needs to prove that all of her tags are among the ones
downloaded. Let the number of encrypted tags provided
to the server during registration be n; the first m ≤ n
of these tags have been used in the last reconciliation pe-
riod. Assume the driver informs the server of m. Any
misreporting regarding m can be discovered by the en-
forcement scheme (because any tags committed to dur-
ing registration but not included in the first m will not
verify the spot check). When step (iv) is executed for
b = 1, the server also checks that all the first m tu-
ples are included in the set si; that is {fk(vi)|i ≤ m} ∈
{fk(sj)|∀j}.

There are many ways in which the client could spec-
ify the subset of tags to download from the server. For
instance, one way is to ask the server for some ranges of
tags. For example, if the field of tags is between 0 and
(2128 − 1)/2128, and the client has a tag of value around
0.5673, she can ask for all the tuples with tags in the
range [0.5672, 0.5674]. The client can ask for an interval

for each of her tags as well as for some junk intervals.
The client’s tag should be in a random position in the re-
quested interval. Provided that the car tags are random,
in an interval of length ∆I , if there are total tags, there
will be about ∆I · total tags.

Alternatively, during registration clients could be as-
signed random “tag subsets” which are then subse-
quently used to download clusters of tags; the number
of clients per tag subset can be adjusted to achieve the
desired efficiency/ privacy characteristics. The tag sub-
set could be enforced by having the clients pick random
tags with a certain prefix. Clients living in the same
area would belong to the same tag subset. In this way,
a driver’s privacy comes from the fact that the server will
not know whether the driver’s tuples belong to him or to
any other driver from that region (beyond any side infor-
mation).

8 Evaluation

In this section we evaluate the protocols proposed. We
first evaluate the implementation of the road pricing pro-
tocol. We then analyze the effectiveness of the enforce-
ment scheme using theoretical analysis in Section 8.3.1
and with real data traces in Section 8.3.2.

We evaluated the C++ implementation by varying the
number of random vehicle tags, the total number of tags
seen at the server, and the number of rounds. In a real
setting, these numbers will depend on the duration of the
reconciliation period and the desired probability of de-
tecting a misbehaving client. We pick random tags seen
by the server and associate random costs with them. In
our experiments, the server and the clients are located
on the same computer, so network delays are not con-
sidered or evaluated. We believe that the network delay
should not be an overhead because we can see that there
are about two round trips per round. Also, the number of
tuples downloaded by a client from the server should be
reasonable because the client only downloads a subset of
these tuples as discussed in Section 7. We are concerned
primarily with measuring the cryptographic overhead.

8.1 Execution time

Figures 4, 5, and 6 show the performance results on a
dual-core processor with 2.0 GHz and 1 GByte of RAM.
Memory usage was rarely above 1%. The execution time
for a challenge bit of 0 was typically twice as long as the
one for a challenge type of 1. The running time reported
is the total of the registration and reconciliation times for
the server and client, averaged over multiple runs.

The graphs show an approximately linear dependency
of the execution time on the parameters chosen. This
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Figure 4: The running time of the road pricing protocol as a
function of the number of tags generated during registration for
one round.

Figure 5: The running time of the road pricing protocol as a
function of the number of tuples downloaded from the server
during the reconciliation phase for one round.

result makes sense because all the steps of the protocol
have linear complexity in these parameters.

In our experiments, we generated a random tag on av-
erage once every minute, using that tag for all the tuples
collected during that minute. This interval is adjustable;
the 1 minute seems reasonable given the 43 MPH aver-
age speed [28]. The average number of miles per car per
year in the US is 14, 500 miles and 55 min per day ([28]),
which means that each month sees about ≈ 28 hours of
driving per car. Picking a new tag once per minute leads
to 28× 60 = 1680 tags per car per month (one month is
the reconciliation period that makes sense for our appli-
cations). So a car will use about 2000 tags per month.

We consider that downloading 10, 000 tuples from the
server offers good privacy, while increasing efficiency
(note that these are only tuples with non-zero tolling
cost). The reason is as follows. A person roughly drives
through less than 50 toll roads per month. Assuming no
side channels, the probability of guessing which tuples

Figure 6: The running time of the road pricing protocol as
a function of the number of rounds used in the protocol. The
number of tags the car uses is 2000 and the number of tuples
downloaded from the server is 10000.

belong to a car in this setting is 1/
(
10000

50

)
, which is very

small. Even if some of the traffic patterns of some drivers
are known, the 50 tuples of the driver would be mixed in
with the other 10000.

If the protocol uses 10 rounds (corresponding to a de-
tection probability of 99.9%), the running time will be
about 10 · 10 = 100 seconds, according to Figure 6.
This is a very reasonable latency for a task that is done
once per month and it is orders of magnitude less than
the latency of the generic protocol [2] evaluated below.
The server’s work is typically less than half of the ag-
gregate work, that is, 50 seconds. Downloading 10, 000
tuples (each about 50 bytes) at a rate of 10Mb/s yields
an additional delay of 4 seconds. Therefore, one similar
core could handle 30 days per month times 86400 sec-
onds per day divided by 54 seconds per car = 51840 cars
per month. Even if bandwidth does not scale linearly
with the number of cores, the latency due to bandwidth
utilization is still one order of magnitude less than the
one for computation; even if it adds up and cannot be
parallelized, the needed number of cores is still within
the same order of magnitude. Also, several computers
can be placed in different parts of the network in or-
der to parallelize the use of wide-area bandwidth. Since
the downloaded content for drivers in the same area is
the same, a proxy in certain regions will decrease band-
width usage significantly. Hence, for 1 million cars, one
needs 106/51840 ≈ 21 < 30 similar cores; this com-
putation suggests our protocol is feasible for real de-
ployment. (We assumed equal workloads per core be-
cause each core serves about 50000 users so the variance
among cores is made small.)
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8.2 Comparison to Fairplay

Fairplay [26] is a general-purpose compiler for produc-
ing secure two-party protocols that implement arbitrary
functions. It generates circuits using Yao’s classic work
on secure two-party computation [34]. We implemented
a simplified version of the tolling protocol in Fairplay.
The driver has a set of tuples and the server simply com-
putes the sum of the costs of some of these tuples. We
made such simplifications because the Fairplay protocol
was prohibitively slow with a more similar protocol to
ours. Also, in our implementation, the Fairplay server
has no private state (to match our setting in which the
private state is only on the client). We found that the
performance and resource consumption of Fairplay were
untenable for very small-sized instances of this problem.
The Fairplay program ran out of 1 GB of heap space for
a server database of only 75 tags, and compiling and run-
ning the protocol in such a case required over 5 minutes.
In comparison, our protocol runs with about 10, 000 tu-
ples downloaded from the server in 100s, which yields a
difference in performance of three orders of magnitude.
In addition, the oblivious circuit generated in this case
was over 5 MB, and the scaling (both for memory and
latency) appeared to be worse than linear in the num-
ber of tuples. There have been various refinements to
aspects of Fairplay since its introduction which signifi-
cantly improve its performance and bandwidth require-
ments; notably, the use of ordered binary decision di-
agrams [23]. However, the performance improvements
associated with this work are less than an order of mag-
nitude at best, and so do not substantially change the gen-
eral conclusion that the general-purpose implementation
of the relevant protocol is orders of magnitude slower
than VPriv. This unfeasibility of using existing general
frameworks required us to invent our own protocol for
cost functions over path tuples that is efficient and pro-
vides the same security guarantees as the general proto-
cols.

8.3 Enforcement effectiveness

We now analyze the effectiveness of the enforcement
scheme both analytically and using trace-driven exper-
iments. We would like to show that the time a mo-
torist can drive illegally and the number of required
spot checks are small. We will see that the probability
to detect a misbehaving driver grows exponentially in
the number of spot checks, making the number of spot
checks logarithmic in the desired detection probability.
This result is attractive from the dual perspectives of im-
plementation cost and privacy preservation.

8.3.1 Analytical evaluation

We perform a probabilistic analysis of the time a motorist
can drive illegally as well as the number of spot checks
required. Let p be the probability that a driver undergoes
a spot check in a one-minute interval (or similarly, driv-
ing through a segment). Let m be the number of minutes
until a driver is detected with a desired probability. The
number of spot checks a driver undergoes is a binomial
random variable with parameters (p, m), pm being its
expected value.

The probability that a misbehaving driver undergoes at
least one spot check in m minutes is

Pr[spot check] = 1− (1− p)m. (1)

Figure 7 shows the number of minutes a misbehav-
ing driver will be able to drive before it will be observed
with high probability. This time decreases exponentially
in the probability of a spot check in each minute. Take
the example of p = 1/500. In this case, each car has
an expected time of 500 minutes (8.3h) of driving until
it undergoes a spot check and will be observed with 95%
probability after about 598 min (< 10 hours) of driving,
which means that overwhelmingly likely the driver will
not be able to complete a driving period of a month with-
out being detected.

However, a practical application does not need to en-
sure that cars upload tuples on all the roads. In the road
pricing example, it is only necessary to ensure that cars
upload tuples on toll roads. Since the number of toll
points is usually only a fraction of all the roads, a much
smaller number of spot checks will suffice. For example,
if we have a spot check at one tenth of the tolling roads,
after 29 minutes, each driver will undergo a spot check
with 95% probability.

Furthermore, if the penalty for failing the spot check
test is high, a small number of spot checks would suf-
fice because even a small probability of detecting each
driver would eliminate the incentive to cheat for many
drivers. In order to ensure compliance by rational agents,
we simply need to ensure that the penalty associated with
noncompliance, β, is such that β(Pr[penalization]) > α,
where α is the total toll that could possibly be accumu-
lated over the time period. Of course, evidence from
randomized law enforcement suggests strongly that in-
dependent of β, Pr[penalization] needs to be appreciable
(that is, a driver must have confidence that they will be
caught if they persist in flouting the compliance require-
ments) [8].

If there is concern about the possibility of tuples lost
in transit from client to server, our protocol can be aug-
mented with an anonymized interaction in which a client
checks to see if all of her tuples are included in the
server’s database (the client can perform this check af-
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ter downloading the desired tuples from the server and
before the spot check reconciliation and zero-knowledge
protocol). Alternatively, the client might simply blindly
upload duplicates of all her tuples at various points
throughout the month to ensure redundant inclusion in
the database. Note that it is essential that this interaction
should be desynchronized from the reconciliation pro-
cess in order to prevent linkage and associated privacy
violation.

Nevertheless, even if we allow for a threshold t of tu-
ples to be lost before penalizing a driver, the probabil-
ity of detection is still exponential in the driving time

1−
∑t

i=0

(
m
i

)
pi(1− p)m−i ≥ 1− e

−(t−mp)2

2mp , where the
last inequality uses Chernoff bounds.

8.3.2 Experimental evaluation

We now evaluate the effectiveness of the enforcement
scheme using a trace-driven experimental evaluation. We
obtained real traces from the CarTel project testbed [20],
containing the paths of 27 limousine drivers mostly in
the Boston area, though extending to other MA, NH, RI,
and CT areas, during a one-year period (2008). Each car
drives many hours every day. The cars carry GPS sensors
that record location and time. We match the locations
against the Navteq map database. The traces consist of
tuples of the form (car tag, segment tag, time) generated
at intervals with a mean of 20 seconds. Each segment
represents a continuous piece of road between two inter-
sections (one road usually consists of many segments).

We model each spot check as being performed by a
police car standing by the side of a road segment. The
idea is to place such police cars on certain road segments,
to replay the traces, and verify how many cars would be
spot-checked.

We do not claim that our data is representative of the
driving patterns of most motorists. However, these are
the best real data traces we could obtain with driver, time,
and location information. We believe that such data is
still informative; one might argue that a limousine’s path
is an aggregation of the paths of the different individuals
that took the vehicles in one day.

It is important to place spot checks randomly to pre-
vent misbehaving drivers from knowing the location of
the spot checks and consequently to behave correctly
only in that area. One solution is to examine traffic
patterns and to determine the most frequently travelled
roads. Then, spot checks would be placed with higher
probability on popular roads and with lower probability
on less popular roads. This scheme may not observe a
malicious client driving through very sparsely travelled
places; however, such clients may spend fuel and time
resources by driving through these roads and which most
likely do not even have tolls. More sophisticated place-

Figure 7: The time a motorist can drive illegally before it un-
dergoes a spot check with a probability 95% for various values
of p, the probability a driver undergoes a spot check in a minute.

Figure 8: The fraction of one-day paths observed out of a to-
tal of 4826 one-day paths as a function of the total number of
police cars placed.

ment schemes are possible; here, we are primarily con-
cerned with showing the ability to observe most traffic
with remarkably few spot checks.

Consider the following experiment: we use the traces
from a month as a training phase and the traces from the
next month as a testing phase, for each month except for
the last one. The first month is used to determine the
first 1% (≈ 300) popular sites. We choose an increasing
number of police cars to be placed randomly at some of
these sites. Then, in the testing phase we examine how
many drivers are observed in the next month. We per-
form this experiment for an increasing number of police
cars and for each experiment we average the results over
fifty runs. In order to have a large sample, we consider
the paths of a driver in two different days as the paths of
two different drivers. This yields 4826 different one-day
traces.

Figure 8 illustrates the data obtained. In few places,
the graph is not perfectly monotonic and this is due to
randomization: we are placing few spot checks in some
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of the 300 locations. Even if in some cases we place a
spot check more than in others, due to randomization,
the spot checks may be placed in an unfavorable position
and observe less paths. The reason is that the 300 spot
check vary significantly in popularity. From the shape of
the graph, we can see that the fraction of paths observed
increases very fast at the beginning; this is explained by
the exponential behavior discussed in Section 8.3.1. Af-
ter 10 spot checks have been placed, the fraction of paths
observed grows much slower. This is because we are
only placing spot checks at 1% of the segments traveled
by the limousine drivers. Some one-day paths may not
be included at all in this set of paths. Overall, we can see
that this algorithm requires a relatively small number of
police cars, namely 20, to observe ≈ 90% of the 4826
one-day paths.

Our data unfortunately does not reflect the paths of
the entire population of a city and we could not find such
extensive trace data. A natural question to ask would
be how many police cars would be needed for a large
city. We speculate that this number is larger than the
number of drivers by a sublinear factor in the size of the
population; according to the discussion in Section 8.3.1,
the number of spot checks increases logarithmically in
the probability of detection of each driver and thus the
percentage of drivers observed.

9 Security analysis
In this section, we discuss the resistance of our protocol
to the various attacks outlined in Section 3.2.

Client and intermediate router attacks. Provided
that the client’s tuples are successfully and honestly up-
loaded at the server, the analysis of Section 5 shows that
the client cannot cheat about the result of the function.
To ensure that the tuples arrive uncorrupted, the client
should encrypt tuples with the public key of the server.
To deal with dropped or forged tuples, the drivers should
make sure that all their tuples are included in the subset
of tuples downloaded from the server during the function
computation. If some tuples are missing, the client can
upload them to the server. These measures overcome any
misbehavior on the part of intermediate routers.

The spot check method (backed with an appropriate
penalty) is a strong disincentive for client misbehavior.
An attractive feature of the spot check scheme is that
it protects against attacks involving bad tuple uploads
by drivers. For example, drivers cannot turn off their
transponders because they will fail the spot check test;
they will not be able to provide a consistent tuple. Simi-
larly, drivers cannot use invalid tags (synthetic or copied
from another driver), because the client will then not pass
the spot checks; the driver did not commit to such tags
during registration.

If two drivers agree to use the same tags (and commit

to them in registration), they will both be responsible for
the result of the function (i.e., they will pay the sum of
the tolling amounts for both of them).

Server misbehavior. Provided that the server hon-
estly carries out the protocol, the analysis of Section 5
shows that it cannot obtain any additional information
from the cryptographic protocol. A concern could be that
the server attempts to track the tuples a car sends by us-
ing network information (e.g., IP address). Well-studied
solutions from the network privacy and anonymization
literature can be used here, such as Tor [7], or onion rout-
ing [11]. The client can avoid any timing coincidence by
sending these tuples in separate packets (perhaps even at
some intervals of time) towards the end of the driving
period, when other people are sending such tuples.

Another issue is the presence of side channels in the
anonymized tuple database. As discussed in Section 2, a
number of papers have demonstrated that in low-density
regions it is possible to reconstruct paths with some ac-
curacy from anonymized traces [18, 22, 16]. As formal-
ized in Definition 1, our goal in this paper was to present
a protocol that avoids leaking any additional informa-
tion beyond what can be deduced from the anonymized
database. The obvious way to prevent this kind of attack
is to restrict the protocol so that tuples are uploaded (and
spot checks are conducted) only in areas of high traffic
density. An excellent framework for analyzing potential
privacy violations has been developed in [19, 17], which
use a time to confusion metric that measures how long
it takes an identified vehicle to mix back into traffic. In
[17], this is used to design traffic information upload pro-
tocols with exclusion areas and spacing constraints so as
to reduce location privacy loss.

Recall that in Section 5, we assumed that the server is
a passive adversary: it is trusted not to change the result
of the function, although it tries to obtain private infor-
mation. A malicious server might dishonestly provide
tuples to the driver or compute the function f wrongly.
With a few changes to the protocol, however, VPriv can
be made resilient to such attacks.
• The function f is made public. In Figure 3, step

3a), the server computes the tolls associated to each
tuple. A malicious server can attach any cost to
each tuple, and to counteract this, we require that
the tolling function is public. Thus, the client can
compute the cost of each tuple in a verifiable way.
• For all the client commitments sent to the server, the

client must also provide to the server a signed hash
of the ciphertext. This will prevent the server from
changing the client’s ciphertext because he cannot
forge the client’s signature.
• When the server sends the client the subset of tuples

in Step 3a, the server needs to send a signed hash of
these values as well. Then, the server cannot change
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his mind about the tuples provided.
• The server needs to prove to a separate entity that

the client misbehaved during enforcement before
penalizing it (eg. insurance companies must show
the tamper-evident device).

Note that it is very unlikely that the server could drop or
modify the tuples of a specific driver because the server
does not know which ones belong to the driver and would
need to drop or modify a large, detectable number of tu-
ples. If the server rejects the challenge information of
the client in Step iv) when it is correct, then the client
can prove to another person that its response to the chal-
lenge is correct.

10 Conclusion
In this paper, we presented VPriv, a practical system
to protect a driver’s location privacy while efficiently
supporting a range of location-based vehicular services.
VPriv combined cryptographic protocols to protect the
location privacy of the driver with a spot check enforce-
ment method. A central focus of our work was to ensure
that VPriv satisfies pragmatic goals: we wanted VPriv
to be efficient enough to run on stock hardware, to be
sufficiently flexible so as to support a variety of location-
based applications, to be implementable with many dif-
ferent physical setups. and to resist a wide array of phys-
ical attacks. We verified through analytical results and
simulation using real vehicular data that VPriv realized
these goals.
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