
No Silver Bullet: Extending SDN to the Data Plane

Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, and Hari Balakrishnan
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, Mass.
{anirudh, keithw, suvinay, hari}@mit.edu

ABSTRACT
The data plane is in a continuous state of flux. Every
few months, researchers publish the design of a new high-
performance queueing or scheduling scheme that runs inside
the network fabric. Many such schemes have been queen
for a day, only to be surpassed soon after as methods — or
evaluation metrics — evolve.

The lesson, in our view: there will never be a conclu-
sive victor to govern queue management and scheduling in-
side network hardware. We provide quantitative evidence by
demonstrating bidirectional cyclic preferences among three
popular contemporary AQM and scheduling configurations.

We argue that the way forward requires carefully extend-
ing Software-Defined Networking to control the fast-path
scheduling and queueing behavior of a switch. To this end,
we propose adding a small FPGA to switches. We have syn-
thesized, placed, and routed hardware implementations of
CoDel and RED. These schemes require only a few thou-
sand FPGA “slices” to run at 10 Gbps or more — a minus-
cule fraction of current low-end FPGAs — demonstrating
the feasibility and economy of our approach.

1. INTRODUCTION

In packet-switched networks, each switch makes two im-
portant decisions on a per-packet basis:

Queue-management: How long can the queue grow,
and which packet should be dropped if it grows too
long?
Scheduling: When an outgoing link is free, which
packet should be sent next?

Over the past three decades of research and practice in
Internet resource management, researchers have produced
a long and celebrated series of answers to these two ques-
tions — starting with WFQ [9] and SFQ [22], to RED [13]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

and BLUE [11], to ECN [12], XCP [18] and RCP [27], to
DCTCP [3], PDQ [16], CoDel [24], and pFabric [4].

As these systems have evolved and multiplied, we think
there has been a tacit belief in the existence of a final answer
to these two questions. For example, since the development
of RED in the early 1990s, there has been a quest for the
“one-size-fits-all” ideal active queue management (AQM) al-
gorithm [13, 11, 25, 20, 24]. Numerous proposals exist for
switch scheduling, and the consensus today appears to be to
implement some variant of weighted fair queueing [9], aug-
mented with some queues for higher priority traffic.

In our view, the prospect of a final answer is a mirage. The
answers depend crucially on what the applications running at
the endpoints want. For example, the requirements of a com-
puter backup application (throughput) are different from an
interactive web site (page load times), which in turn differ
from a videoconference (some combination of throughput
and per-packet delay). In fact, even when the applications
want the same thing (e.g., throughput), the answers depend
on how the endpoint’s transport protocol reacts to conges-
tion signals; the right answer for TCP NewReno may well
be different from TCP CUBIC [14] or Compound TCP [28].

We believe that the search for a “one-size-fits-all” solu-
tion to these questions forces network implementers to make
choices prematurely. There are applications for which an
AQM such as CoDel [24] may be the right answer (at least
compared with existing alternatives), and there are applica-
tions for which a “bufferbloated” drop-tail router is better
than the alternatives (e.g., transferring a large file reliably).

Moreover, new network applications are certain to be
developed, and new queueing strategies, scheduling tech-
niques, and endpoint control protocols will be invented. New
applications will require different objectives, e.g., a differ-
ent trade-off between throughput and delay, an emphasis on
throughput or delay variation above other metrics, and so on.

How should the switch designer respond to these concerns
about the diversity of objectives and mechanisms? Tradi-
tionally, software routers support such configurability while
hardware routers — even those that support OpenFlow or
other realizations of Software-Defined Networking — don’t.

We propose a middle ground: carefully extending the
ideas of SDN to the data plane, to allow network operators
to align queueing and scheduling behavior with application

1

objectives. To achieve this, our proposal adds a small FPGA
to the fast-path of a switch, with well-defined interfaces to
packet queues on the switch.

This paper makes two concrete contributions: (1) a
clear demonstration that bidirectional cyclic preferences ex-
ist among queueing and scheduling schemes today, suggest-
ing that the quest for a “best” such scheme is futile, and
(2) an evaluation of our successful synthesis of two popular
queue-management schemes for an FPGA, suggesting our
approach is feasible and economical in practice.

Our hope is to build support for the position that we
should not be searching for a silver bullet for router queue-
ing and scheduling; instead, switches should support multi-
ple schemes by investing in a small amount of reconfigurable
hardware, extending the ideas of SDN to the data plane in a
realistic and helpful manner.

2. RELATED WORK

2.1 Active Networks
In the mid 90s, research on active networks [29] argued

for fully programmable networks by proposing that switches
execute code contained in packets. The biggest criticisms
of active networks were security and performance: allow-
ing arbitrary code to run on a switch could significantly slow
down the data plane, or compromise the switch if the code
was malicious. We argue, instead, for reconfigurable hard-
ware accessible to administrators, with a restricted interface
that allows operator-specified code only to influence queue-
ing and scheduling decisions at the switch.

2.2 Hardware Router Platforms
Research hardware platforms such as SwitchBlade [6]

NetFPGA [21] and Chimpp [26] are both programmable and
provide high performance. However, they lack the port den-
sity to be commercially viable. Our proposal is inspired by
these systems in that it adds an FPGA to a switch. We show
in Section §4.4 that this idea is economically feasible, and
practical at high line rates. This allows flexibility in queueing
and scheduling algorithms, without degrading performance.

2.3 Software Routers
Software routers such as Click [19] are routinely used by

researchers to evaluate new scheduling and queueing algo-
rithms. With time, software routers have improved in perfor-
mance by exploiting parallelism (RouteBricks [10]) or GPU
offloading ([15]). Although they are easy to program, com-
pared with a hardware switch with the same port count and
non-blocking bandwidth, a software implementation will be
more expensive, if feasible at all. For economic and practical
reasons, high performance switches invariably use dedicated
hardware.

2.4 Software-Defined Networks
Software-Defined Networks [23, 7] (SDN), and Open-

Flow [23], have eased the management of enterprise net-
works in the last few years. These systems, largely directed

at influencing or centralizing control-plane decisions, have
allowed network operators to configure their production sys-
tems [17] more efficiently and realize new behaviors not oth-
erwise available from commercial vendors. Several switch
vendors today support OpenFlow, which is often hailed as
the antidote to architectural ossification because it allows
new routing protocols to be tested in a production environ-
ment.

Even as the control plane has become more flexible,
the obstacles toward widespread deployment of XCP [18],
RCP [27], or CoDel [24] speak to the consequences of to-
day’s data-plane rigidity. We propose to extend SDN’s flex-
ibility to cover queueing and scheduling decisions made in
the data plane, without giving up the “fast-path” benefits that
come from a hardware implementation.

3. NO SILVER BULLET

To support our position that there is no silver bullet for
scheduling and queue management in a switch, we evaluate
three contemporary gateway configurations to demonstrate
how they can give rise to arbitrary and contradictory prefer-
ences.

A) CoDel+FCFS: CoDel running on a single shared first-
come, first-served queue for all traffic.

B) CoDel+FQ: A separate queue for each flow with an
independent instance of CoDel running on each queue.
Queues are serviced using fair queueing.

C) Bufferbloat+FQ: A separate queue for each flow with
a deep buffer that doesn’t drop any packets. Queues are
serviced using fair queueing.

We will demonstrate that among these three configura-
tions, depending on the application’s preference, A > B,
B >C, and C > A. Furthermore, B > A, C > B, and A >C!

Figure 1 is an overview of our results, demonstrating bidi-
rectional preference loops among the three schemes. One
loop is shown in blue, and another in green. All experi-
ments use NewReno as the transport protocol, and a min-
imum round-trip time of 150 ms. We adopt the following
notation for our workloads:

• Bulk: A single long-running TCP NewReno flow. Ob-
jective: maximize average throughput.

• Web: A switched TCP NewReno flow. The flow
is “off” for intervals drawn from an exponential dis-
tribution with mean 0.2 seconds. The flow then
switches “on” until it has transferred an amount of
bytes drawn from an empirical distribution of Internet
flow lengths [5].1 Objective: minimize flow comple-
tion time at the 99.9th percentile.

• Interactive: A single long-running TCP NewReno flow
that represents a real-time interactive application. Ob-
jective: maximize the ratio of the average throughput
and the average one-way delay, called the “power.”

1To improve link utilization, we add 16 KB to each sample drawn
from the empirical distribution.

2

CoDel+FCFS

CoDel+FQ Bufferbloat+FQ

Two Bulk on LTE.
Codel+FCFS gives
5% more throughput

Bulk + Web, 15 Mbps link.

Codel+FQ gives Web flow
16% faster tail flow completion
with same Bulk throughput

Two Interactive on 15 Mbps link.
Codel+FQ gives 700x more power

Bulk + Web on LTE. Bufferbloat+FQ gives
Web flow: 52% faster tail flow completion,
Bulk flow: 186% more throughput

One Interactive on LTE.
Codel+FCFS gives
200x more power

One Bulk on LTE.
Bufferbloat+FQ gives
174% more throughput

Figure 1: None of these queue-management and scheduling configurations is best. Power is throughput/(one-way delay). A→B
indicates that A is better than B.

Nwk config. Avg. throughput
CoDel+FCFS 2.00 Mbps
CoDel+FQ 1.90 Mbps
(a) CoDel+FCFS is better than CoDel+FQ on LTE

Nwk config. Bulk Throughput Web Tail FCT
CoDel+FCFS 9.48 Mbps 22.25 secs
CoDel+FQ 9.48 Mbps 18.71 secs

(b) CoDel+FQ is better than CoDel+FCFS on a 15 Mbps link

Table 1: CoDel+FQ vs. CoDel+FCFS

Nwk config. Bulk Throughput Web Tail FCT
Bufferbloat+FQ 11.22 Mbps 20.94 secs
CoDel+FQ 3.92 Mbps 43.72 secs

(a) Bufferbloat+FQ is better than Codel+FQ on LTE

Nwk config. Avg. throughput, delay Power
Bufferbloat+FQ 7.47 Mbps, 62165 ms 0.12 Mbit/s2

CoDel+FQ 6.55 Mbps, 76.5 ms 85.6 Mbit/s2

(b) CoDel+FQ is better than Bufferbloat+FQ on a 15 Mbps link

Table 2: CoDel+FQ vs. Bufferbloat+FQ

Nwk config. Bulk throughput
Bufferbloat+FQ 11.96 Mbps
CoDel+FCFS 4.35 Mbps

(a) Bufferbloat+FQ is better than CoDel+FCFS on LTE

Nwk config. Interactive throughput, delay Power
Bufferbloat+FQ 11.96 Mbps, 46028 ms 0.26 Mbit/s2

CoDel+FCFS 4.35 Mbps, 83.2 ms 52.28 Mbit/s2

(b) CoDel+FCFS is better than Bufferbloat+FQ on LTE

Table 3: CoDel+FCFS vs. Bufferbloat+FQ

3

The workload and network configurations for our six
head-to-head experiments are shown in Table 4. Below, we
explain the more surprising results.

Workload Link type Nwk. config.
1 Bulk+Web 15 Mbps static CoDel+FQ,

CoDel+FCFS
2 Bulk+Bulk Trace of Verizon

LTE
CoDel+FQ,
CoDel+FCFS

3 Interactive +
Interactive

15 Mbps static CoDel+FQ,
Bufferbloat+FQ

4 Bulk+Web Trace of Verizon
LTE

CoDel+FQ,
Bufferbloat+FQ

5 Bulk Trace of Verizon
LTE

Bufferbloat+FQ,
CoDel+FCFS

6 Interactive Trace of Verizon
LTE

Bufferbloat+FQ,
CoDel+FCFS

Table 4: Workloads used in cyclic preference experiments

1. Tables 2a and 3a show that using CoDel on this vari-
able link results in almost a 3× loss in bulk through-
put compared with a bufferbloated link. Time-varying
links present tricky challenges for queue-management
schemes. There is an inherent tradeoff between
throughput and delay on such link. A protocol seek-
ing high throughput should send as much as it can and
keep the queue continuously backlogged, so that the
link doesn’t starve for packets if the link quality sud-
denly improves. In such cases, deep buffers are the
best solution. With separate per-flow queues, users do
not cause large in-network delays for one another.

2. Table 1a shows that when flows are equally aggressive,
FCFS is preferable to Fair Queueing. In this case, the
two Bulk flows have the same RTT and are equally ag-
gressive, so they don’t need protection from each other
to converge to their fair share of throughput. Running
an independent CoDel instance on each queue, as in
CoDel+FQ, over-controls and lowers bulk throughput
for both flows.

3. Table 1b shows the opposite effect. When a Web and
Bulk flow compete on the same bottleneck link, fair
queueing protects the Web flow from the Bulk flow.
Deploying CoDel on an FCFS queue helps, by keep-
ing queue occupancy low. But by itself, CoDel is in-
sufficient, because it doesn’t distinguish between flows
while dropping packets. Running a separate instance
of CoDel helps because each flow is penalized only for
its own delays. This observation is codified in the rec-
ommendation that CoDel be deployed with SFQ [2].

3.1 Conclusion
The results demonstrate that there can be no universal

preference for one of these three contemporary in-network
schemes. We found the results were not highly sensitive
to the metrics; we observed similar behavior if we replaced
the tail flow completion time with the mean flow completion
time, or the mean one-way delay with the tail one-way delay.

Furthermore, this behavior persists if we restrict ourselves to
exclusively static links, or exclusively cellular links. We ob-
serve cyclic preferences in both cases.

To be sure, these results prove only that there are bidi-
rectional paradoxical preferences among these candidate
schemes. We do not claim that it’s impossible that a new
AQM and scheduling scheme will be invented in the future
that dominates all other schemes all the time. The stark dis-
agreement in application preferences makes only for proba-
tive evidence that there is unlikely to be a “mother of all
schemes.”

4. EXTENDING SDN TO THE DATA PLANE

Our approach to the problems described above is to posit
that the data plane should be flexible enough to handle di-
verse and unanticipated application requirements. This im-
plies the need for software, of some sort, to define the data
plane’s behavior.

Such flexibility could be realized easily in a software
router running on a general-purpose microprocessor. How-
ever, as described in Section 2, software-only solutions are
either too slow or too expensive to be commercially viable.
By contrast, today’s hardware switches have tightly inte-
grated designs with little flexibility in the data plane.

To achieve both high performance and a modicum of flex-
ibility, we propose adding a small FPGA2 to the fast path
of a hardware switch to allow queueing and scheduling to be
reconfigured by the network operator. We outline a standard-
ized interface between the FPGA and the rest of the switch
that is enough to support today’s in-gateway schemes.

To test the viability of our proposed interface, we used
SystemVerilog and freely-available Xilinx tools to synthe-
size, place, and route hardware implementations of two such
schemes: CoDel and RED. We report on this experience be-
low.

4.1 What interface should the switch expose?
We considered closely the question of the appropriate in-

terface to configure a novel queue-management or schedul-
ing algorithm on a switch. Naively, a high-level interface
where algorithms are formed out of commonly-used build-
ing blocks or gadgets has considerable appeal.

However, after attempts to synthesize popular algorithms
and factor out their common components, we found that real
queue-management and scheduling algorithms have such di-
verse control-flow graphs that no short list of high-level
building blocks can easily be reconfigured to form today’s
existing queue-management schemes, much less those of the
future.

Recognizing this, we have designed a lightweight low-
level interface that provides a few well-defined primitives
we think will be expressive enough to encompass all current
schemes as well as those likely to be explored in the future.

In this framework, the primitives are literally wires or sig-
nals exposed by the network hardware to the reconfigurable
2A few thousand gates, not an entire board.

4

Class of primitive Primitive Name Description
Utilities Now Get current time.
Queue primitives Size Get queue length.
Queue primitives DropFront Drop packet from head of queue.
Queue primitives DropTail Drop packet from tail of queue.
Queue primitives Enqueue Enqueue packet at tail of queue.
Queue primitives Dequeue Dequeue packet from head of queue.
Queue primitives Transmit Transmit single packet.
Signaling primitives LinkReady Link is ready to accept packet.
Signaling primitives Arrival New packet just arrived.
Packet primitives Timestamp Packet’s arrival timestamp.
Packet primitives Mark Set ECN bit.
Cross-layer primitives LinkRates Get current link rate.

Table 5: Data-plane primitives: wires exposed by the net-
work processor to and from the FPGA

portion, or FPGA. In our framework, the network operator
is allowed to reconfigure the FPGA arbitrarily, wrangling its
“slices” as the hardware allows in order to synthesize arbi-
trary behavior.

Table 5 describes the minimal set of primitives that we
used in implementing CoDel and RED in SystemVerilog.

Although we used SystemVerilog, a comparably low-level
language, to synthesize the algorithms for an FPGA, we
imagine that a practical deployment would most likely work
differently. In our view, the designer of a new queue-
management algorithm would be better off accessing these
primitives through a high-level procedural language, such as
C++, through the Verilog Procedural Interface [8].

4.2 CoDel in hardware
We implemented CoDel in SystemVerilog and success-

fully synthesized it for a Xilinx FPGA, using Xilinx’s Vivado
WebPack compiler and synthesis tools. A block diagram of
the implementation is shown in Figure 2.

Our implementation used the following resources on the
lowest-end FPGA available (the Xilinx Kintex-7):

CoDel resource utilization

Resource Usage Fraction of FPGA
Slice logic 1,256 1%
Slice logic dist. 1,975 2%
IO/GTX ports 27 2%
DSP slices 0 0%
Maximum speed 12.9 ×106 pkts/s

We began with the CoDel pseudocode included in [1]. We
maintain state in registers that track if CoDel is currently in
“dropping” mode (dropping), the next scheduled time for
a drop (drop_next), and the number of drops (count)
in the current drop cycle. When LinkReady is signaled, we
execute the same logic as specified in the dequeue function
of the CoDel pseudocode.

SystemVerilog does not allow the synthesis of an un-
bounded loop. We eliminated CoDel’s while loop, turn-
ing it into an if statement. Because our version of the

CoDel dequeue function is level-triggered and fires as long
as LinkReady remains asserted, this emulates the original ef-
fect of the while loop. LinkReady will remain asserted as
long as the link can accept a packet.

CoDel also uses the Timestamp primitive to access the
arrival time of the dequeued packet, and uses this to com-
pute the sojourn time using the Now primitive. It then uses
the DropFront primitive of the appropriate queue to drop a
packet if necessary. Our implementation also uses the Size
primitive to determine the queue length, to prevent packet
drops when there is less than an MTU worth of bytes in
the queue. We implemented CoDel’s square-root function
in fixed-point arithmetic as a lookup table.

4.3 RED in hardware
We also implemented RED in SystemVerilog, using the

same interface and primitives as the CoDel implementation.
We began with the RED implementation described in [13].
RED maintains state that tracks the average queue size, start
of the current queue idle time, and a count of the packets
seen since the last marked or dropped packet.

Unlike CoDel, all of RED’s work is done when the Ar-
rival signal is raised. RED needs to determine if the queue
is empty for two reasons: one, to update its moving average
queue size differently when the queue is empty, and two, to
keep track of the start of the current idle period. To achieve
this, RED uses the Size primitive to check if the queue is
empty. Unlike CoDel, RED uses neither DropFront nor
DropTail, because it drops incoming packets on arrival and
doesn’t need to drop packets that are already in the queue.

Our implementation used the following resources on the
Xilinx Kintex-7:

RED resource utilization

Resource Usage Fraction of FPGA
Slice logic 1,721 1%
Slice logic dist. 3,138 3%
IO/GTX ports 27 2%
DSP slices 6 3%
Maximum speed 13.0 ×106 pkts/s

RED requires somewhat more challenging calculations
than CoDel, as the algorithm includes an exponentially-
weighted moving average, which was synthesized using
multiply-accumulate DSP slices, and a linear-feedback shift
register for pseudo-random number generation. This also
uses the DSP slices.

4.4 Feasibility
Our unoptimized implementations of CoDel and RED

pass timing checks at packet-processing rates of approxi-
mately 13 million packets per second. At a typical Ethernet
MTU of 1500 bytes, this translates to more than 150 Gbps.
At the smallest packet size, it is about 6.7 Gbps.

5

Packet with
timestamp

(Router stamps all
incoming packets
with timestamp)

Packet with timestamp

Dequeue

Packet Queue

Size

Timestamp

QueueEmpty
Drop

First above
time

Time
Counter

Now

Count
Next Time
To Drop

LinkReady

DropFront

State
Variable

Data plane
primitive CODEL

Packet

 codel_q_t::dequeue

Check

codel_q_t::dodequeue

countdropping

User Defined
Control

codel_q_t::control_law

drop_next

Figure 2: Block diagram of CoDel implementation

Our implementations are within the capabilities of low-
end FPGAs, such as Xilinx’s Spartan 3E, which sell for $10
or less. We do not know the marginal cost of such a part
in a high-volume ASIC, but estimate it may be nominal.
These numbers suggest that, for the purposes of schedul-
ing and queue management, adding a small reconfigurable
FPGA unit to a hardware router may allow it as much flexi-
bility as a software router without affecting performance.

5. LIMITATIONS AND FUTURE WORK

It is natural to ask what kind of schemes cannot be ex-
pressed by our abstractions. Any scheme that needs to look
beyond the packet header, for instance, “deep packet” in-
spection, intrusion detection, encryption, and spam filter-
ing cannot be expressed using the abstractions above. To
make our proposal cost-effective, the FPGA we propose to
add is constrained, limiting the sophistication of any imple-
mentable scheme.

Our proposed design currently runs at a line rate of 10
gigabits/sec. More work needs to be done before the same
design can run at 10 gigabits/sec on several ports simultane-
ously. If the queueing or scheduling algorithm performs all
its work only when packets are dequeued, this problem can
be solved by replicating digital logic. However, several algo-
rithms perform some work during both packet enqueues and
dequeues, and the enqueueing rate can be up to P times the
line rate, where P is the number of ports. We have also not
clearly specified how packets are mapped to per-port hard-
ware queues, which are then used for packet scheduling. One
option is to leverage OpenFlow’s existing match-action capa-
bilities for classifying packets into per-port hardware queues.

We have not specified a scheme by which applications can
signal their objectives (throughput, low delay, power, flow
completion, transaction completion, tail completion) to the
network fabric. We imagine that the ToS or DiffServ code-
point bits in the IP header would be used for this purpose.
This may work within a datacenter where agreement can be
secured as to the meaning of various code points. But today,
Internet Service Providers generally do not trust the DiffServ
code points they receive from other autonomous systems,

and the practical obstacles to Internet-wide deployment of
such a signaling scheme remain formidable.

More work needs to be done to characterize the specifica-
tions sufficient to guarantee interoperability between an ar-
bitrary switch and a queue-management or scheduling algo-
rithm that may be synthesized in an FPGA, in order to pro-
vide cross-vendor portability of a design. We don’t claim to
have answers to this question, and leave this for future work.

6. CONCLUSION

We have demonstrated perverse bidirectional preference
loops among queue-management and scheduling schemes
that run inside the network, suggesting there can be no over-
all winner for the best AQM or scheduling behavior.

Instead, we advocate for an open interface tailored to
queueing and scheduling that is portable across vendors.
We propose a compromise position between fully software
switches and current hardware switches, which are config-
urable only in their control-plane functions. In our scheme,
switches would contain a small FPGA with a simple inter-
face to the switch’s packet queues.

We have described this interface and implemented two
schemes — CoDel and RED — as a proof of concept.
Their resource requirements were exceedingly modest, giv-
ing hope that such a system may be practical. Instructions
to replicate our results are available at: http://web.mit.edu/
anirudh/www/sdn-data-plane.html

7. ACKNOWLEDGEMENTS

We are grateful to Patrick Bosshart, Glen Gibb, and the
HotNets reviewers for their thoughtful feedback and com-
ments. We thank Chia-Hsin Owen Chen for assisting us
in developing the SystemVerilog implementations of CoDel
and RED, and Murali Vijayaraghavan for help using the Xil-
inx tools. This work was supported in part by NSF grant
CNS-1040072. We also thank the members of the MIT Cen-
ter for Wireless Networks and Mobile Computing (Wire-
less@MIT), including Amazon.com, Cisco, Google, Intel,
Mediatek, Microsoft, ST Microelectronics, and Telefonica,
for their support.

6

http://web.mit.edu/anirudh/www/sdn-data-plane.html
http://web.mit.edu/anirudh/www/sdn-data-plane.html

8. REFERENCES

[1] Appendix: CoDel pseudocode.
http://queue.acm.org/appendices/codel.html, 2012.

[2] Benchmarking CoDel and FQ CoDel.
http://www.bufferbloat.net/projects/codel/wiki/Benchmarking_
Codel_and_FQ_Codel?version=4, 2012.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP
(DCTCP). In SIGCOMM, 2010.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKewon,
B. Prabhakar, and S. Shenker. pfabric: Minimal near-optimal
datacenter transport. In Proceedings of the ACM SIGCOMM 2013
conference, SIGCOMM 2013, New York, NY, USA, 2013. ACM.

[5] M. Allman. Comments on Bufferbloat. ACM SIGCOMM Computer
Communication Review, 43(1), Jan. 2013.

[6] M. B. Anwer, M. Motiwala, M. b. Tariq, and N. Feamster.
Switchblade: a platform for rapid deployment of network protocols
on programmable hardware. In Proceedings of the ACM SIGCOMM
2010 conference, SIGCOMM ’10, pages 183–194, New York, NY,
USA, 2010. ACM.

[7] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking control of the enterprise. In ACM
SIGCOMM Computer Communication Review, volume 37, pages
1–12. ACM, 2007.

[8] C. Dawson, S. K. Pattanam, and D. Roberts. The verilog procedural
interface for the verilog hardware description language. In
Proceedings of the 1996 IEEE International Verilog HDL Conference
(IVC ’96), IVC ’96, pages 17–, Washington, DC, USA, 1996. IEEE
Computer Society.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. In Symposium proceedings on
Communications architectures & protocols, SIGCOMM ’89, pages
1–12, New York, NY, USA, 1989. ACM.

[10] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
Routebricks: exploiting parallelism to scale software routers. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 15–28. ACM, 2009.

[11] W. Feng, K. Shin, D. Kandlur, and D. Saha. The BLUE Active Queue
Management Algorithms. IEEE/ACM Trans. on Networking, Aug.
2002.

[12] S. Floyd. TCP and Explicit Congestion Notification. CCR, 24(5), Oct.
1994.

[13] S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Trans. on Networking, 1(4), Aug.
1993.

[14] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. ACM SIGOPS Operating System Review, 42(5):64–74,
July 2008.

[15] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a
gpu-accelerated software router. ACM SIGCOMM Computer
Communication Review, 40(4):195–206, 2010.

[16] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly
with preemptive scheduling. SIGCOMM Comput. Commun. Rev.,
42(4):127–138, Aug. 2012.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hozle,
S. Stuart, and A. Vahdat. B4: Experience with a globally-deployed
software defined wan. In Symposium proceedings on
Communications architectures and protocols, SIGCOMM 2013, New
York, NY, USA, 2013. ACM.

[18] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM, 2002.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
click modular router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[20] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive
Virtual Queue (AVQ) Algorithm for Active Queue Management. In
SIGCOMM, 2001.

[21] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke,
J. Naous, R. Raghuraman, and J. Luo. Netfpga–an open platform for
gigabit-rate network switching and routing. In Microelectronic

Systems Education, 2007. MSE’07. IEEE International Conference
on, pages 160–161. IEEE, 2007.

[22] P. E. McKenney. Stochastic Fairness Queueing. In INFOCOM, 1990.
[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[24] K. Nichols and V. Jacobson. Controlling Queue Delay. ACM Queue,
10(5), May 2012.

[25] R. Pan, B. Prabhakar, and K. Psounis. CHOKe—A Stateless Active
Queue Management Scheme for Approximating Fair Bandwidth
Allocation. In INFOCOM, 2000.

[26] E. Rubow, R. McGeer, J. Mogul, and A. Vahdat. Chimpp: A
click-based programming and simulation environment for
reconfigurable networking hardware. In Architectures for Networking
and Communications Systems (ANCS), 2010 ACM/IEEE Symposium
on, pages 1–10. IEEE, 2010.

[27] C. Tai, J. Zhu, and N. Dukkipati. Making Large Scale Deployment of
RCP Practical for Real Networks. In INFOCOM, 2008.

[28] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP
Approach for High-speed and Long Distance Networks. In
INFOCOM, 2006.

[29] D. L. Tennenhouse and D. J. Wetherall. Towards an active network
architecture. Computer Communication Review, 26:5–18, 1996.

7

http://queue.acm.org/appendices/codel.html
http://www.bufferbloat.net/projects/codel/wiki/Benchmarking_Codel_and_FQ_Codel?version=4
http://www.bufferbloat.net/projects/codel/wiki/Benchmarking_Codel_and_FQ_Codel?version=4

	Introduction
	Related Work
	Active Networks
	Hardware Router Platforms
	Software Routers
	Software-Defined Networks

	No Silver Bullet
	Conclusion

	Extending SDN to the Data Plane
	What interface should the switch expose?
	CoDel in hardware
	RED in hardware
	Feasibility

	Limitations and Future Work
	Conclusion
	Acknowledgements
	References

