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Abstract— Wireless sensor networks are deployed today to
monitor the environment, but their own health status is
relatively opaque to network administrators, in most cases.
Our system, Memento, provides failure detection and
symptom alerts, while being frugal in the use of energy and
bandwidth. Memento has two parts: an energy-efficient
protocol to deliver state summaries, and a distributed
failure detector module. The failure detector is robust
to packet losses, and attempts to ensure that reports
of failure will not exceed a specified false positive rate.
We show that distributed monitoring of a subset of well-
connected neighbors using a variance-bound based failure
detector achieves the lowest rate of false positives, suitable
for use in practice. We evaluate our findings using an
implementation for the TinyOS platform on the Mica2
motes on a 55-node network, and find that Memento
achieves a 80-90% reduction in bandwidth use compared
to standard data collection methods.

I. INTRODUCTION

The development of wireless sensor networks has been
driven by recent technological advances that have en-
abled the integration of computing, radio communica-
tion, and sensing on tiny devices. Wireless sensornets are
now being embedded in our environment for a variety
of monitoring tasks [11], [10], [3], [7], [1]. The early
successes of real-world deployments has led to a new
challenge for researchers:the management of the sensor
network itself. There are currently few general-purpose
tools to monitor the health and performance of deployed
sensornets.

There are at least three broad classes of information that
a sensornet management system can provide to users
and administrators. First,failure detection, informing
the user about failed nodes. Second,symptom alerts,
proactively informing the user about symptoms of im-
pending failure or reporting on performance. Third,ex
post facto inspection, informing the user of the timeline
of the events to help infer why a failure or symptom oc-
curred. These classes of information allow users to more

effectively debug software, tune parameters for better
performance, monitor hardware behavior, provision the
wireless network based on offered load, understand why
failures occurred, and even prevent failures before they
occur.

Designing a sensornet management system involves
trade-offs between accuracy, timeliness, and efficiency.
The system must not miss too many important events
(high detection rate), but yet must not “cry wolf” too
often with false alarms (low rate of false positives).
Moreover, its reports must be timely, usually within
many seconds, rather than hours, of an event. While
these goals are desirable generally in monitoring systems
in many domains, wireless sensornets impose additional
stringent constraints. Because they are often deployed to
monitor conditions in remote locations and are expected
to run for months or years on small batteries, it is impor-
tant for a wireless sensornet management system to use
energy sparingly. This requirement, in turn, implies that
the protocol used to gather information about the health
and status of nodes in the network must impose as little
communication and processing overhead as possible.

This paper describes the design and implementation
of Memento, a network management system for wire-
less sensornets that meets the goals mentioned above.
In Memento, the nodes in the network cooperatively
monitor one another to implement a distributed node
failure detector, a symptom alert protocol, and a logger.
The nodes use the Memento protocol, a low-overhead
delivery mechanism that attempts to report only changes
in the state of each node. This protocol uses existing
routing topologies and other protocol’s beacons as heart-
beat messages, whenever possible.

This paper describes Memento’s architecture and pro-
tocol (§II), failure detectors (§III), and evaluates their
performance on a real-world testbed of 55 sensor nodes
(§IV). We show that Memento reduces the communi-
cation complexity of monitoring by nearly an order of



magnitude compared to the state-of-the-art. Our main
results show that a variance-based detector combined
with distributed detection can provide timely failure
notifications while not exceeding a desired false positive
rate. We also address the issue of which other nodes
any given node should monitor, and find that loss
thresholds provide sufficient control over the tradeoffs
in performing this task.

II. M EMENTO ARCHITECTURE ANDPROTOCOL

Memento collects the status of all the nodes in the
sensor network (numbered 1 throughN ) in the form of
bitmaps endowed with the type semantics of a particular
health symptom. In a status bitmap of typet, the k’th
bit corresponds to the status of the sensor node whose
ID is k. For example, ift =“alive”, a bit pattern of
1101110 says that nodes 3 and 7 (the “0” bit positions)
are not believed to be alive, while the others are. Using
type semantics, we can represent any discrete health
symptom with bitmaps, given that we can impement a
watchdog for that symptom. Health monitoring modules
control the bits in suchlocal status bitmaps of var-
ious types at each of the nodes. Examples of health
watchdogs that modify their respective status bitmaps
include failure detectors of nodes within the local radio
neighborhood (t =“alive”), the low battery voltage alarm
(t =“lowvolt”), local radio congestion (t =“congested”)
etc.

The Memento protocol calculates theaggregate result
of each node by combining (i.e., bitwise OR’ing) the
node’s local state with the results of matching type
that are produced by its children within the routing
topology. Therefore, each result summarizes the status
of a node’s subtree, including that node. The protocol
sweeps the entire network everyτsweep, and delivers
the global aggregate result to thegateway node. The
gateway node relays the information to the a server,
which understands the semantics of each bitmap type,
and is able to present the information to the network
operator in human-readable form.

Memento reuses the main sensing application’s routing
protocol rather than inventing its own. This approach is
well-suited to optimized routing trees commonly used
in sensor networks [13].

We observe that, when monitoring many types of node
status (such as lists of live neighbors), the data changes
infrequently. Other types of health metrics can also
be monitored in terms of their crossing of critical

Fig. 1. Diagram of the Memento protocol running on a sensor
node X. Child B is synchronized toX, and its result is cached.
Nonetheless, updates fromA, C, andD change the result ofX and
prompt it to send an update to its parentP to resynchronize.

thresholds, which also do not change often. An obvious
way to leverage this property to save energy is to
cache the results of the children at every node, and,
whenever no change occurs at a child, reuse the cached
results to compute the aggregate result . Once a child
synchronizes with its parent, the child can suppress
further updates until the synchronization breaks. Nodes
become desynchronized whenever (a) the child’s result
changes; (b) the child node switches its parent in the
routing tree; or (c) the parent evicts the child’s result
from the cache.

The Memento protocol addresses the problems related
to maintaining the consistency of the node’s result with
the parent’s cache in the face of packet loss, routing
reconfigurations, and node failures. To achieve cache
consistency, Memento uses the following modules.

The first module performsneighborhood and cache
management (NCM), tracks the neighboring nodes,
maintains the cache of child inputs, and restricts the
attempts by the routing layer to connect to parents
whose cache cannot accommodate any more children.
Since the majority of traditional routing protocols do
not maintain child state or limit the fan-in of the routing
topology, we require small modifications to the routing
such that NCM can intervene in attempts to connect to
new parents, and blacklist some of the candidates for
parenthood. A child node’s NCM module introduces an
extra step in connecting to a new parent, whereby the
child explicitly asks the new parent’s NCM module to
add the results of the former to the input cache of the
latter. The parent’s module may accept, or reject if the
cache is full. Also, the child may consider itself “re-



jected” after its multiple requests receive no response. If
rejected, the child blacklists this prospective parent (i.e.,
excludes it from consideration until further notice). The
NCM lifts the ban only after the previously blacklisted
neighbor (a potential parent) announces that it has a free
cache slot.

The synchronization module assures the coherence be-
tween each node and its parent by computing the current
result Rcurrent from the inputs and its internal state
every τsweep. It also retainsRsync, the last result that
the parent acknowledged after storing in its cache. For
every change of health status affectingRcurrent, the
synchronization module increments the version number
V er(Rcurrent). WheneverRcurrent 6= Rsync, it sends an
update containing〈V er(Rcurrent), Rcurrent〉. The parent
must then acknowledge the receipt of this version of the
update, and upon receiving this confirmation the child
sets itsRsync to Rcurrent.

The third module, theinconsistency detector, forces
resynchronization in the following four cases:

Child has switched parent. The NCM module of
the parent infers this scenario from its child’s routing
beacons, which contains the ID of the child’s current
parent. After detecting that a child has switched, the
parent frees the child’s entry from the cache to avoid
using its stale results.

Child has failed. The failure detector (§III) determines
a child’s failure from heartbeat beacons, and frees the
child’s cached entry.

Child attaches to new parent.A node’s NCM module
notifies its inconsistency detector whenever the node at-
taches to a new parent. The child must then synchronize
with the parent to initialize the parent’s input cache.

Child evicted by parent. A parent may delete a child’s
result from its cache because of the parent rebooting,
mistakenly deciding that this child has failed, or freeing
a cache slot to accommodate another child with very few
parent candidates. The child can detect this condition by
comparing the parent’s result broadcast with itsRcurrent.
Some classes of aggregation operators, like the bitwise
OR which Memento uses, allow a child to detect when
the result of the parent is missing important information
delivered by the child. The problem is that channel loss
may cause the child to miss the parent’s update and fail
to realize its desynchronization. To overcome this, we
force each parent to send its result infrequently, after a
long periodτidle of silence even when synchronized.

We further optimize the performance of the protocol we
describe above. First, Memento can take advantage of
the child-parent synchronization and send incremental
updates, which are likely to compress better than full
updates. To support incremental updates, each child
node may keep all of the versions of its results in the
rangeV er(Rsync)..V er(Rcurrent). The parent may then
broadcast a vector of the versions of inputs in its cache
as an acknowledgment for updates, or everyτidle when
idle. If the parent’s current cached version of input from
a particular child isV er(Rpar), then this child can
issue an incremental update relative toRpar. Second,
Memento can perform “lazy” updates. The idea is to
suppress the updates if the node believes that sending
one will not affect the parent’s current result, i.e. in the
case whenRpar \ Rsync ⊕ Rcurrent = Rpar. Similarly,
we can delay the synchronization with a new parent after
the parent switch until the node’s result changes or the
former parent evicts the result from its cache.

III. FAILURE DETECTION IN MEMENTO

In this section, we propose several failure detectors. This
module monitors the “up/down” status of the node’s
neighbors within radio range and reports its summary
using the Memento protocol. The failure of any node is
monitored by a number of other nodes in its vicinity.
Failure detection with Memento requires two compo-
nents: heartbeats and a failure detector. Each node
periodically sends heartbeat messages. A failure detector
running on a different node declares a node to have
failed if a certain amount of time expires since the
receipt of that node’s last heartbeat.

In this paper, we only deal with fail-stop failures, leaving
the issue of Byzantine failures to future work. The
schemes we propose in this section guarantee that all
failures will eventually be detected. We call the time
between the failure of a node and when it is reported to
the user thedetection time.

A failure detector outputs aliveness bitmap, which
summarizes this node’s current belief in the liveness of
neighbors. If it considers a nodek alive, it sets thekth

bit of its liveness bitmaplivelocal to 1. Otherwise, the
livelocal[k] is set to 0. The Memento protocol carries
such liveness bitmaps to the gateway, aggregating them
along the way, and delivering the final result to the
Memento front-end. The front-end can then compare
the list of live nodes with the roster of deployment to
determine which of the nodes have failed.



Each node listens toheartbeats from a subset of its
neighbors in the network.1 The failure detection mod-
ule could send its own heartbeats, but we advocate
reusing the broadcasts of other periodic protocols that
might already be running (e.g., routing advertisements,
time synchronization beacons, sensor samples, etc.). The
heartbeat protocol must be periodic and must include
the identifier of the node sending the heartbeat. We
denote the average time between heartbeats asτhb. These
heartbeats are not related to the time period,τsweep, over
which the Memento protocol gathers status information.

A. Failure Detectors

Our initial attempt at designing a failure detector mimics
the behavior of the state-of-the-art approaches to failure
detection (such as Sympathy [8], or schemes based on
TinyDB [6]), in which the gateway interprets the lack
of arrival of data from a particular node within a fixed
time period as an indication of its failure.

This detector, which we callDirect-Heartbeat, takes
advantage of the periodicity of network sweeps. After
every sweep, it resetslivelocal to all 0’s. Whenever a
heartbeat from a nodeX arrives, the failure detector
set livelocal[X] to 1. As long as a neighbor manages
to get one heartbeat perτsweep across, Direct-Heartbeat
will consider it alive. Whenτhb << τsweep, this scheme
achieves low false positives.
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Fig. 2. The average of empirical cumulative distributions of the
number of consecutive heartbeats lost in transmission fromneighbor
to neighbor, across all the nodes in our sensor testbed, overone day.
No node had failed during this experiment.

Because Direct-Heartbeat does not adapt to wireless
packet losses, it performs poorly in practice. Figure 2

1We investigate the question of which nodes should monitor any
given node later in this section.

shows the cumulative distribution of the lengths of gaps
of incoming heartbeat packets from each neighbor for
one experiment in our sensor network testbed (an in-
building 55-node network). On average, a neighbor’s
heartbeat stream will miss two consecutive heartbeats in
a row, but in 10% of all cases nodes will miss six in a
row, and 5% of the time, ten in a row. Meeting a desired
false positive rate of, say, 1%, with Direct-Heartbeat in
this scenario would require setting the ratio of heartbeat
frequency to the frequency of sweeps high enough to
accommodate the worst loss of any of the links in the
routing topology (in this case, 16 heartbeats per sweep).
That can be achieved either by increasing the rate of
heartbeats to be very high, or by making the detection
time very high because of the longer sweep period.

To overcome this shortcoming, the failure detector must
adapt to the incoming packet loss. In particular, we
need to estimate how many heartbeats from a particular
neighbor must be lost in a row to indicate its failure. The
Variance-Bound failure detector maintains the mean
and standard deviation of the number of consecutively
missing heartbeats that are typical of each live neighbor.
This failure detector takes one additional input parameter
from the user: the maximum target rate of false positives,
FPreq. It then attempts to guarantee this rate in estimat-
ing a bound on the maximum number of consecutive
heartbeats which may be missed by each neighbor while
it is still alive. We call this bound aheartbeat timeout.

Variance-Bound calculates the timeout using a
single-tailed variant of Chebyshev’s inequality:
P

[

(X − X) ≥ t · σX

]

≤ 1
1+t2

.2 This formula expresses
a bound on the distance of a random variableX from
its meanX in terms of a multiplet of its standard
deviationσX . Suppose thatGi denotes heartbeat gaps
(i.e., the number of consecutively missed heartbeats
from neighbori), with Gi and σi being its mean and
variance. Thus, to attainFPreq, we can derive the
heartbeat timeout, HTOi, for each monitored neighbor
i from Chebyshev’s inequality as follows:

HTOi = Gi + σi ·

√

1 − FPreq

FPreq

Because Chebyshev’s inequality holds for all distribu-
tions, it is able to always guarantee the requisite false

2We can derive a version with a tighter bound for unimodal
distributions of heartbeat gaps, but per-neighbor distributions (unlike
the aggregate in Figure 2) are not necessarily uni-modal.



positive rate (and in practice, as long as the distribution
does not change suddenly). On the other hand, to achieve
that guarantee it is known to provide loose bounds,
which might lead to overly long detection times.

To reduce detection times, we investigate a non-
parametric failure detector, which we callEmpirical-
CDF. This detector maintains a compact representation
of an empirical probability distribution function (PDF)
of gap durations. Whenever the failure detector receives
a heartbeat from a monitored neighbor,i, whoseGj

prior heartbeats were lost, it updates the PDF vector:
PDFi[Gj ] = PDFi[Gj ] + 1. Using this representation,
the probability of encountering a lapse of lengthGi is

PDF [Gi]
P

j
PDF [j] .

Combining the PDFs for each neighbor results in an
empirical CDF of their gap durations. The CDF charac-
terizesP [Gi < Xi], the probability of the duration being
less than someXi for each neighbori. If we want to
assure a 5% FP,HTOi has to be set to a value which
has a smaller than a 5% chance of occurring. The failure
detector can determine theHTOi from the complement
of the CDF, by searching for the the minimumHTOi

such that the probability of missingHTOi or more
heartbeats is smaller than the false positive parameter
(P [Gi ≥ HTOi] < FPreq):

{

min HTOs.t.

∑j=HTO
j=0 PDF [j]

∑k=len(PDF )
k=0 PDF [k]

≥ (1 − FPreq)

}

Empirical-CDF must seed its model with a number
of initial observations to be statistically representa-
tive. Otherwise, the first new samples of highest lapse
lengths will count as false positives. Hence, for the first
NCDF init (10 in our experiments) samples, we use a
rough estimate ofHTOi based on the empirical mean
which we calculate from the PDF vector.

As time passes, the probability density model may
become unrepresentative of the current wireless network
conditions. Additionally, the values in some bins may
grow to exceed the precision of the data structures.
To solve these problems, Empirical-CDF decays the
PDF vector everyτCDF scale by scaling the incidence
counters in its bins with a decay constantg, 0 < g <

1. In our experiments, we do not apply such scaling
because they are too short-lived.

B. Neighborhood Monitoring and Opportunism

The minimum subset of neighbors that each node must
monitor includes its children in the routing topology.
This coverage is necessary for the correct operation
of the Memento protocol, which needs to be able to
invalidate a failed child’s cache to avoid basing its
parent’s result on stale input.

However, if the resource budget affords it, opportunisti-
cally monitoring other nodes in the radio neighborhood
may provide more robustness against loss and topol-
ogy reconfiguration. Packet losses among the wireless
receivers of a heartbeat packet broadcast may be uncor-
related. If a parent node misses a long train of heartbeats,
other neighbors may receive a large enough fraction of
these packets to override the failure opinion of the parent
in aggregation along the way to the gateway.

To monitor multiple neighbors, Memento maintains a
supplementary bitmap,liveopport, containing the bits
which denote the liveness of “well-connected” neighbors
(i.e., those with incoming loss less thanlossThresh,
e.g., 50%). Memento treatsliveopport similarly to an
input from a child, aggregating it with inputs from its
children andlivelocal in computing the aggregate result
of the current sweep. SettinglossThresh to admit high-
loss neighbors may cause problems, as we discuss in
Section IV-E.

C. Detecting Network Partitioning

A temporary network partition may occur when a node
fails, because all its descendants must wait until the
routing layer connects them to new parents. Also, a per-
sistent partition may occur in topologies with insufficient
redundancy after a node failure. While partitions fall
under our definition of failure, it would be useful to be
able to infer them.

Our proposal for detecting network partitions is to
use two additional bitmap types:failureT ip and
partitioned. Both bitmaps are sent by the immediate
parent of the failed node, and aggregated only by their
ancestors. ThefailureT ip bitmap specifies the IDs of
failed nodes. Thepartitioned bitmap aggregates the IDs
of the descendants of the failed nodes, derived from the
failed nodes’ results extracted from the caches of the
parents of the failed nodes. The gateway may determine
the set of partitioned nodes using the set arithmetic
expressionpartitioned− (failureT ip−partitioned).



IV. I MPLEMENTATION AND EVALUATION

A. Platform and Testbed

We have implemented the Memento protocol and failure
detection module TinyOS [5] on the Mica2 mote plat-
form. In a typical configuration, the Memento protocol
and the failure detection module use less than 400 bytes
of RAM, which is only 10% of the total memory on the
Mica2 platform.

We conducted experiments on a real-world testbed to
answer several questions. First, we investigate the per-
formance of the Memento protocol as a function of the
stability of routing and the rate of change of the results
it reports. Second, we compare the performance of the
different failure detectors. Finally, we investigate the
tradeoffs in choosing a subset of neighbors to monitor
opportunistically.

Our experiments use a 55-node in-building wireless
network testbed of Mica2 Mote sensor nodes. All nodes
are attached to the Ethernet reprogramming boards, and
use a wired serial channel for collecting results.

We implemented the ETX [2] routing protocol in this
network. The protocol’s routing beacons also serve as
node heartbeats. Each experiment is 45 minutes long,
and Memento sweeps the state of the network every
τsweep = 30 seconds.

B. Performance of Memento
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Fig. 3. The effect of the rate of switching parents or sendingupdates
on communication overhead.

We evaluate the impact of routing stability by varying
ǫsw, the parent switching threshold of ETX routing.

In this scheme, a node limits the set of prospective
parents to nodes whose ETX metric is smaller than the
current parent’s by more thanǫsw (the units are packet
transmissions). Increasingǫsw reduces the likelihood of
switching the parent, and we vary it between 0 and 4
in increments of 0.5. We induce no failures during the
experiment. The standard deviation of the plots is within
15% of the mean.

When the threshold is 0, each node will switch to the
“best” of the neighbors, even if it is only marginally
better than the current parent. With this setting, the
routing topology becomes very volatile, with every node
switching parents≈ 10 times during the experiment. For
ǫsw > 3, the nodes switch only once.

The solid line plot in Figure 3 shows the effect of
changingǫsw (we show the number of parent switches
per experiment), and the resulting frequency of parent
switches on the amount of update traffic generated
by Memento. Our results show that the amount of
communication grows proportionally with the number
of parent switches. We note that even when routing is
most volatile, the amount of communication is only three
times worse than the most stable setting.

The second part of the evaluation performs the opposite
of the above: we fix the routing topology, and evaluate
how randomly changing the result of each node at
a period between changes,α, affects the bandwidth
requirements. Varyingα between 30 and 300 seconds in
increments of 10, we find that the efficiency of Memento
depends mostly on the number of the network nodes that
send updates every round.

In Figure 3, the dashed plot illustrates that, in the
routing topologies specific to our deployment, increasing
the fraction of sources that spur chains of updates
that propagate towards the gateway makes bandwidth
requirements grow rapidly. The increase in the curve
is quite sharp because increasingly many intermediate
nodes must resynchronize with their parents to push
updates to the gateway. In the worst case, each node
will send one update per round.

In our analysis of Memento’s performance (omitted
for want of space) we have determined that, given
randomly picked sources of updates, it performs best
in “short, wide” balanced routing tree as opposed to
“long, narrow” imbalanced trees. In “short, wide” trees
fewer intermediate nodes get involved in relaying other
source’s updates to the gateway, and the impact of
increasing the rate of change of results on the bandwidth
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Fig. 4. Evaluation of the failure detector performance.

is more gradual than in Figure 3.

C. Failure Detection Experiments

This section evaluates and compares the performance
of Memento’s failure detectors. We focus on the false
positive rate and detection time of the detectors under
various conditions, and also report the number of bytes
transmitted in each experiment.

Our experiments mimic the anticipated real-world use
of the failure detector module, except that we drastically
scale down the timescales of protocol periods in order to
reduce the total running time of each experiment. We use
the ETX routing protocol, which sends its routing and
time synchronization beacons (serving double duty as
heartbeats) everyτhb = 10 seconds.τsweep = 30 seconds.
We set the parent switching thresholdǫsw to 1.5. In each
experiment, we choosek random nodes for failure, and,
for each of them, a random time of failure instant. Nodes
simulate failure by ceasing communication.

Figures 4(a) and 4(b) show the results of these exper-
iments. Each sample point is an average of nine trials.
The routing topology for each trial may vary, but the
failure schedules are identical across the failure detectors
in each trial.

We can clearly see in the plots that Variance-Bound is
able to meet the desired false positive rate, even doing
better than required. That result is heartening because
false positives could occur for many reasons in practice,
including slow routing convergence while switching

away from a failed parent, or a lag in synchronization
between a child and the parent cache while the former
is attaching to the latter, or because each node stops
sending updates to its parent after three unacknowledged
retransmissions (the node will try again during the next
sweep). In practice, the scheme is able to handle these
situations most of the time.

The factors stated above also explain the overall trends
of false positive rates growing with the number of
failures (Figure 4(a)). When no failures occur, the false
positives are caused by normal routing optimization in
response to fluctuations in loss. As we ramp up the fail-
ure rate, however, an increasing number of descendants
of failed nodes end up temporarily disconnected from
the gateway. Any sweeps that occur during the delay
until they connect to new parents cause false positives.

The detection time is also affected whenever, for ev-
ery actual failure, the factors we list above delay its
discovery. Instead of looking at the absolute impact
of these factors, we instead assume they affect all the
failure detectors uniformly, and consider the differences
between the schemes in Section IV-D.

Another set of results (not shown to conserve space)
shows that nodes running Direct-Heartbeat send between
3150 and 3300 bytes per experiment, while Memento-
based approaches consistently require only between
320 and 500 bytes of transmissions per experiment.
Moreover, the amount of communication does not grow
appreciably with the number of failures. The reason is
that the sequences of the updates generated by each



failure event are comparable in the volume of traffic
to the updates Memento issues in steady-state to keep
the caches synchronized in the face of routing changes.
The latter, in conjunction with initial synchronization
traffic (≈ 150 bytes) and maintenance traffic such as
acknowledgments, also explains why communication
costs are not zero in steady-state.

D. Comparing the Failure Detectors

The Direct-Heartbeat failure detector reports that a
neighbor is alive only after receiving one or more
of its heartbeats since the previous network sweep.
This scheme is representative of the commonly used
approaches which rely on fixed-length failure timeouts.
Direct-Heartbeat has an unacceptably high rate of false
positives, between 8.2% in a network with no failures
and 10.6% when eight nodes fail per experiment (Figure
4(a), inset). Such poor performance is due toτsweep

τhb

not being very large. Since heartbeats are broadcast
unreliably, it is quite likely to lose three consecutive
heartbeats from the same neighbor (resulting in failure
opinion for that node), or to fail in transmitting updates
to parents in three retransmissions or less.
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Fig. 5. Performance of Variance-Bound (FPreq = 1%, ǫsw = 1.5)
as the threshold on incoming loss (on the X axis) limits the subset
of monitored neighbors. Each node always monitors its children, and
also monitors all neighbors whose loss rate to the node is notgreater
thanX.

The Empirical-CDF failure detector shows a vast im-
provement over Direct-Heartbeat. It is able to meet the
1% false positive rate requirement when no failures
occur, but not otherwise. This scheme’s timeout bound
is determined by prior observations of gaps in a neigh-
bor’s heartbeats, which trims the gap distribution’s tail.
However, the maximum timeout possible is the longest
previously observed gap, and Empirical-CDF produces
a false positive every time a neighbor’s gap is longer

than any prior samples. The chance of a false positive
is especially high in the early phases of connecting to a
parent, when the CDF is not very representative. Failures
of parents are likely to cause widespread migrations of
descendants to new parents, and Empirical-CDF simply
does not learn about them quickly enough to accom-
modate their variance, which explains the growth of its
failure positives.

Variance-Bound is the best performer, providing a false
positive rates of 0.22% to 0.71%, well below the goal,
at the expense of 57% longer detection times, relative
to Empirical-CDF. At the experiment’s timescales, the
delay does not seem significant, but as we inflate the
periods of protocols to realistic durations, it could trans-
late to much longer periods of undetected failures, on the
scale of days.

E. Performance of Opportunistic Monitoring

Figure 4(a) shows that the performance of Variance-
Bound can be further improved by monitoring a bigger
subset of the neighbors with good connectivity (whose
incoming loss is< 30%).

However, given the constrained resource budget of the
sensor nodes, it may be impossible to monitor all neigh-
bors. More important is the question of how the choice
of the subset of neighbors to monitor would affect the
performance of failure detectors.

The graphs in Figure 5 aggregate the results for various
scopes of opportunism. WhenX = 0, nodes keep track
of all their neighbors, and whenX = 1, just the children.
In general, all other neighbors whose loss is greater than
the fraction along theX axis are rejected.

Our results show that rampant opportunism reduces
the false positive rate significantly, because the more
neighbors track a given node, the more paths to the
gateway are likely to carry its status. However, tracking
all neighbors inflates the detection time by a factor of
six, and causes twice as many transmissions of updates
relative to tracking just the children.

The sharp increase in the detection time results from
monitoring neighbors whose heartbeats are unreliable.
High packet loss leads to inflated heartbeat timeouts,
which may cause a node to maintain that its dead
neighbors are alive long after their failures.

The increases in transmission rate are caused by each
node’s result changing more frequently. That is because
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Fig. 6. Performance of failure detectors as target false positive rate grows stringent.

more bits in their liveness bitmaps actively track their
neighbors’ status, and are subject to change.

An interesting feature of this graph is the sudden drop
in the detection time that occurs between the admission
thresholds of 33% and 50%. We determined that this
drop occurs as soon as the neighbors on the “far” side
of the routing tree, having the highest variance of packet
loss, are disqualified as parent candidates.

The results lead us to believe that, in applications where
the false positive rate is most important, transmitting
70% more traffic achieves a four-fold improvement in
that metric. In this case, it may be a worthwhile tradeoff
and the network operator should consider monitoring all
neighbors.

F. The Limits on the False Positive Rate

We would like to minimize the incidence of false failure
reports, which may drive network operators to perform
unnecessary and costly maintenance. This metric com-
pounds with both the size of the network and the passage
of time, so it is important to determine its limits.

To explore this dimension of the performance, we vary
the FPreq from 0.1 down to 0.0001 in factors of 10.
We evaluate whether our schemes are able to meet the
target requirement across the experiments with varying
failure rates, from two to eight failures per experiment.

Figure 6 shows the results. Empirical-CDF cannot
meet the 1% requirement, and even its neighborhood-
opportunistic version can barely attain this goal.
Variance-Bound’s best performance brings it close to

meeting the 1% guarantee. Only by monitoring addi-
tional neighbors (those whose heartbeat loss is less than
30%) can this scheme achieve the four nines require-
ment.

Such performance increases detection time considerably.
The Figure 6(b) shows that detection timeouts grow by
a factor of 4-5 in order to meet the false positive target
that is five orders of magnitude lower.

The fundamental reason for Empirical-CDF’s lackluster
performance is because it takes too long for it to learn
a representative model of heartbeat gaps. Nodes emit
270 heartbeats in the course of each experiment, which
limits the maximum number of gap samples in the CDF
to 134. With this resolution, achieving less than 1%
goal rate becomes infeasible. In fact, nodes collect≈ 26
heartbeat gap samples on average, per experiment. While
it is possible that the performance of Empirical-CDF will
improve over longer deployments, it is difficult to predict
when the probability density represents an accurate
estimate of the loss process, and network operators may
not have the patience to wait that long.

V. RELATED WORK

Our approach builds on TinyAggregation [6], which
highlights the communication savings resulting from
aggregation operators. The design of Memento is related
to TiNA [9], a proposal in which nodes suppress their
transmissions if their result is within tolerance value
of their last result. Our protocol improves on TiNA by
robustly handling network reconfigurations and failures,
and implementing incremental updates.



Sympathy [8] logs communication statistics and at-
tempts to identify and localize node failures. The system
samples the neighbor table, packet counts, uptime and
congestion and periodically sends them to the gateway.
The network user can then infer about the cause of
the failure from the metrics, and classify the problem
as one from a pre-determined list of network-related
causes. While this system classifies the cause of the
failure, to a limited extent, it is not bandwidth-efficient.
Additionally, Sympathy is similar to Direct-Heartbeat
in its design, and could benefit from a Variance-Bound
detector design.

Failure detection based on random gossiping [12] can
assure a specific rate of failure, but suffers from inherent
flaws of gossip protocols, such as slow initialization and
very long detection time. In a network of 50 nodes, it
requires over 30 rounds to achieveFPreq = 1. More
importantly, this work does not deal with variable packet
loss rates, common in sensor networks.

Another randomized failure detector balances the com-
munication load across nodes [4]. This protocol pings a
randomly selected neighbor, and if it does not respond,
then pings it through a subset of neighbors. While this
protocol can be tuned to achieve a specific false positive
rate, its bandwidth requirements grow dramatically in
the presence of packet loss.

Recent work on failure detectors in overlay networks
[14] discusses a number of approaches. Using a probe-
and-ack mechanism to ascertain neighbor liveness, nodes
share information to reinforce their opinions regarding
the liveness status of neighbors. In contrast to our work,
the failure detectors proposed in [14] are designed for
point-to-point links, and offer no guarantees on the rate
of false positives.

VI. CONCLUSION

This paper makes four main contributions in the area
of sensor network management. First, Memento demon-
strates that taking advantage of status invariance saves
bandwidth and energy. The Memento protocol consumes
nearly an order-of-magnitude less bandwidth relative to
state-of-the-art approaches that transmit status messages
with fixed periodicity.

Second, we find that monitoring more neighbors does
not lead to better performance. The communication costs
of involving more neighbors and the impact of high-loss
neighbors on detection time suffer disproportionately

to the improvement in accuracy. However, constraining
the monitoring scope to a few well-connected neighbors
provides good detection times and false positive rates.

Third, we show that even in indoor environments, the
use of neighborhood opportunism and monitoring re-
dundancy is required to achieve practically acceptable
false positive rates.

Finally, our evaluation allows us to make recommenda-
tions on the failure detector to use depending on the
application requirements. If detection time if of primary
importance but sensor samples must not be missed,
then the Empirical-CDF method would be preferable
because it trims the tail of the heartbeat timeout model.
On the other hand, if certainty in the failure opinion
is at premium, then the Variance-Bound technique in
conjunction with neighborhood opportunism would be
preferable.
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