
An Efficient Scatternet Formation Algorithm for Dynamic
Environments

Godfrey Tan, Allen Miu, John Guttag, and Hari Balakrishnan
MIT Laboratory for Computer Science

Cambridge, MA 02139�
godfreyt, aklmiu, guttag, hari � @lcs.mit.edu

ABSTRACT
There is increasing interest in wireless ad hoc networks
built from portable devices equipped with short-range wire-
less network interfaces such as Bluetooth. This paper ad-
dresses issues related to internetworking such networks to
form larger “scatternets.” Within the constraints imposed by
the emerging standard Bluetooth link layer and MAC proto-
col, we describe an efficient online scatternet topology for-
mation algorithm, called TSF (Tree Scatternet Formation).
TSF connects nodes in a tree structure that simplifies packet
routing and scheduling. Unlike earlier work, our protocol is
designed to work well with dynamic environments where
nodes arrive and leave arbitrarily. TSF incrementally builds
the topology and healing partitions when they occur. We
have developed a Bluetooth simulator in ns that includes
most aspects of the entire Bluetooth protocol stack. Using
this, we derive simulation results that show that TSF has low
latencies in link establishment, tree formation and partition
healing, all of which grow logarithmically with the number
of nodes in the scatternet. Furthermore, TSF generates tree
topologies where the average path length between any node
pair grows logarithmically with the size of the scatternet.

KEY WORDS
Bluetooth Scatternet, Dynamic Topology Contruction

1 Introduction

Bluetooth [1] is emerging as an important standard for short
range, low-power wireless communication. It’s link-layer
medium access (MAC) protocol is designed to facilitate the
construction of ad hoc networks without manual configura-
tion or wired infrastructure.

Bluetooth communication is based not on distributed
contention resolution, as in traditional wireless LANs, but
on a time-division duplex (TDD) master-slave mechanism.
A Bluetooth piconet consists of one master and up to seven
slaves. The master allocates transmission slots1(and there-
fore, channel bandwidth) to the slaves in the piconet. The
basic idea is for the master and slaves to use alternate trans-
mission slots, with each odd slot being used only by the
slave to which the master sent a frame in the previous even

1A Bluetooth link has a maximum capacity of 1Mbps and each time
slot takes 625 microseconds.

transmission slot.
Frequency hopping is used to permit multiple concur-

rent Bluetooth communications within radio range of each
other, without adverse effects due to interference. This fa-
cilitates high densities of communicating devices, making
it possible for dozens of piconets to co-exist and indepen-
dently communicate in close proximity without significant
performance degradation. In principle, this raises the possi-
bility of internetworking multiple piconets. The Bluetooth
specification alludes to this possibility, calling it a scatter-
net, but does not specify how it is to be done.

In this paper, we present an efficient scatternet forma-
tion algorithm, called TSF (for Tree Scatternet Formation).
The algorithm, combined with a distributed scheduling al-
gorithm described in [2], provides a complete approach to
building connected scatternets for applications that require
fast network formation and connectivity preservation in a
dynamic environment. TSF

1. Decides dynamically and in a distributed fashion
which nodes act as masters and which as slaves, thus
avoiding manual configuration of roles to nodes or cen-
tralized decision making,

2. Exploits the asymmetry in Bluetooth’s link discovery
protocol to make efficient use of resources, e.g., en-
ergy,

3. Is completely decentralized in that nodes maintain in-
formation only about adjacent nodes,

4. Enables nodes to begin communication while the scat-
ternet is being constructed,

5. Is self healing in that nodes can join and leave at any
time without causing long disruptions in connectivity,
and

6. Creates a topology that simplifies routing and schedul-
ing without sacrificing communication latency.

In Section 2, we explain the Bluetooth link formation
process, prior work on scatternets and the design rational
behind TSF. Section 3 describes in detail our algorithm,
TSF. Section 4 evaluates the efficiency of TSF using a de-
tailed Bluetooth simulator and analyzes the properties of re-
sulting topologies.

2 Background

In this section, we provide background information about
the relevant aspects of Bluetooth. We start by describing
how two nodes establish a bi-directional communications
link. An understanding of this link formation process is nec-
essary to understand our topology formation algorithm.

2.1 Bluetooth Link Formation

The link formation process specified in the Bluetooth Base-
band specification consists of two processes: ���������
	�� and������

[1]. The goal of the Inquiry process is for a master
node to discover the existence of neighboring devices and
to collect enough information about the low-level state of
those neighbors (primarily related to their native clocks).
The goal of the Page process is to use the information gath-
ered during the Inquiry process to establish a bi-directional
frequency hopping communication channel.

During the Inquiry process, a device enters either the
Inquiry or the Inquiry Scan state (mode). A device in the In-
quiry state repeatedly alternates between transmitting short
ID packets containing an Inquiry Access Code (IAC) and
listening for responses. A device in the Inquiry Scan state
constantly listens for packets from devices in the Inquiry
state and responds when appropriate. It is important to note
that once a node is in the Inquiry state, it remains in that
state for several seconds. A node periodically (every ��� �����
or so) enters the Inquiry Scan state to scan continuously
over a short window of ����� ������� , and thus, can communi-
cate with other nodes or sleep in between consecutive scans.
Thus, the duration that a node stays in Inquiry or Inquiry
Scan mode is asymmetric.

A node remains in the Inquiry state until a timeout pe-
riod elapses, keeping track of which nodes respond during
this time. After this time, if the number of responses is
greater than zero, it enters the Page state. Analogously, a
node in the Inquiry Scan state also periodically enters the
Page Scan state. A device in the Page state uses the signal-
ing information obtained during the Inquiry state and sends
out trains of ID packets based on the discovered device’s
address, BD ADDR2. When the device in the Page Scan
state responds back, both devices proceed to exchange nec-
essary information to establish the master-slave connection
and eventually enter the Connection state. The device in the
Page state becomes the master and the device in the Page
Scan state the slave. It is important to note that the time
taken to complete the Page process (in the order of millisec-
onds) is typically much smaller than that of the Inquiry pro-
cess (in the order of seconds).

To avoid manual configuration of nodes to carry out
Inquiry or Inquiry Scan operations, earlier work in [3, 4]
suggests that nodes alternate between the Inquiry and In-
quiry Scan operations continuously while randomizing the

2BD ADDR is the globally unique 48-bit address of the Bluetooth de-
vice.

interval to carry out each operation. We introduce a new
mechanism to discover neighboring nodes. A node that is
not connected to any other nodes alternates between the two
Inquiry modes until it is connected to another node. How-
ever, unlike earlier schemes, an existing node in the scatter-
net only conducts periodic Inquiry Scan. Thus, as more and
more nodes are connected, it gets faster for a new uncon-
nected node to attach to the existing network since multiple
nodes in the network are listening to the Inquiry messages
sent out by the unconnected node conducting Inquiry. The
asymmetric nature of the protocol not only speeds up the
connection setup delay and scatternet formation delay but
also improves the power consumption significantly.

2.2 Related Work

The research area of developing topology construction pro-
tocols necessary to form piconets and interconnect them via
bridges is still active. Salonidis et al. present a scatternet
formation scheme that uses an election process to elect a
leader to configure a particular scatternet topology [3]. The
scheme described limits the maximum number of nodes in-
volved in the scatternet formation to be 36. Law et al.
have developed a randomized distributed scatternet forma-
tion protocol and evaluated the performance [4]. Their
scheme attempts to form scatternets with the number of
piconets close to the minimum while limiting the piconet
membership of each device to at most two. Their protocol
relies on synchronized rounds where devices discover their
neighbors simultaneously. Both protocols are only meant to
work in environments where every node can hear other.

Zaruba et al. have presented a high level solution to
build tree scatternets [5]. They do not, however, describe
in detail how nodes discover each other and establish links
using Bluetooth primitives. Schemes presented in [6, 7]
build looped topologies and do not have the requirement
that nodes are within the transmission range of each other.

However, to our knowledge, none of the previous
schemes deals with dynamic environments where nodes
may arbitrarily join or leave the network. In contrast, our
approach is intended for dynamic environments with the
following characteristics:

1. Nodes arrive and depart at arbitrary times,

2. The node density is high,

3. Nodes have stringent energy requirements,

4. Most applications run in the network are low-
bandwidth3but latency sensitive such as mouse con-
troller applications and instant messaging, and

5. The speed with which nodes are connected and topolo-
gies are formed and healed is a dominant concern.

3We argue that for high-bandwidth applications, 802.11b technology
should be used instead of Bluetooth.

Example usage scenarios include interactive confer-
ence scenarios and ad hoc information exchanges in shop-
ping malls or open fields. We explain the design rationale
behind TSF in the next section.

2.3 Design Rationale

An important goal is to simplify link scheduling. As authors
in [8] argue, scatternet-wide coordination of link schedule
is difficult for looped networks. This led them to invent a
randomized scheduling scheme. Authors in [9] prove that
constructing an optimal link schedule that maximizes total
throughput in a Bluetooth scatternet of arbitrary topology is
an NP-hard problem, even if a central entity coordinates the
schedule.

These kinds of concerns led us to design a topology
formation algorithm that is guaranteed to yield a loop-free
topology. Additionally, the topology formation process is
designed to interact well with a companion link scheduling
scheme for loop-free scatternets described in [2]. The tree
hierarchy allows a scheduling algorithm to resolve schedul-
ing conflicts and adapt to changing traffic loads in a top-
down fashion without incurring significant overheads. This
maximizes the number of links that can communicate si-
multaneously, and thus, increases the scatternet’s realized
capacity and effectively reduce communication latency.

Compared to many previous approaches [3, 6, 7], TSF
simplifies routing because there is no need to worry about
routing loops and there exists a unique path between any
two nodes. Nodes can be assigned unique addresses based
upon their position in the tree. Higher-layer destination
identifiers (e.g., IP addresses) can be mapped to these ad-
dresses using a mechanism like the address resolution pro-
tocol (ARP) that returns a node’s scatternet address in re-
sponse to an ARP query. Armed with this scatternet identi-
fier, the packet forwarding protocol works by simply having
each node look at the destination and forward it along one
of its links. Thus, a tree topology facilitates stateless ad-hoc
routing. In many cases, this approach is more efficient than
traditional ad hoc routing protocols , which either incur per-
packet overhead as in Dynamic Source Routing (DSR) [10]
or increase memory requirements as in Ad-hoc On-Demand
Distance Vector (AODV) [11].

A major problem that needs to be solved in forming
scatternets is deciding which nodes should act as relays
that interconnect piconets. In particular, one must decide
whether to use master relay or slave relay nodes. Our algo-
rithm does not rely on which relay nodes are used. However,
for simplicity, we currently use master relay nodes.

3 TSF: Tree Scatternet Formation

This section presents TSF, a tree scatternet formation algo-
rithm that has the following desirable properties.

1. Connectivity: TSF rapidly converges toward a steady-
state in which all nodes can reach each other. At any

time, the topology produced by TSF is a collection
of one or more rooted spanning trees, which are each
autonomously attempting to merge and converge to a
topology with a smaller number of trees.

2. Healing: TSF handles nodes arriving incrementally
or en masse, and nodes departing incrementally or en
masse, avoiding loops and healing network partitions.

3. Communication and topology formation efficiency:
TSF produces topologies where the average node-node
path length is small (logarithmic in the number of
nodes, avoiding long chains). TSF uses a randomized
protocol to balance the time spent by nodes already
in the scatternet between communicating data and per-
forming the social task of forming a more connected
scatternet.

3.1 State Machines

At any point in time, the TSF-generated scatternet is a for-
est consisting of connected tree components. Some of these
trees are single nodes, called free nodes, that are seeking to
join another tree to form a larger component and reduce the
number of components. We refer all other nodes in a com-
ponent other than the root node as tree nodes. Each node
in each tree component spends a small amount of time to
attempt to rendezvous with another node belonging to a dif-
ferent tree to eventually form a single connected tree scatter-
net. To preserve loop-freeness, TSF distinguishes between
two kinds of component merges: i) merges of trees each
having more than one node, and ii) merges of trees, one of
which is a free node. The former can cause loops whereas
the latter cannot. For trees with at least two nodes, TSF
designates a subset of nodes from each tree to be the coordi-
nators which are responsible for merging with neighboring
trees. All other tree nodes that are not coordinators spend
a small of time passively listening to Inquiry messages sent
out by free nodes and coordinators. Free nodes constantly
search for other tree or free nodes to establish communica-
tion links.

TSF is distributed with each node operating au-
tonomously with only local communication. There are three
states: Inquire, Scan, and Comm. Each node in the net-
work runs a state-machine algorithm, alternating between
two of the three possible combination of states: Inquire,
Comm and Comm/Scan. A node in the Inquire state per-
forms the Bluetooth Inquiry operation. In the Comm state,
a node is either idle or involved in data communication with
other nodes in its connected component. In particular, free
nodes in the Comm state remain idle to save power. Simi-
larly, a node in the Comm/Scan state begins in the Comm
state while entering the Scan state periodically to perform
the Bluetooth Inquiry Scan operation. Thus, in the Inquire
and Scan states, a node attempts to rendezvous with an-
other node belonging to a different tree, to form a Bluetooth
communication link and thereby improve the connectedness

PROCEDURE TSF-FREE()
�

state pair � (Inquire, Comm/Scan)
RUNFOREVER(state pair, GIAC, 1)

�
PROCEDURE TSF-ROOT()

�
if(designated as coordinator)

TSF-COORDINATOR()
else

Run(Comm, � , null)
�
PROCEDURE TSF-TREE()

�
if(designated as coordinator)

TSF-COORDINATOR()
else

state pair � (Comm, Comm/Scan)
RUNFOREVER(state pair, GIAC, n links)

�
PROCEDURE TSF-COORDINATOR()

�
state pair � (Inquire, Comm/Scan)
RUNFOREVER(state pair, LIAC, 1)

�
PROCEDURE RUNFOREVER(state pair, iac,

�������	�
)

�
state � random state from state pair with 0.5 prob
do forever

if(state
 Comm)
t state � �������	��

random ���� ���������������
else

t state � random ���� ��� �����!�"���
Run(state, t state, iac)
state � opposite state from state pair

�

Figure 1. Pseudo-code of various TSF state-machines.

of the scatternet. While conducting Inquiry or Inquiry Scan
operations, a node use one of two different Inquiry Access
Codes to limit merges to suitable kinds of nodes. In par-
ticular, coordinators use the Limited Inquiry Access Code
(LIAC) and all other nodes use the Generic Inquiry Access
Code (GIAC). Thus, communication between coordinators
is isolated from the rest of the nodes as coordinators only
transmit and listen to LIAC.

The pseudo-code for different state-machines running
at various types of nodes is shown in Figure 1. RUN-
FOREVER initializes �$# � # � randomly and alternates be-
tween �%# � # � & � �
	 while randomizing the state residence
time, # �%# � # � . �������	�

only applies to tree nodes as explained
shortly. ' ��� procedure asks the Bluetooth lower layers to
carry out the corresponding operation based on �$# � # � for
�%# � # � amount of time. The specified � �)(

is used as the
Inquiry Access Code when conducing Inquiry or Inquiry
Scan operations. TSF’s state residence time is randomized
to avoid periodic synchronization effects. The randomiza-
tion depends on two parameters: �� ��� ���*� and � . ��� ��� ���*�

is the expected time taken to complete the Inquiry process.
� is a parameter deciding the size of the random interval,
which governs how long the node is resident in a given state.

As shown in the pseudo-code, free nodes and coordi-
nator nodes spend roughly equal amount of time in each
of the two alternating states to probe and scan for possible
connections. Root nodes always remain in the Comm state.
For tree nodes,

� �����	�
specifies the amount of time spent in

the Comm state, which is a function of how busy a node
is likely to be in performing its communication tasks. In
the interest of simplicity, we approximate the ideal

�+�����	�
value as a function of how many links a node has, � , �
�.- � .

The final piece of the TSF algorithm concerns loop-
avoidance, which helps preserve the invariant that as nodes
join and leave, the scatternet remains a forest. To achieve
this, TSF only allows root nodes to heal partitions and join
another tree as a child by conducting Page and Page Scan
operations. Roots, however, do not spend any time in either
Inquire or Scan states. Instead, each root designates a node
in its component tree as the coordinator which is responsi-
ble for discovering neighboring coordinators. TSF’s sepa-
ration of the component merges from discovery ensures that
root nodes are not overburdened with the energy-intensive
task of performing Inquiry. In the next section, we explain
in detail how coordinators are elected and how component
merges take place.

3.2 Forming Communication Links

In the Inquire and Scan states, nodes attempt to estab-
lish connections with other nodes. As soon as a node suc-
cessfully receives an inquiry response from another node,
the two nodes immediately enter the Page and Page Scan
modes, and attempt to establish a connection. When two
free nodes connect, the master node becomes the root and
the slave becomes a leaf node.

Every root node elects a single coordinator responsi-
ble for discovering other tree scatternets. If the root has
only one child, it elects itself as the coordinator. Otherwise,
it picks one of its children randomly and asks it to elect the
coordinator by sending a request packet. If the chosen child
node is not willing to become the coordinator, the child node
again elects one of its children randomly. This process con-
tinues recursively until a coordinator is selected or a leaf
node is reached. A leaf node must become a coordinator
once elected. Clearly, leaf nodes are not communication
bottlenecks and therefore, have more spare capacity for dis-
covering neighboring devices. Once a node becomes the
coordinator, it sends an acknowledgment packet to its root.

As explained previously, coordinators in the Inquire
or Scan states, search for other coordinators. When two
coordinators establish a communication link, they each in-
form the corresponding root nodes with necessary signaling
information to enter the Page and Page Scan modes. Coor-
dinators then break the link between them and resume their
previous roles. Meanwhile, the root nodes establish the con-
nection quickly and the master node becomes the new root

node and the slave becomes its child node forming a larger
tree and reducing the number of component trees in the for-
est. The root then selects another coordinator randomly. An
important detail here is that the coordinator node may dis-
appear abruptly (e.g., by crashing) without informing the
root. We solve this by limiting the life time of the coordi-
nator role to ��� ���������

slots and having the root elect a new
coordinator periodically. In addition to making the protocol
more robust, this distributes the energy-intensive task of dis-
covering other coordinators uniformly over a large number
of nodes.

When two roots form a link, one of them assumes the
root role of the combined scatternet, and the other becomes
a tree node. Tree nodes alternate between the Comm and
Comm/Scan states. They may connect to free nodes as
slaves. It is clear that TSF produces loop-free topologies
since since component merges are only carried out by the
root nodes. We omit a simple proof due to space constraints.

To avoid periodic synchronization effects, TSF
randomizes the state residence time from an interval
� �� ��� ��� ����� � . � is based on the expected time for two Blue-
tooth nodes to discover each other and successfully estab-
lish a communication link. If � is too short, the chances
of establishing a connection during a slot in which the op-
portunity for a establishing a connections exists will be too
low. If � is too long, a great deal of time (and power) will
be wasted during slots in which there is no opportunity to
establish a connection. We ran simulations to calculate a
good value for D. This is presented in Section 4.

3.3 Healing Partitions

Self-healing is an important requirement for a topology for-
mation scheme, especially in networks in which some nodes
are energy-constrained (and thus, may run out of batteries)
and many are mobile. We assume that nodes in the network
may arbitrarily leave resulting in network partitions. TSF
ensures that network partitions heal properly within a rea-
sonable amount of time.

We distinguish two ways in which connectivity can be
lost: when a node loses the connection to its child node, and
when a child node loses the connection to its parent. When a
parent detects the loss of a child, it does not need to do any-
thing except decide if it has become a free node and update
its node type accordingly. When a child loses the connec-
tivity to its parent, it updates its node type as follows. A leaf
node becomes a free node and an internal node becomes a
root node. Each node continues to execute an appropriate
state machine as explained earlier.

4 Performance Evaluation

To evaluate the effectiveness of our algorithms, we have de-
veloped a Bluetooth simulator as an extension to the Net-
work Simulator (� �) [12]. Our development efforts were
eased by the bluehoc simulator developed by IBM [13]. Our

simulator implements all important aspects of the Bluetooth
protocol stack according to the Bluetooth Specification Ver-
sion 1.1. and hence gives us insights in understanding many
of the engineering difficulties as well as performance as-
pects. We plan to release the simulator in the public domain
in the coming weeks.

We conducted several simulations to evaluate the per-
formance of TSF on two different environments: en masse
arrivals, and incremental arrivals and departures. In this
section, we present empirical results on link establishment,
scatternet formation, and healing latencies, and discuss
salient properties of the resulting topologies.

In all the experiments, nodes are assigned to a ran-
dom clock value between � and ����	�
 � . Every data point
shown in all figures is the average of 100 independent trials.
Through simulation, we determined that the expected time
to complete the inquiry process, ��� �.����� ��
 ��� ��� , when two
nodes are performing opposite discovery operations namely
Inquiry and Inquiry Scan. We also ran numerous simu-
lations with two nodes running TSF to determine a good
value for � . We found that setting � � �� �� ��� ��� ��� ���� � � � �� � � ��� � would give an average connection delay of�
 � s and chose �
�� � ��� �� � ���+� � for all the simulation
runs.

4.1 En masse Arrivals

We start by evaluating the performance of TSF when nodes
are arriving en masse and no nodes are leaving. This sce-
nario models an ad hoc interactive meeting where partici-
pants carrying Bluetooth devices arrive simultaneously.

Figure 2(a) plots the median delays taken by TSF to
build a scatternet for � nodes arriving en masse. It shows
that the delay grows logarithmically with the size of the
scatternet. The median delays required for � and

� �
nodes

to form a scatternet are
� � and � � � respectively. We give

an intuition why TSF achieves a logarithmic average scat-
ternet formation delay. Whenever a valid communication
link is established, the number of components is reduced by
1. The number of parallel links being formed increases lin-
early with the number of discovering nodes. Since there is
at least one node in each component looking for other com-
ponents, a fraction of the components merge together every
time unit.

It is difficult to quantitatively compare TSF’s perfor-
mance with the two previous schemes [3, 4] which have
been developed under different simulation environments. In
particular, their schemes have different assumptions on the
efficiency of the Bluetooth link formation process carried
out by two nodes in the Inquiry and Inquiry Scan modes
respectively. Schemes in [3, 4] assume that nodes have syn-
chronized clocks and therefore, �� � ����� �
�� � � � � is dom-
inated by the random backoff time between � and � � � � � .
We decide not to use this assumption for practical rea-
sons and as described earlier, we found that �� � � ��� �

��� ��� . We conclude that a sensible comparison between
the three schemes will be to compare the scatternet for-

0

2

4

6

8

10

12

14

16

2 4 8 16 32 64 128

Sc
at

te
rn

et
 f

or
m

at
io

n
de

la
y

(s
ec

on
ds

)

Nodes

Median

(a) Scatternet formation delay

0

5

10

15

20

25

30

35

2 4 8 16 32A
ve

ra
ge

 s
ca

tte
rn

et
 f

or
m

at
io

n
de

la
y

(r
ou

nd
s)

Nodes

TSF
Prev1
Prev2

(b) Delay Comparison

0

10

20

30

40

50

60

2 4 8 16 32 64 128

A
vg

. t
im

e
sp

en
t i

n
di

sc
ov

er
y

m
od

es
 (

%
)

Nodes

Before
After

(c) Avg. time spent in Inq/Page modes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 8 16

Fr
ee

 n
od

e
co

nn
ec

tio
n

de
la

y
(s

ec
on

ds
)

Nodes

Avg
Med

(d) Avg. free node connection delay

0

5

10

15

20

25

2 4 8 16 32

H
ea

lin
g

de
la

y
(s

ec
on

ds
)

Number of Partitions

Avg
Med

(e) Delay for healing network partitions

0

1

2

3

4

5

6

7

2 4 8 16 32 64 128

Pa
th

 L
en

gt
h

(h
op

s)

Nodes

Avg
Med

(f) Avg. path length

Figure 2. Performance of TSF in dynamic environments.

mation delay in terms of round which is simply ��� � � ��� � .
Figure 2(b) plots the average scatternet formation delay in
rounds achieved by each of the three schemes. The data
points for the two previous schemes are obtained and nor-
malized from [3](

 	 ��� �) and [4](
 	 ��� �) respectively. TSF

outperforms both schemes in forming scatternets with the
exception of �
 � . Every data point we use for

 	 ��� �
represents the ideal time taken to elect the leader from �
nodes during Phase I as described in [3]. The actual scatter-
net formation delay will be a little bit longer since the leader
needs to connect to other nodes waiting in the Page Scan
mode and so on. As explained in [4], the scatternet forma-
tion delay achieved by

 	 ��� � is longer than the other two
schemes due to the synchronized nature of the algorithm.
We also note that the comparison will be much more mean-
ingful if all three schemes are developed under the same
environment.

We also measured the amount of time that a node spent
in discovering neighbors (Inquiry process) and establishing
connections with them (Page process) for two phases: be-
fore and after the connected scatternet was formed. Fig-
ure 2(c) plots the percentage of time that a node spends
in discovery modes before and after a connected scatter-
net is formed. Not surprisingly, the percentage decreases
with the increase in scatternet-size. As explained in Sec-
tion 2, the time spent in the Inquiry mode dominates the
total time required to establish a connection. This is ap-

parent in the 2-node case where each free node spends an
equal amount of its time alternating between the Inquire
and Comm/Scan states. However, the average time spent
by each node in discovery modes is only ��� � of the total
time. Since only a single coordinator from each compo-
nent performs Inquiry, the average time a node conducts In-
quiry decreases as the scatternet-size increases. The Before
curve clearly demonstrates that TSF allows a newly con-
nected node to begin communicating with other nodes in its
connected component while building up a single connected
scatternet. Furthermore, TSF only requires each node to
spend a small amount of time in discovery modes (less than� �

for scatternet-size greater than � �) to connect to nodes
arbitrarily arriving after a connected scatternet is formed.

4.2 Incremental Arrivals and Departures

We now analyze the performance of TSF in highly dynamic
environments such as stores and coffee shops in malls and
airports. In these environments, there will usually exist a
connected scatternet; thus, we are interested in how fast a
newly arrived node can connect to an existing scatternet and
how fast the network can heal when nodes leave arbitrarily.
We note that the earlier approaches only work when nodes
arrive en-masse and no nodes leave the network.

We setup a 32-node scatternet and have � nodes arrive
randomly over a period of 30 seconds. We then measure

the average link establishment delay for various number of
arriving nodes. As the arriving nodes are spread out over the
� � � period, every arriving free node in all the trials connects
to an existing non-root node as opposed to connecting to
another free node. As shown in Figure 2(a), the average
link establishment delay is always less than � � ��� . The delay
goes down slightly as the number of nodes increase. This is
because as the tree gets larger and larger, it gets a bit faster
for a free node to get attached to a non-root node.

When nodes arbitrarily leave, the scatternet will be
partitioned into several smaller networks. We measure how
quickly TSF heals network partitions. As explained in Sec-
tion 3.3, coordinator nodes, one from each network parti-
tion, attempt to connect to each other during the healing
process. Intuitively, the time taken to heal the network par-
titions increases as the number of partitions increases. Fig-
ure 2(e) shows that TSF achieves the average healing delay
that grows logarithmically with the number of network par-
titions.

The topology of a Bluetooth scatternet affects the
overall network capacity and average latency between any
two nodes. In multi-hop networks, the path length or hop
count between communicating nodes greatly influences the
end-to-end latency. Figure 2(f) shows that the average path
length grows logarithmically with the number of nodes con-
tained in the scatternet.

5 Discussion

TSF is optimized for those situations in which rapid node
connectivity and topology formation is more important than
maximizing throughput. It allows nodes to arrive and leave
at arbitrary times, incrementally building a tree topology
and healing partitions when they occur. Furthermore, it al-
lows an arriving node to begin communication with nodes
in its connected component as soon as it is connected. TSF
when integrated with the scheduling scheme in [2] provides
a complete solution to realize self-organizing scatternets for
dynamic environments.

Our simulation results show that the tree scatternet for-
mation latency is logarithmic in the number of nodes. In ad-
dition, TSF achieves low average link establishment delay
while requiring each node to spend just a small amount of
time � � � � discovering neighbors. The average path length
between nodes is also logarithmic in the size of the network.

Although TSF is guaranteed to produce a connected
scatternet when nodes are within radio proximity, it may not
be able to heal all partitions when they are not. This is be-
cause TSF limits the tasks of discovering and merging parti-
tions to coordinators and roots respectively. Thus, the algo-
rithm as currently implemented fails to create a single con-
nected scatternet when either coordinators or roots cannot
hear each other. TSF can be extended to work for networks
with diameter larger than one. A companion loop-detection
protocol can be developed to guarantee the formation of a
tree scatternet whenever there exists a connected physical
topology.

For high bandwidth applications, the topologies pro-
duced by TSF will create bottlenecks at the root. However,
once a tree topology is constructed quickly and communi-
cation is enabled, the topology can be adjusted to suit the
traffic patterns. For stable networks with several bandwidth-
intensive applications, this should be done.

As explained in Sections 1 and 2, our protocol is tar-
geted for those environments where nodes arrive and de-
part arbitrarily, node density is high, nodes are energy con-
strained and the speed with which nodes are connected and
topologies are formed and healed is a dominant concern.
TSF is, as far as we know, the best algorithm with respect
to these criteria.

References

[1] Specification of the Bluetooth System. http://www.
bluetooth.com/, December 1999. Bluetooth Special
Interest Group document.

[2] G. Tan and J. Guttag. A Locally Coordinated Scatternet
Scheduling Algorithm. In The 27th Annual IEEE Confer-
ence on Local Computer Networks (LCN), Tampa, FL, Nov.
2002.

[3] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Dis-
tributed topology construction of Bluetooth personal area
networks. In Proc. IEEE INFOCOM, Anchorage, AK, April
2001.

[4] C. Law, A. K. Mehta, and K.-Y. Siu. Performance of a New
Bluetooth Scatternet Formation Protocol. In ACM Sympo-
sium on Mobile Ad Hoc Networking and Computing, Long
Beach, CA, October 2001.

[5] G. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees-Scatternet
Formation to Enable Bluetooth-Based Ad Hoc Networks. In
IEEE International Conference on Communications, pages
273–277, 2001.

[6] S. Basagni and C. Petrioli. A Scatternet Formation Protocol
for Ad hoc Networks of Bluetooth Devices. In IEEE Vehic-
ular Technology Conference, pages 424–428, 2002.

[7] Z. Wang, R. Thomas, and Z. Haas. Bluenet - a New Scatter-
net Formation Scheme. In Hawaii International Conference
on System Science (HICSS-35), 2002.

[8] A. Racz, G. Milklos, F. Kubinszky, and A. Valko. A Pseudo
Random Coordinated Scheduling Algorithm for Bluetooth
Scatternets. In ACM Symposium on Mobile Ad Hoc Net-
working and Computing, Long Beach, CA, October 2001.

[9] N. Johansson, U. Korner, and L. Tassiulas. A Distributed
Scheduling Algorithm for a Bluetooth Scatternet. In Seventh
International Teletraffic Conference, Salvador da Bahia,
Brazil, September 2001.

[10] D. B. Johnson and D. A. Maltz. Mobile Computing, chap-
ter 5, pages 153–181. Kluwer Academic Publishers, 1996.
Dynamic Source Routing in Ad Hoc Wireless Network.

[11] C. E. Perkins and E. M. Royer. Ad hoc On-Demand Distance
Vector Routing. In Proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, pages 90–
100, New Orleans, LA, February 1999.

[12] ns-2 Network Simulator. http://www.isi.edu/
vint/nsnam/.

[13] Bluetooth Extension for ns. http://oss.software.
ibm.com/developerworks/opensource/
bluehoc/.

