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ABSTRACT

Recently, rateless codes have introduced a promising approach to
obtaining wireless throughput higher than what is achieved by fixed-
rate codes, especially over time-varying channels. Rateless codes
like Raptor [26, 22], Strider [9], and spinal codes [23, 24] naturally
process all the information available at the receiver correspond-
ing to a packet, whether from one or many frame transmissions.
However, a profitable deployment of rateless codes in a wireless
network requires a link-layer protocol to coordinate between sender
and receiver. This protocol needs to determine how much coded
data should be sent before the sender pauses for feedback from the
receiver. Without such feedback, an “open-loop” sender would not
know when the packet has been decoded, but sending this feedback
is not free and consumes a significant fraction of the packet trans-
mission time. This paper develops RateMore, a protocol that learns
the probability distribution of the number of symbols required to de-
code a packet (the decoding CDF), and uses the learned distribution
in a dynamic programming strategy to produce an optimal trans-
mission schedule. Our experiments show that RateMore reduces
overhead by between 2.6x and 3.9 x compared to 802.11-style ARQ
and between 2.8 x and 5.4x compared to 3GPP-style “Try-after-n”
HARQ.

Categories and Subject Descriptors: C.2.1 [Network Architecture
and Design]: Wireless communication

General Terms: Algorithms, Design, Performance

Keywords: Wireless, rateless, protocol, link-layer, HARQ

1. INTRODUCTION

For network applications on mobile devices to perform well, net-
work protocols must cope with significant variations in wireless
channel conditions caused by user and device movement, as well
as interference from sources internal and external to the wireless
network. These variations can occur even over short (sub-packet)
time scales, posing a fundamental challenge for wireless network
protocols.

Recent work on rateless codes over wireless networks has shown
significant promise in achieving high performance over time-varying
channels [26, 22, 6, 9, 24]. These codes are “regret-free” in the
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sense that the receiver never wishes that a different modulation or
code rate had been chosen by the transmitter — all received symbols
are equally useful and none are discarded. Under a traditional bit
rate adaptation approach, the sender decides in advance on one of
a pre-determined set of fixed-rate codes and modulation schemes
(see §2). If the chosen rate is too aggressive, the resulting received
symbols are nearly useless.

Rateless codes offer a natural way to adapt to channel variations
via the prefix property: in a rateless code, an encoding with a higher
rate is a prefix of any lower-rate encoding. Rather than discarding
symbols which fail to decode, the receiver uses them again to form
part of a lower-rate encoding once additional symbols arrive. No
symbol is left unused in decoding a rateless message. The greater
the number of symbols received, the higher the probability of a
successful decoding.

Ratelessness does not excuse the sender and receiver from adapt-
ing to channel conditions. Instead, it unifies the processes of sensing
conditions and reacting to them. For a good rateless code, the num-
ber of symbols required for decoding closely tracks changes in the
prevalent channel conditions. This means that a rateless sender and
receiver can skip the customary estimation of channel quality and
focus on the central problem of estimating, based on feedback, the
number of symbols to be transmitted.

A comprehensive rateless link protocol would include a mecha-
nism for reliable feedback and a mechanism for dealing with chan-
nel contention. It would allow application-level end-to-end latency
constraints to impose limits on packet aggregation, and it would
provide theoretical guarantees that a suitable performance metric is
optimized. It would circumscribe what the sender needs to know
about the channel in order to optimize performance, and it would
include the cost of conveying this information to the sender in the
optimization.

In this paper, we identify efficiency as the right performance met-
ric and show how the sender can maximize it given the feedback
delay and a cumulative probability distribution function called the
decoding CDF. Efficiency, given by the fraction of channel occupa-
tion time which is strictly necessary for reliable delivery, provides
a code-neutral measure of protocol overhead. Our paper develops
an efficiency-maximizing protocol, RateMore, and presents its im-
plementation and evaluation over spinal codes [23], Strider [9], and
Raptor codes [26, 22] on stationary and fading channels. RateMore
accommodates soft single-hop latency constraints and provides reli-
able delivery. Multi-hop latency constraints and unreliable service
classes are interesting unexplored directions.

We assume common half-duplex radios with 802.11-style framing
and acknowledgments, and we consider operation above a minimum
signal-to-noise ratio (SNR) such that acknowledgement packets sent
at the lowest 802.11 convolutional code rate are reliable. We also
assume that once a sender has contended for the medium, it uses



802.11’s short inter-frame space (SIFS) mechanism to bypass con-
tention during feedback hand-offs until the transaction is complete.
Under these conditions, the feedback delay is known to the transmit-
ter a priori via a calculation we review. Our analysis shows that the
decoding CDF and the feedback delay are sufficient knowledge for
the sender to maximize the average throughput of the link over all
possible strategies of transmitting data and pausing for feedback.

The decoding CDF is not only sufficient, but it is practical to
obtain. We demonstrate how the sender can obtain approximate yet
satisfactory knowledge of the decoding CDF (e.g. performing within
1.57% of full knowledge) from just a handful of acknowledgments.

Our evaluation compares RateMore with two alternatives bor-
rowed from fixed-rate coding. The first is an analogue of automated
repeat requests (ARQ) fashioned after 802.11, and the second is
incremental redundancy after the pattern of the 3GPP cellular stan-
dard, sending a fixed number of additional coded symbols between
pauses for feedback. RateMore proceeds from a sound mathematical
framework and outperforms both of these ad hoc approaches.

Our results show that RateMore achieves an efficiency of over
90% across all our experiments. Our experiments also show that
RateMore reduces overhead by 2.6 to 3.9x compared to 802.11-
style classical ARQ and by 2.8 to 5.4x compared to 3GPP-style
“Try-after-n”” hybrid ARQ. These translate to throughput improve-
ments of up to 26% even under “static” channel conditions. Over
fluctuating Rayleigh-fading channels, we show that RateMore per-
forms within 1.57% of the ideal adaptation.

2. RELATED WORK
2.1 Type-I1 HARQ

Hybrid ARQ (HARQ) systems [19] marry forward error correc-
tion with ARQ to raise the probability of successful reception. Type-I
HARQ systems transmit coded messages and retransmit on failures,
and are widely used in wireless standards such as Wi-Fi [14]. A com-
mon design technique is to specify several modes, or “bit rates”, each
suitable for a small range of channel conditions. Bit rate adaptation
algorithms then choose what mode to use by picking a combination
of modulation (symbol set) and code.

2.2 Type-I1 HARQ

Type-11 HARQ allows the exchange of coded data over several
round-trip interactions between the transmitter and receiver. Us-
ing more interactions has been shown to allow improvement over
ARQ’s performance under poor conditions, while not sacrificing
performance under favorable conditions . Two approaches exist for
combining transmissions. In HARQ with Chase Combining [5],
the retransmission repeats parts of the original packet, which are
then combined at the receiver. HARQ with Incremental Redundancy
(IR) sends different coded bits in every transmission. This approach
has been used successfully in the 3GPP LTE protocol [15], and a
protocol has been built to achieve IR-HARQ over 802.11 networks
in ZipTx [18].

Soljanin et al. discuss the design of HARQ with incremental
redundancy [27]. The develop such a protocol for an ensemble of
LDPC codes as well as Raptor codes. The basic idea is to transmit
only as many coded symbols as required for the receiver to decode
the message with high probability using the best possible maximum-
likelihood (ML) decoding rule, presupposing a very high SNR. If
the receiver is successful, the transmitter moves to the next message.
If not, the transmitter sends the next sets of coded symbols in such a
way that given what receiver has received (the transmitter knows the
past channel condition at the receiver), there is a high probability of
successful ML decoding if the SNR is only moderately high. This is
repeated until successful decoding is achieved.
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Another related work is by Anastasopoulos [1]. The primary
difference arises in the fact that their work does not take feedback
delays into account. They model the decoding CDF in terms of an
error exponent, and assume that the underlying code cannot decode
with more than some maximum number of symbols. They model the
channel as a Markov chain and try to infer its state. Our approach is
different both in the learning strategy (learning the decoding CDF)
and in applying a dynamic programming strategy to compute the
transmission schedule.

Most proposed HARQ schemes have a small number of effec-
tive rates to choose from. This is achieved using rate-compatible
puncturing [11, 17, 10], where the mother code is partitioned into a
series of punctured words, such that the decoder has good probability
of successfully processing any prefix of the series. In comparison,
rateless codes do not require such gentle constructions, and natively
offer a free choice of rates.

Systems with either Type-I or Type-II HARQ schemes use bit rate
adaptation algorithms. These algorithms take a reactive approach to
combating temporal channel variations: systems passively monitor
channel conditions in the form of the signal-to-noise ratio [4, 13],
frame loss rate [29, 3], or bit-error rate [28, 25].

2.3 Partial Packet Recovery

Partial packet recovery schemes are protocols designed to recover
packets that were received with errors. Data is divided into small
fragments, and some method is used to detect which fragments were
received correctly. The transmitter then only retransmits erroneous
fragments. Seda [8] adds an overhead of a CRC-8 and an identifier
to each block, and sends correction blocks alongside fresh blocks.
PPR [16] uses confidence information from the PHY layer instead of
a CRC to determine which bits need retransmission, and incorporates
a dynamic algorithm to determine what feedback should be sent by
the receiver. Maranello [12] again uses CRC to protect each block,
but reduces overhead by only transmitting CRCs when the packet
contains errors.

Partial packet recovery can be viewed as a finer-grained Type-
I HARQ: the PPR system sends smaller blocks, retransmitting a
block on error. The difference to non-PPR HARQ is the aggregation
of several blocks onto a single transmission, eliminating the fate-
sharing of bits in the non-PPR case.

2.4 Rateless Codes

Our experiments use three recently developed rateless codes—
Raptor codes, Strider [9], and spinal codes [23]—so we start by
summarizing the key ideas in these codes and the salient features of
the implementations of these codes used in our experiments.

Raptor code. Raptor codes [26, 7], which are built on LT codes [20],
achieve capacity for the Binary Erasure Channel where packets are
lost with some probability. Not much is known about how close
Raptor codes come to capacity for additive Gaussian noise (AWGN)
channels and binary symmetric channels (BSC). However, there have
been several attempts made to extend Raptor codes for the AWGN
channel [22, 27, 2]. We adopt a similar construction to [22] in this
paper, with an inner LT code generated using the degree distribution
in the Raptor RFC [21], and an outer LDPC code as suggested by
Shokrollahi [26].

Strider. Strider realizes the layered approach to rateless codes of
Erez et al [6]. This approach combines existing fixed-rate base codes
to produce symbols in a rateless manner. By carefully selecting linear
combinations of symbols generated by the base codes, they show
that the resulting rateless code can achieve capacity as the number of
layers increases, provided the fixed-rate base code achieves capacity
at some fixed SNR. The Strider implementation in our experiments



was built using reference code from Gudipati [9], with recommended
parameters.

Spinal codes. Spinal codes [23] use a hash function to generate
transmitted symbols. The rich structure obtained using the hash
function can be exploited to achieve rates very close to the channel
capacity, with a practical encoder and decoder. In addition to their
ability to approach capacity, spinal codes also work well on short
messages (256-1024 bits), making them appealing from a latency
perspective.

3. OPTIMAL TRANSMISSION SCHEDULE

We have yet to define the decoding CDF or to show how to coordi-
nate the sender and receiver via a transmission schedule derived from
this CDF. This section introduces the decoding CDF and applies it
to the schedule optimization problem, treating the CDF as a known
quantity. We also show how to compute the feedback delay. The
solution of the optimization problem proceeds from these two inputs
via a dynamic programming algorithm, which we demonstrate with
an example. The next section will show how to learn the CDF using
feedback from the receiver.

3.1 Decoding CDF

We abstract a rateless code as an encoder which produces
an infinite sequence of encoded symbols (bits or constellation
points/channel usages) from a finite message, and a decoder which
takes any prefix of this infinite sequence and returns either nothing or
the correct message. Supposing that all input messages are protected
equally, and that the channel parameters drawn from some unknown
distribution, the behavior of the code on this channel is characterized
by a single function giving the probability with which a message can
be decoded correctly after a certain number of symbols have been
received by the decoder.

We assume that this probability increases monotonically with the
number of symbols received; otherwise, a better (and admittedly
more expensive) decoder could attempt to decode with only the first
symbol, then with the first two, and so on, guaranteeing monotonicity.
If every message is eventually decoded, then the function can be
viewed as the cumulative distribution for a random variable that we
denote n. Changes to the code parameters, channel conditions, or
code block length will affect this distribution.

The decoding CDF has three desirable features from the perspec-
tive of the protocol:

1. It succinctly captures all of the uncertainties in the system,
including those due to fluctuating outcomes on a stationary
channel, time-varying channel parameters, and uncertainty
about these parameters. Moreover, a schedule determination
algorithm that relies only on the decoding CDF is insulated
from the details of the code.

2. It enables the protocol to explicitly compute, and thus maxi-
mize, the expected throughput of a transmission schedule.

3. Itcan be learned from receiver feedback. §4 shows how beliefs
about the decoding CDF can be updated from the number of
symbols needed to decode each packet. Alternatively, the CDF
can be estimated using offline simulations of the behavior of
the code. Either way, the sender and receiver have common
knowledge of the decoding CDF.

3.2 Optimization Problem

Given a decoding CDF, we would like to obtain a rule for the
sender that determines when it should transmit and when it should
pause for feedback. This rule takes the form of a sequence of positive
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integers n;, ¢ € {1,2,...}. Each n; indicates cumulatively how many
symbols should be transmitted before the sender begins its i'! pause.

If feedback were free (i.e., took O time), then a throughput-
maximizing sender would pause after each symbol transmission.
In reality, it takes many microseconds to turn the radios from trans-
mit to receive mode, re-synchronize, complete any ongoing decoding
operations to determine whether a positive ACK should be sent, en-
code the ACK, and turn the radios around again to return control
to the sender. The feedback delay is the time between the sender’s
last symbol prior to a pause for feedback and the same sender’s first
useful symbol following the pause for feedback. With 802.11a/n
timings and the most reliable ACK coding rate,

Tteedback = SIFS + preamble + ACK payload + SIFS + preamble

ACK bits 46
24

On a 20 MHz channel with the standard guard interval, 802.11 sends
12 million symbols per second. Thus, if the sender and receiver
have only one coded transmission in play at a time, the cost of a
single bit of feedback could equal the cost of 816 symbols. This
number can be reduced by aggregating many packets to divide the
large constant cost of feedback across more useful bits. We explore
the details of such aggregation in §5. Even for Strider, the code with
the largest packet size of those we considered, transmitted frames
are only on the order of 3750 symbols each, so that a pause for
feedback after each frame would occupy 18% of the total time spent
on transmission plus feedback.
Let

:64ps+4ps~{

Tfeedback

_ symbols
" # aggregated packets

ny - 12 million

sec
This is the amortized cost of feedback in units of foregone symbols.
Note that higher layers cannot tolerate an arbitrary increase in latency
caused by excessive aggregation, so one can never drive the cost
of feedback to zero. Suppose that ny already takes into account
as much amortization as is possible subject to higher-layer latency
constraints.

We wish to send a packet whose length before any coding is b
bits, after coding it using a rateless code. The decoding CDF for the
rateless code specifies P(n > -), the probability that decoding will
be successful after receiving n symbols.

Consider a general transmission schedule for reliable delivery.
The sender first transmits n; symbols, then pauses for feedback. If
decoding fails, the sender transmits n, —n symbols before pausing
a second time. In sum, before the i pause, the sender transmits
n; symbols. We seek an assignment of values to nj, ny, ... that
minimizes the average time spent delivering each b-bit packet.

Let

p; = P(first success after ¢ feedback rounds)
g; = P(stop after : feedback rounds).

These two quantities differ if the sender gives up on this packet
without success and moves on to the next one. The sender will
spend an average of » ., ¢;(n; +i-n f) symbol-times on each mes-
sage, including time spent transmitting and time spent waiting for
feedback.

The efficiency of a transmission strategy is the fraction of this
time strictly necessary for reliable delivery. Its formal definition is
motivated by two observations.

1. For any feedback-based link-layer protocol, it is essential that
the sender solicit feedback at least once for each network-layer
packet to ensure that it has been received, so the sender can
then proceed to the next packet.



2. Itis necessary for the transmitter to transmit, on average, at
least E[n] symbols. If the transmitter sends less than this
number of symbols, then it follows that some fraction of
packets are not decoded correctly.

Combining these two observations, we define efficiency as
_ E[n]+ny
" i ting)

Note that if 7 ¢ is nonzero, the only way to achieve perfect efficiency
will be for the sender to guess n correctly every time. If n has
positive entropy arising from unpredictable channel variations, as in
practice, we will be unable to achieve 100% efficiency, but our goal
is to come as close as possible to the ideal efficiency.

Minimizing the time spent delivering a message is equivalent to
maximizing 7. In principle, this problem seems like a difficult multi-
dimensional search, but it turns out that the optimal n; assignments
can be obtained by dynamic programming using only the decoding
CDF as input. The optimal substructure in this problem is revealed
by interpreting the transmitter’s decisions in the framework of a
dynamic game, as we explain next.

ey

3.3 Dynamic Game Formulation

Suppose that we are playing a game against nature, and that nature
chooses n from the known decoding CDF distribution but does not
tell us the value. Our first move is to transmit n; symbols; nature’s
behavior is to use its hidden knowledge of n to determine whether
the game ends or continues. We then transmit ny —n; symbols, and
nature once more determines whether the game ends, and so on.

Our score at the end of the game is the negative of the total time
we spent transmitting symbols or waiting for feedback (we measure
the time in units of “symbol-time”). The negative is because we
want the game to end as soon as possible. Because nature only acts
to end the game, the optimal strategy depends only on ny and the
distribution of n (the decoding CDF), but not on any information
arising during gameplay.

To develop an optimal strategy for the game, we apply backward
induction. Supposing we find ourselves at some node of the decision
tree where ¢ symbols have already been transmitted, we must decide
how many additional symbols j} we will transmit before pausing to
minimize our expected time-to-completion. For some choice of j,
the corresponding expected time is

tij :j+nf +]P)(7’L > ’L+]|7’L > i)t(iJrj)j:ﬂ
That is, we pay an immediate cost of j +n ¢, and with some probabil-
ity given by the decoding CDF and expressed in the third summand
above, the game will continue and we will incur additional costs
according to our optimal strategy. The third term is somewhat
counter-intuitive: it says that with probability P(n > i+ j|n > i),
the additional time required is ¢(; ;) it the tricky part is that the
expression of ¢;; now depends on t,;/, where the index £ =i+ j is
greater than i.
We address this issue below, but for now observe that choosing
Ji = argmin t;;
Jj>0
t; = t;j: so that we can write

ti =Ji +np+P(n> i+ |n >ty . )
produces the optimal strategy’ .

The reason is that if we know the optimal strategy and the cor-
responding expected time for all 7/ > 4, then we can compute the

IThe strategy is a subgame perfect equilibrium.
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strategy and expected time for ¢. So, if n were bounded above by
some finite value, one can use dynamic programming to find the
optimal strategy to minimize the expected completion time for all 4.
We would then choose ny = j§, nj+1 =n; + 7y, -

3.4 Finite Termination by Tail Fitting

Some finesse is required to terminate the infinite recursion onto
larger and larger 7. The problem is that one may easily encounter a
point where there is no information available from the decoding CDF
for some number of symbols, n*, required to make progress; i.e.,
we have no information about P(n > n* = ¢+ j*). What RateMore
does in this situation is to revert to the best possible periodic-rate
schedule given all the information known. It produces a schedule
where the sender pauses after sending j* symbols, obtaining the
feedback, and then continuing, until either the packet is decoded
or the sender gives up. If the packet gets decoded, the sender will
have obtained information about the decoding CDF for this point in
the state space, which will improve the subsequent operation of the
protocol.

To determine j*, we replace the tail of our distribution for n
with an analytic form, which produces a stationary optimal strategy.
Rearranging the terms in Equation (2) and replacing the ¢’s with a
fixed (stationary) value on both sides, we find

=5 4ng+P(n>i+j*|n>i)t"

e
1—]t7*f:IP’(n>i+j*|n>i)
_ P(n>i+j5%)
P(n > 1)

The memoryless (geometric) distribution satisfies this property. We
fit a geometric tail onto our distribution and compute j* and t* for it
to bootstrap the recursion onto finite ¢.

We could instead have set the complementary CDF to be zero
above some finite n, but this introduces undesirable oscillations
into the computed expected time and strategy variables, and does
not offer any insight into what the transmitter should do if it does
eventually find itself in the position of choosing a j for some ¢ larger
than this limit. With the geometric tail, the transmitter simply falls
back to sending the stationary number j* of symbols before each
pause. This distinction is especially important during the process of
learning the empirical CCDF, because the sender will have no data
for the probability of n > nmax, Where npay is the largest n we have
observed so far.

For the memoryless distribution with geometric parameter 0 <
B < 1, we solve to obtain

ﬂfj +jlogB=1-nslogp
=k =In(k+y), where
k2 —jlogB
&1 —nylogfB

Solving iteratively,

ki =r kit1 =1In(k; +7)
N Koo «  JEny
Jail =~ {505 bail = 16

In practice, the iteration converges rapidly.

Another useful special case of the dynamic programming algo-
rithm is for n = c+ g where c is a constant and g is geometrically
distributed with parameter 3. In this case, we reuse the above cal-
culation for ji,, but take n; = c+1 - ji;. That is, the first step
is to send ¢+ j;;; symbols, and each subsequent step is to send



Jiyip Symbols. This form for the distribution of n turns out to be a
reasonable practical approximation to the empirical behaviors of the
spinal code and Strider.

3.5 An Example

This section will use Figure 1 to illustrate the behavior of the
dynamic programming strategy using a synthetic decoding CDF for
purposes of illustration. We proceed top-to-bottom, then left-to-right.
The top-left plot shows a CDF and when we would pause for feed-
back with various delays, n . The mapping of colors? to feedback
costs is shown on the right axis. The middle-left and bottom-left
plots show the estimated remaining time and optimal forward strat-
egy for the same CDF after some number of symbols have been
transmitted. The circles show the best division into feedback inter-
vals, starting at 0 and stepping forward according to the bottom-left
plot.

The top-right plot shows how the optimal strategy chooses a
variable level of pre-feedback confidence of decoding. For the
constant-plus-geometric distribution, for example, the lines would
be flat. The other two plots on the right column show how tail-fitting
gives us reasonable behavior even after dozens of round-trips (which
might be reasonable if the cost of feedback is low enough).

4. LEARNING THE DECODING CDF

The decoding CDF is the primary input to the dynamic program-
ming algorithm, specifying the probability that a given number of
symbols will be required by the receiver for successful decoding.
These probabilities depend on current channel conditions. When the
channel can be characterized by a single parameter, we can obtain
CDFs for different values of that parameter using off-line simula-
tions or experiments. For example, in the case of the additive white
Gaussian noise channel (AWGN) we could obtain CDFs for a range
of signal-to-noise ratio (SNR) values. In practice, however, wireless
radios operate in complex environments, and we expect the channel
to have too many parameters for such an approach to be practical;
we expect these parameters to vary unpredictably over time; and
we expect that off-line simulations will differ significantly from the
actual implemented system.

A robust alternative to this approach is to learn the CDF on the fly:
that is, to estimate the CDF based on the recent history of number
of symbols required for successful decoding at the receiver. The
sender always consults the strategy derived from the most recent
CDF estimate. This form of online learning directly accommodates
variations in channel conditions due to fading and mobility.

The most general empirical distribution for the probability of
successful decoding after any number number of symbols is the
multinomial distribution. Thus, a very general Bayesian approach
would be to learn this multinomial distribution beginning from a
Dirichlet prior. This entails maintaining a histogram over the number
of symbols required for decoding so far. While straightforward, a
model with such a large state-space leads to slow learning and slow
adaptation to variations in the channel.

Ideally, we would like to maintain a parametric distribution with
a minimal number of parameters as our surrogate for the actual
CDE. With this in mind, we propose two approaches: (a) Gaussian
approximation, and (b) Constant-plus-Geometric approximation.
From these, we pick the Gaussian approximation, for the reasons
explained below.

Gaussian approximation. Our inspection of the decoding CDFs

2Unfortunately, this chart is best viewed in color; we recognize that
it is a problem when not viewed online or on a color print-out; note,
however, that the different “levels” correspond to different feedback
costs.
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indicates that the Gaussian distribution should be a reasonable ap-
proximation at low SNR. Maximum-likelihood (ML) estimation for
the Gaussian distribution requires nothing more than computing the
empirical mean and variance of the number of symbols needed for
successful decoding, which can be accomplished with a few accu-
mulators. In the face of time-varying conditions, the empirical mean
and variance can be filtered using a moving average or a similar
scheme.

We chose to use Algorithm 1 for learning a Gaussian CDF. The
algorithm keeps exponentially-weighted accumulators to estimate
the mean, y, and variance, o2. The parameter o ranges from 0 (no
memory) to 1 (unlimited memory). The averages track the input with
a time constant of 1/1n(1/«). This scheme has two advantages over
a traditional exponentially-weighted moving average of the form
y < (1 —a)z+ ay. First, the start-up transient dies out more quickly
because we weight our initial conditions less heavily. Second, the
estimator’s behavior is well-defined for o = 1: inputs are retained
forever, and we recover the ML estimator.

Algorithm 1 Gaussian learning with exponentially weighted moving
average. Long-term performance is not sensitive to initial values.

function init():
samples <« 1
sum < 100 (for instance)
sumsq — sum? + 10?2 (for instance)
function learn(sample,«):
samples < samples-a+1
sum < sum- « + sample
sumsq < sumsq -« + sample2
function get_ccdf(x):
i = sum/samples
02 = sumsq/samples — ;i
return normal_ccdf (11,02, %)

We present results in §7 showing that under the Gaussian approxi-
mation, performance of RateMore when the true decoding CDF is
not available differs by only a few percent from performance when
the true CDF is available. At low SNR, the Gaussian approximation
with a memory parameter of a = 0.99 performs within 1% of the
known-CDF case. We also show that very aggressive learning rates
of a = 0.80 perform very well on simulated fading channels.

Constant-plus-Geometric approximation. The Constant-plus-
Geometric approximation treats the random variable n as n = c+g,
where c is a constant and g is a geometric random variable with
parameter (3. Like the Gaussian, this family of distributions has two
parameters, ¢ and 3. We considered this approximation because of
the analogy with the presence of error exponents in most good codes.
When a code has an error exponent, the probability of a decoding
error after transmitting n symbols scales as exp(—yn) for some
constant -y as long as n is large enough to push the rate below the
channel capacity. This minimal n corresponds to the constant sum-
mand c, and the exponential drop in error probability with increasing
n corresponds to the geometric drop in probability of unsuccessful
decoding with increasing g.

Additionally, if this approximation is good, the the resulting dy-
namic programming strategy has a simple form: for the first trans-
mission, send a number of symbols ¢+ ji.;, then pause for feedback.
If the receiver has not decoded the transmission, send j;; more
symbols before each subsequent request for feedback.

Unfortunately, despite this elegance, this distribution does not
have a convenient maximum-likelihood estimator. The most likely
value of the constant c is upper bounded by the min of n observed
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Figure 1: An illustration of the output of the dynamic programming algorithm

over all decoding attempts. In practice, this will lead the dynamic
programming algorithm to under-estimate the number of symbols
necessary for decoding. For this reason, we performed our experi-
ments using the Gaussian approximation.

5. PACKING PACKETS AND BLOCK ACKS
Rateless codes, particularly in high bandwidth situations, bene-
fit from a method to pack symbols belonging to multiple distinct
network-layer packets into the same link-layer frame, and using
a “block ACK” scheme (as in 802.11e/n) to amortize the cost of
sending feedback about the decoding state of each packet. Packing
packets into a single frame is a useful amortization not only when
the packets are small in size, but also when only a few more symbols
are required to be transmitted to successfully decode the packet. As
link rates increase, it is likely that any code (whether rateless or
using incremental redundancy) that decodes using symbols from
previous frame transmissions will benefit from packing multiple
distinct packets into the same frame and using block ACKs.
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If per-packet latency were not a concern, we could pack as many
packets as we wish into one frame, making ny as small as we
wish. In practice, however, we care about this metric: for example,
if we consider a high-definition video/audio teleconference, the
maximum wireless per-packet latency might be set to 50 ms, which
at a bit rate of 1.5 Mbits/s works out to ny =. RateMore’s dynamic
programming method assumes that n y is exogenously given by such
latency requirements, and that it has already been amortized over
multiple in-flight packets packed into one frame.

To efficiently pack and unpack symbols from multiple packets
into a single transmitted frame, we observe that because the sender’s
decoding CDF is learned from the receiver’s feedback, both the
sender and receiver can agree on the exact CDF and hence the exact
feedback schedule currently in use. The sender encodes the length
of the packet (in symbols) in the Signal field as in 802.11, which is
transmitted inside a 4 us OFDM symbol. From this field, the receiver
of a packet knows immediately how many symbols it will receive
in all. The problem is to allocate a certain number of symbols for
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Figure 2: Symbols from many packets are aggregated into a
frame in order to amortize the cost of the short inter-frame
spaces (SIFS, 16us) and preambles/headers.

packet 1, then the symbols for packet 2, and so on, as shown in
Figure 2.

The solution to this problem is as follows. When the sender trans-
mits the first frame, the receiver consults its copy of the feedback
schedule to see how many symbols should have been included for a
packet for which no symbols have previously been sent (obviously,
this number would be the same for every packet). For example,
the schedule may recommend sending 100 symbols before paus-
ing for feedback. If a frame is received with length 500 symbols,
the receiver infers that the sender wants to deliver 5 packets (as in
Figure 2).

After the frame ends and the receiver finishes attempting to decode
each packet, it sends an acknowledgment (ACK) frame to the sender
including a short field (e.g., 6 bits) for each such packet. If the
field for packet ¢ is all ones (NAK), the packet has not been decoded
successfully, so the sender should consult its feedback schedule (also
known to the receiver) and include more symbols for that packet in
the next frame. Otherwise, decoding was successful; in this case,
the ACK field encodes the fraction of this last frame’s symbols for
packet i that was needed to achieve a successful decoding. Using
this feedback, the sender can calculate the number of symbols that
were needed to decode any given packet to estimate the decoding
CDF using the learning algorithm (§4).

In general, because the sender and the receiver both agree on the
updated CDF, the receiver will now know how many symbols for
each unfinished packet will be in the next frame. For example, in
Figure 2, three packets out of five were not decoded successfully.
Each of those packets will have the same number of additional
symbols sent in the next frame (for example, 20 symbols, according
to the feedback schedule). In addition, the frame would include
symbols from new packets; each of those new packets would send
the same number of symbols given by the feedback schedule for new
packets.

The key insight in this scheme is that we do not need to explicitly
communicate the number of symbols per packet being transmitted
because both parties know the schedule. This scheme works cor-
rectly if frames and ACKs are not lost, which can be engineered by
ensuring that the preamble and headers are sent at low rates (one
can extend this protocol to handle frame and ACK loss with some
effort).

6. SOFTWARE IMPLEMENTATION

Our implementation comprises several interconnected simulations
written in C++ and Python.

Codes and Channel Models. To obtain raw decoding CDFs, we
performed thousands of experiments with the Spinal, Strider, and
Raptor codes using the parameters shown in Table 1. The experi-
ments produced decoding CDFs for SNRs from —5 to 35 dB on both
stationary additive white Gaussian noise (AWGN) and fast-fading
Rayleigh channels. The decoders had access to channel informa-
tion. The slow-fading experiments used the decoding CDFs from the
stationary channel, because in this regime the channel coefficients

preamble & header
‘ 1,2,3, 4, 5 — %
Sender: ACK ACK
[NAKT 31 [NAKINAKT 49 |
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Code Parameter Value
Message size 256 bits
Spinal k 4 bits/half symbol
B 256 candidates/beam
Constellation QAM-2%0
K 33 layers
Strider M 1500 bits/layer
Message size 50490 bits
Outer code 1/5-rate turbo
Message size 9500 bits
LT degree dist. As per RFC [21]
Raptor | LDPC design | As per Shokrollahi [26]
LDPC rate 0.95
Constellation QAM-64

Table 1: Parameters for the underlying rateless codes.

fluctuate over a time scale much longer than a packet (e.g., 45 ms
for a receiver moving at 10 km/hr).

To simulate slow Rayleigh fading, we directly synthesized a Gaus-
sian process with the appropriate Doppler spectrum and used the
result as a time series of channel coefficients. Noise power was main-
tained at a constant fraction of the average signal power. Given the
Rayleigh channel coefficient and the ratio of average signal power
to noise power, we computed an appropriate instantaneous SNR. For
the “ideal adaptation” results in the next section, we then selected
the corresponding raw decoding CDF from our empirical data by
interpolating between CDFs at the nearest SNRs. RateMore itself
learns the CDFs online using the Gaussian approximation. Inter-
estingly, despite the approximation, the system’s performance is as
good as using the raw CDFs.

Timing. To obtain accurate values for n ¢ as well as throughput and
latency, we built a timing model for transmission and feedback on a
20 MHz half-duplex OFDM channel designed to mimic 802.11a/n.
We included the overhead associated with preamble synchroniza-
tion, and assumed that all feedback was transmitted at the lowest
802.11a/n rate of 6 Mbps for reliable delivery. We did not include
a simulation of contention, but we used the SIFS interval (16 us)
to determine how long the parties would have to wait for the ACK
stage.

Because the nature of our transmission schedule is to periodically
incur negative acknowledgements, we wanted to ensure that in such
cases the communication proceeds to successful completion before
the channel is relinquished. This avoids receivers having to maintain
large buffers for several ongoing conversations. Therefore, in our
simulation the transmitter resumes transmitting after SIFS elapses
from the receipt of an ACK frame.

Dynamic programming algorithm. Our implementation allows
for the possibility of “sparse” CDFs whose values are known only
for some isolated values of the number of symbols n. For the Spinal
code, we found that choosing the values of n corresponding to 1/8™-
passes sacrificed virtually no performance while reducing the search
space for the algorithm by a factor of roughly 8. For Strider, n
should be a multiple of 3840 symbols.

The sender runs Algorithm 2 to determine how many symbols
should be sent before each feedback. The points at which the CDF
is known are given by x;. The steady-state values j;'; and ,;, are
computed as described in §3.4, and i,;) denotes the index into the
x; where recursion is terminated and the steady-state behavior takes
over.

A value j; returned from Algorithm 2 specifies that after a failed
decode attempt with x; symbols, the next decode attempt should



Algorithm 2 Given decoding CDF (sampled at ;) and n s, com-
pute the transmission schedule by minimizing Expected Time To
Completion (ETTC).
Jiy i jltlil’ trail for all s > 79
for ¢ =iy — 1 to 0 do
# compute strategy after x; transmitted symbols:
for j =1 to iy; —i do
# when transmitting x;  ; — x; more symbols:
ETTC; + (x4 — ;) +ng+itip; P(n > x| n> ;)
# choose strategy that minimizes expected time:
Jit; < argmin{ETTC; }, min{ETTC;}
return jg,ji,- -

occur with ;4 ;, symbols. A sender that gets a NAK after x;
symbols should transmit x; ; j, — x; more symbols before the next
feedback.

Given a feedback schedule, we use Equation (1) to compute the
fraction 7 of transmission time that is well-spent, and the overhead
1 — 7 that is wasted.

ARQ and Try-after-n HARQ. We implemented two alternative
feedback schedules for comparison, which we refer to as ARQ and
Try-after-n HARQ. With ARQ, the sender picks some number of
symbols to transmit, then waits for feedback in the form of an ACK.
If it receives no ACK, it drops the packet and starts over. This
scheme effectively chooses a rated version of the rateless code, and
does not incorporate incremental redundancy. In principle, ARQ
could choose a different rate for each SNR value. However, existing
ARQ systems with rate adaptation, like 802.11, do not have such
a large number of rates. 802.11n with one spatial stream has only
eight. We therefore require ARQ to pick eight rates to cover the SNR
range from —5 to 35 dB. These eight rates are selected to maximize
efficiency over all SNRs. For the Spinal code, this maximization led
us to select rates of 3.4,6.2,11,19,30,43,56, and 72 Mbits/s.

For Try-after-n HARQ, we picked a family of eight parameter
values, as before, and sent n additional symbols of incremental
redundancy before each solicitation of feedback.

7. EVALUATION
We evaluate RateMore in simulation on stationary, slow-, and

fast-fading AWGN channels. Our principal results are summarized
in Table 2.

7.1 Baseline comparison to ARQ, Try-after-n HARQ

Figure 3 shows the overhead of RateMore compared to ARQ
and “Try-after-n” HARQ running atop spinal codes with a feedback
value iy = 20. These experiments are using a stationary channel
simulator that introduces Gaussian noise of different variances. We
run 20 trials of 100 packets at each SNR.

Across a range of SNRs, the reduction in overhead is between
2.6x and 3.8 x relative to ARQ, and between 2.8 x and 5.4 x relative
to HARQ. These reductions are significant; they translate to link-
layer throughput improvements up to 26%.

7.2 Slow-fading Rayleigh channel

Using our simulated Rayleigh fading coefficients for a Doppler
velocity of 10 meters per second, we compared the throughput of
RateMore running with known CDFs and SNR against the through-
put of RateMore with Gaussian CDF learning. Figure 4 shows a
typical trace of 100 milliseconds of adaptation on a fading channel.
The average SNR is 15 dB. We found that long integration times (e.g.
learning parameter « close to 1) were not necessary to obtain good
performance. In fact, with oo = 0.8, corresponding to an exponential
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Figure 3: With spinal codes and ny = 20. At low, medium, and
high SNR, respectively, RateMore reduces overhead by 3.8x,
2.9x%, and 2.6x relative to ARQ and 2.8x, 3.6x, and 5.4x rela-
tive to Try-after-n HARQ.

time constant of only 4.5 packets, we found aggregate throughput
with learning to be within 1.57% of throughput under known CDFs
and SNR. Figure 5 is a detail of Figure 4.

7.3 Efficiency

Figure 6 shows the efficiency of RateMore (we defined this metric
in Equation (1)) across a range of SNRs for different values of the
feedback cost, ny. These graphs are for spinal codes (the other
codes show similar results). We have grouped the data according
to “low”, “medium”, and “high” SNRs for illustration. In general,
efficiency is extremely high, always over 95% at medium and high
SNRs, and over 88% for low SNR values, even when n f is as high as
100. The conclusion is that RateMore produces a good transmission
schedule across different channel conditions.

7.4 How well does learning work?

Figure 7 shows the results of experiments that evaluate how much
we lose in our learning the decoding CDF compared to knowing
the true CDF. We include the comparison for spinal codes, but the
results are similar for other codes. At low and medium SNRs, the
cost of learning, i.e., how much we lose, is a negligible 2%. At
higher SNR values, the cost is always less than 6%, which is still
tolerable.

The conclusion is that our Gaussian approximation of the decod-
ing CDF, which is a simple two-parameter fit (mean and variance)
works extremely well, as does the simple filtering method to estimate
the mean and variance.

7.5 Streaming with a low-latency requirement

For spinal codes, Strider, and Raptor, we compared overhead and
channel occupation fraction using RateMore for streaming multime-
dia designed to emulate a Skype voice and HD video call (Figure 8).
The main constraint here is latency: we require that the number of
packets in flight, times the size of a packet, should represent no more
than 100 ms of audio or audio and video. The Strider and Raptor
codes we used have single-packet sizes larger than this limit for the
low-rate voice call. In order to meet the latency requirements, these
codes would be forced to transmit partly-empty packets. Because
RateMore is agnostic to the details of a specific rateless code, it en-
ables a direct comparison of different rateless coding schemes with



Fig., § Experiment Result

3,§7.1 RateMore vs. ARQ, Try-after-n HARQ | Overhead reduced by up to 5.4x; throughput increased by up to 26.6%.

4,5,87.2 | Learning under slow Rayleigh fading Throughput only 1.57% below case of known CDFs and SNR.

6,§7.3 RateMore efficiency for various n ¢ Better than 88% efficiency even when ny = 100: time is well spent.

7,874 Impact of learning on throughput RateMore’s learning has an impact of only 0.25%-6%.

8, §7.5 Streaming with a latency requirement Block ACK scheduling and code agnosticism enables efficient streaming.

9,§7.6 Streaming on a fast-fading channel Less than 15% channel occupancy even at low bandwidth.

Table 2: Summary of principal results.
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Figure 4: Learning performance of RateMore with spinal codes on a Rayleigh fading AWGN channel. Noise power is 15 dB below
average faded signal power, giving an equivalent (in terms of capacity) stationary SNR of 12.8 dB. Doppler velocity is 10 m/s. The
learning parameter « can be set to a very aggressive value of .8 for an aggregate throughput within 1.57% of the known-SNR “‘ideal

adaptation” throughput. With n; = 10.

different packet sizes, including for instance the effects of relatively
smaller packet sizes in spinal codes.

7.6 Streaming on a fast-fading channel

When run on CDFs generated for a fast-fading Rayleigh chan-
nel, RateMore still maintains low overhead and channel occupation
(Figure 9).

8. CONCLUSION

The recent innovations in practical rateless codes for wireless
networks are an exciting development because they promise a better
way to deal with the fundamental problem of time-varying channel
conditions caused by mobility and interference. This paper presented
the case for a different approach to link-layer protocols than the
traditional methods, motivated by the property that with a rateless
code, there is no obvious pause point to ask for feedback. We showed
how using the decoding CDF provides a code-independent way to
encapsulate the essential information of the underlying code. We
developed RateMore, which incorporates a dynamic programming
strategy to compute the transmission schedule, a simple learning
method to estimate the decoding CDF, and a block ACK protocol to
amortize feedback.

Our results show that RateMore reduces overhead by between
2.6x and 3.9x compared to 802.11-style ARQ and between 2.8
and 5.4x compared to 3GPP-style “Try-after-n” HARQ, which
are the best existing deployed approaches. We demonstrated the
reduced overhead of RateMore in experiments using three different
rateless codes (Raptor, Strider, and Spinal codes). These significant
reductions in overhead translate to good throughput improvements.
For example, for spinal codes, the throughput improvement is as
high as 26% compared to both ARQ and “Try-after-n” HARQ.

In conclusion, we believe that RateMore provides a practically
useful link-layer protocol to coordinate between sender and receiver
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in wireless networks using rateless codes, improving performance
when channel conditions are variable.
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Figure 8: RateMore is agnostic to the details of a specific rateless code, and achieves low overhead in latency-critical environments.
ny has been normalized according to the largest number of parallel streams compatible with a given bandwidth-latency product.
Cases are shown for a minimum-quality Skype voice call and for an HD video call. For an ideal user experience, latency should be
less than 100 ms. Strider and Raptor require relatively large packets, which prevents the use of aggregation on the voice call — in fact,
a single packet contains more than 100 ms of audio, as shown in red. In order to meet the latency target at the expense of channel

occupation, packets could be fired off partly empty.
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