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Abstract

With the advent of mobile computers, new challenges
arise for software designers. This paper focuses on discon-
nected operation: making mobile computers work well on
shared data whether the network is available or not. Ini-
tially the shared data is cached on the mobile computer.
Modifications and additions to this cached data will be rec-
onciled with the shared data when the mobile computer is
reconnected to the network. Conflict resolution will be used
to reconcile conflicting changes. In this paper, we examine
these issues by adding support for disconnected operation
to Thor, an object-oriented database.

1 Introduction

As computersbecomemoremobile, softwareneedsto
beadaptedto work well, whethera network is availableor
not. The challengingaspectis to function without a net-
work andstill havelocalchangesintegrateeasilywith other
datawhen the network is available. Initially the mobile
computerneedsto cacherelevantdatabeforedisconnecting
from the network. When network accessibilityagainbe-
comesavailable,additionsandmodificationsto thecached
dataneedto be reconciledwith the original data. Beyond
this if two usershave modifiedthesamecacheddatawhile
disconnected,someformof conflictresolutionmustbeused
to integratethesechanges.This all mustbe donewithout
violatingserializability.

For example,a travelling salespersoncommutingto the
office would like to usehis hand-helddevice to enteran
appointmentinto his calendarwhich is storedin a central
databaseatwork. Thehand-helddevicehasacachedversion
of the salesperson’s calendarwhich was downloadedthe
nightbefore.Meanwhilebackattheoffice,thesalesperson’s
assistantis sitting in front of a desktopmachineconnected
directly to the central database. The assistantentersan
appointmentinto the salesperson’s calendarfor 2 PM to 4

PM, which is automaticallyupdatedin thecentraldatabase.
After thedatabaseisupdatedtoreflecttheassistant’schange,
thesalespersononhiswayto work now hasstaledatain his
calendar. He thinks that he is free from 2 PM to 4 PM
whenheactuallyhasanappointmentfor thattime. To make
things even worse, the salesperson,on his way to work,
also entersan appointmentinto his calendarfor 1 PM to
3 PM. This causesa conflict which mustbe resolvedonce
the salespersongetsto work andreconnectshis hand-held
device to thedatabase.

Severalgeneralpropertiesbecomeapparentfrom theex-
ampledescribed.Concurrent modifications to the same data
may not always be undesirable. In thecaseof thecalendar,
if theassistanthadenteredanappointmentfor 12 PM to 2
PM while the salespersonmadean appointmentfor 3 PM
to 5 PM, the samesharedcalendardatawould be concur-
rentlymodifiedyet thiswouldnotviolatetheconsistency of
thedataeventhoughthesalespersonmodifiedhis calendar
while it containedstaledata.Conflicts are based on applica-
tion semantics. In thecalendar, a conflict is anoverlapping
of appointmentsin time but could be completelydifferent
in anotherapplication. From the user’s perspective, auto-
matic resolution of conflicts upon reconnection is desirable
but may not always be possible; thus flexibility in resolving
conflicts is important. Thesalespersonmaywantall of the
entriesthatheaddsto thecalendarto take precedenceover
othersso his assistant’s conflictingentry would have been
deletedto makeroomfor hisentry. Howevertheremayalso
bespecialcaseswherethesalespersonwould not want this
to apply.

1.1 Problem Statement

The problemof concurrency andshareddatahasbeen
studiedat lengthin thecontext of databases.Theproblem
of shareddataand disconnectedoperationhas also been
studiedagreatdealin thecontext of networkpartitions.But
theproblemof shareddataanddisconnectedoperationin the
context of mobiledeviceschangesbecausedisconnections
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aremorefrequentandmorepredictable[12]. As a result,
conflictswill bemorelikely. Thereforeintelligentconflict
resolutionis necessarysincetheuserof themobiledevice
will not wantto loseall of theoperationsthatheor shehas
performedwhile disconnected.

Theproblemthat this paperaddressesis how to build a
systemthatmanagesshareddatain thepresenceof discon-
nectedoperation. This systemmustaddressthe issuesof
usingstaledatawhile disconnectedanddealingwith con-
flicting updatesuponreconnection.

1.2 Achieving Consistency

To achieve consistency a systemcan either usea pes-
simistic or anoptimistic approach.In anoptimisticscheme,
usersareallowed to modify shareddatathat may be con-
currentlyaccessedby otherusers.If anoptimisticscheme
is employedanduserscanbe disconnected,someform of
conflict resolutionis required.

Pessimisticschemespreventconflictsfrom occurringby
permittingmodificationsonly to thatshareddatafor which
the user has a lock. For the mobile computingsetting,
requiringthepossessionof locks to modify datalimits the
availability of datafor otherusers.

Anotheraspectof achievingconsistency with shareddata,
is maintainingserializabilityof data.Thus,a commonway
tohandleconcurrentaccessestoshareddataistousetransac-
tionsto aid in achieving bothconsistency andserializability
of operationsonshareddata.Traditionalpropertiesof trans-
actionsare:atomicity, consistency, isolation,anddurability
(ACID) [10].

Varioustransactionmodelsfor mobile computinghave
beenstudiedin [10, 5, 9]. Eachis similar in that weaker
formsof transactions(i.e. weak, tentative, or second-class
transactions)aredefinedfor transactionsmadeondatalocal
to a mobiledevice while disconnected.Using this weaker
notionof transactionsor tentative transactions allows for a
systemto have both consistency andanoptimisticscheme
in thepresenceof disconnections.While disconnected,ten-
tative transactionsoperateon locally cacheddata. Each
tentative transactionis loggedat the disconnecteddevice.
Upon reconnection,eachtentative transactionwill either
commitor abortasit is replayedagainsttheshareddata.

1.3 Flexible Conflict Resolution

Tentative transactionsresult in the needfor intelligent
conflict resolution. Sincepotentially all of the tentative
transactionsmadewhile disconnectedcould be aborted,it
is importantthat the systememploy conflict resolutionfor
thoseabortedtransactionsso that the disconnecteduser’s
operationsarenot lost.

Dealingwith conflictsor abortsthat occuruponrecon-
nection is not simple. The problemis that resolutionof
conflictsis definedby applicationsemanticsandproviding
generalsupportfor a variety of applicationsis hard. Sys-
temscanautomaticallytry to resolveconflicts.Anotherway
to resolve theconflictsis to consulttheuserupona failure.
Conflictresolutioncanalsobeleft upto theapplicationsince
it is bestawareof its own semantics.In theend,themost
completeapproachto resolvingconflicts is a combination
of system,application,andusersupport

Examplesof suchsystemsareCoda,Bayou,andRover
[7, 4, 6]. Thesesystemswill bediscussedin greaterdetail
in Section5 andcomparedwith thesystempresentedhere.

2 Thor Overview

This project usesthe Thor distributed object-oriented
databasesystem[8]. Thispaperprovestheserializabilityof
Thor andits ACID properties.In this section,anoverview
of theThorarchitectureis presented.

2.1 Thor Architecture

Thor providesa persistentstoreof objectswhereeach
objecthasa uniqueidentity, setof methodson a per type
basis,andstate.Thesystemhasa client/serverarchitecture
whereservers are repositoriesof persistentobjects. The
serverorobjectrepository(OR)consistsof arootobjectplus
all persistentobjectsthatarereachablefrom therootobject.
The OR handlesvalidationof transactionsacrossmultiple
clientsby usingan optimisticconcurrency control scheme
describedin [1]. Clientsin Thorconsistof a front end(FE)
andanapplication.TheFEhandlescachingof objectsfrom
the OR and transactionprocessing. Applicationsoperate
oncachedobjectsat theFE insidetransactionsandcommit
transactionsthroughtheFE to theOR.

2.2 Objects in Thor

Eachobjectis uniquelyidentifiedby anidentifierknown
asan oref. Orefsarealsousedto locatean objectwithin
pagesattheORandFE.At theOR’sobjectsareknownonly
by their orefs. Objectsat the FE arecategorizedaseither
persistentor non-persistent.Persistentobjectsareobjects
that theOR’s areawareof andthatarereachablefrom the
persistentrootobject.Non-persistentobjectsareobjectsthat
arenewly createdby anapplicationthathave not yet been
committedat the OR or objectsthat areusedtemporarily
by the applicationandthat will not needto persistacross
different runs of an application. Persistentobjectsat the
FE arestoredin the persistentcachewhich cacheswhole
pagesfrom the OR. An object in the persistentcachecan
bereachedat theFEvia its oref. Non-persistentobjectsare



storedin thevolatile heapanddo not have orefsuntil they
arecommittedandassignedoref’s by theOR. To facilitate
programaccessto objectsat theFE in thepersistentcache,
orefsaremappedto local memoryaddresses.

2.3 FE Transaction Logging and Committing
Transactions

Applications make high level operationson objects.
Thesehigh-leveloperationsonobjectsarereducedto reads,
writes, and creationsof objects. Eachof theseis logged
by the FE in order to createthe correctread,written, and
createdobjectsetsto besentto theORin acommitrequest.

An applicationcompletesa transactionby makinga re-
questto theFEtocommitthetransaction.TheFEprocesses
this requestby collecting all of the logged commit sets:
thereadobjectset(ROS),modifiedobjectset(MOS), and
new objectset(NOS).Thesesetsaresentto theOR in the
form of a commitrequest.TheROSandMOSwill contain
only persistentobjectsandtheNOSwill containonly those
non-persistentobjectscreatedinsidethetransactionthatare
reachablefromsomepersistentobject.BeforeaNOSis sent
to theORit mustcontainorefs.TheFEmaintainssomefree
pagesfor new orefsbut in the event that thereareno free
orefsavailable,theORis contactedto obtainnew orefs.

To handleconcurrency, anORwill validateatransaction
basedonwhetheror notthattransactionreador wroteinval-
idatedobjects.TheORmaintainsaper-FEsetof invalidated
objects. Theseareobjectswhosestatehasbecomeinvalid
sincethe time the FE cachedthem. An objectat an FE is
invalidatedwhenanotherFE successfullycommitsa trans-
actionmodifyingthatobjectsincethecachedversionis now
stale. FE’s arenotifiedof invalidationsandmustacknowl-
edgethemby invalidatingtheobjectsin thepersistentcache
sothatif thoseobjectsareeveraccessedby theapplication,
theirnew statewill befetchedfrom theOR.

The OR can either commit or abort the FE’s commit
request.If thetransactionis abortedby theOR,theFEmust
thenroll backany of thechangesmadeby theapplication.
This includesreverting the stateof modifiedobjectsback
to the original stateprior to the transactionandremoving
any newly createdobjectsfrom the volatile heap. If the
transactionis committedby theOR, theFE will move any
newly createdobjectsfromthevolatileheapto thepersistent
cache.

2.4 Summary of Thor

Thor provides transactioncontrolled accessto shared
data. Its optimistic concurrency schemeis appropriatefor
disconnectedoperationanditsobject-orientednatureshould
providesomebenefits.

3 Disconnected Operation in Thor

In theprevioussection,Thor wasintroduced.This sec-
tiondescribeshow weaddeddisconnectedoperationtoThor
[3].

Theapproachto disconnectedoperationin Thor is to use
tentative transactionsto manageshareddatawhile discon-
nectedandto provideaframework thatenablestheapplica-
tion to handleconflict resolution.Theextensionof Thor to
supportdisconnectedclientshastwo mainaspects:exten-
sionsto the applicationandextensionsto the FE (caching
andpertransactionprocessing).

3.1 FE Support for Disconnected Operation

FE supportfor disconnectedoperationcan be divided
into threephases.Thefirst is preparationfor disconnection.
Thesecondisoperatingdisconnected:handlingtransactions
differently. Thethird is reconnectingwith theOR:process-
ing the pendingtransactionsand the commitsand aborts
resultingfrom them.

3.1.1 Preparing for Disconnect

To preparefor disconnectionfrom theOR, theFE needsto
prefetchobjectsinto thecacheby processingqueriesspeci-
fied by theapplication.Theapplicationmayneeda special
prefetchqueryto ensurethatall therelevantdatais cached
in theFE.Thiswill bediscussedin Section3.2.1.

3.1.2 Operating Disconnected

Oncetheclient hasdisconnectedfrom theOR, anapplica-
tionwill attempttocommittransactionsasit normallywould
while connected.While disconnected,acommitbecomesa
tentative commit meaningthatthecommitcouldpotentially
be abortedby the OR upon reconnection.While discon-
nected,applicationswill operatethesameaswhenthey are
connectedby making operationson objectsinside trans-
actions. Theseoperationswill changethe stateof cached
objectsat theFE.

TheFE logstentative transactionsin thetentative trans-
actionlog. This log savesenoughstateper tentative trans-
actionin orderto replayeachtentative transactiononcethe
FE is reconnectedwith the OR. The applicationis given
an id for eachtentative transactionthat theapplicationcan
associatewith operationsperformedduringthattransaction.
Thisinformationcanbeusedlatertoassisttheuserin recov-
ering from anabort. Figure1 depictsanexampletentative
transactionlog.

Tentative Transaction
Themodelusedin connectedThor hastheFE maintain

transactioninformation on a per transactionbasis. This
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Figure 1. Tentative Transaction Log

information,alsoknownascommitsets,consistsof theread
objectset (ROS), the modifiedobjectset (MOS), and the
new objectset(NOS) createdduring a transaction.When
the applicationcommitsthe transaction,during connected
operation,thesesetsare inserteddirectly into a commit
requestto the OR. But, while disconnected,thesesetsare
maintainedin thetentative transactionlog.

The definitionsof the commit setschangefor tentative
transactions.In atentativetransactiontheROSmayconsist
of both persistentobjectsand objectsthat are tentatively
persistent. An objectis tentativelypersistentif it wascreated
bysometentativetransactionthatwastentativelycommitted
but not yet committedat the OR. This alsoappliesto the
MOS in a tentative transaction:it canhave bothpersistent
andtentativelypersistentobjects.In Figure1,

���
2, contains

objectg in ����� 2 sinceit is tentativelypersistentfrom
���

1.
In a tentative transaction,commit setsmusthave all of

theirreferencesto objectsin orefformatbeforethey aresent
to theOR.Temporaryorefsareassignedto objectsthatare
createdby tentative transactions.In Figure1, when

���
2 is

storedinto thetentativetransactionlog, referencesto g must
be updatedto the correcttemporaryoref assignedto it in���

1.
In orderto beableto handletheabortof atentativetrans-

action,eachtentative transactionin the log mustalsosave
thestateof eachobjectin theMOS prior to its first modifi-
cation.Objectsin theMOSmaybemodifiedmultipletimes
but only the initial stateof theobjectbeforeany modifica-
tions is saved in the log and only the stateafter the final
modificationin the durationof that transactionis saved in
theMOS.

3.1.3 Reconnect

WhentheFEreconnectswith theOR,synchronizationof the
log occursbeforethe FE canproceedwith any connected
operations. Synchronizationwith the OR consistsof re-
playingeachtentativetransactionin theorderin whichthey
werecommittedwhile disconnected,handlingany aborts,
andalsohandlinginvalidations.

Beforesendinga commit requestto the OR, it is nec-
essaryto updatetemporaryorefsin theNOSto permanent
orefs. Permanentorefsareassignedeitherfrom freespace
in thecurrentpagesat the FE or by contactingthe OR. In
addition,the MOS andNOSmay containtemporaryorefs
for tentatively persistentobjectsandthesemustbeupdated
aswell. ThentheFEsendsto theORacommitrequestcon-
tainingthecommitsetsstoredfor thetentative transaction.

TheOR will thencheckif thecommitrequestshouldbe
committedor aborted.Therequestwill abortif anobjectin
thereador write setof thetransactionhasbeenmodifiedby
anotherFE.WhentheFEreceivestheOR’s responseto the
commitrequestit will processeithera commitor anabort.
OnacommittheFEmustinstallnewly createdobjectsfrom
the tentative transactioninto its persistentcache. On an
abort,the FE usesthe saved copiesof modifiedobjectsto
revert thembackto their original statebeforethe tentative
transactionandthendeletesnewly createdobjectsfrom the
volatileheap.

Whenatentativetransactionis aborted,it is handledsim-
ilarly toaconnectedabort.But, for atentativetransaction,in
additiontorevertingmodifiedobjectstotheirstatebeforethe
tentative transaction,subsequenttentative transactionsthat
dependon that tentative transactionmustalsobe aborted.
Tentative transaction
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if it reador modifiedobjectsthat were in an invalid state
(as indicatedby the abortof
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). Becausethe abortof��� �

causesthe objectsin ,-��� � to be deleted,overall
bookkeepingis simplerif transactionsinvolving references
to ,-��� � areremovedat thesametime.

In checkingfor dependencies,if a subsequenttentative
transactionin the log abortsdue to its dependency on an
abortedtransaction,thenany tentative transactionsdepen-
dentonit mustalsoabort. It is importantto becarefulabout
theorderin which thestateof objectsin a tentative transac-
tion’s MOS arerevertedto their savedstate. For example,���	�

with ./��� � = 0 a1 aborts.
�����

with ./��� � = 0 b1 isde-
pendenton
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because����� 2 = 0 b1 . Sohereis
achainof dependenciesandafterall of thedependentaborts
have beenprocessed,the stateof objecta shouldbe as it
wasbefore
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andthestateof objectb shouldbeasit was



before
��� �

. In thecaseof objectb, it is importantthat its
statebeundonebackwards,first to thesavedstatein

��� 2
andthento thestatesaved in

�4�5�
. Thereforewhenaborts

areprocessed,thedependenciesarefoundin aforwardscan
but undoingthestateof eachis donein abackwardsprocess
througheachof thedependenttentative transactions.

After theentirelogof tentativetransactionshasbeenpro-
cessed,invalidationsarehandled.In theprocessof replaying
the tentative transactions,the FE may receive invalidation
messagescontainingorefsof objectsthathavebecomestale.
Thesestaleobjectsmustbemarkedinvalid in thepersistent
cache.

After theFE processesall tentative transactionsandin-
validations,it mustnotify theapplicationof any failures.It
doesthis by returningto the applicationa setof tentative
transactionid’s containingthe id of eachtentative transac-
tion thataborted.

Figure2 depictsthereconnectprocessfor a samplesce-
nario. The tentative transactionlog in this casecontains
threetentativetransactions.
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FEmadeamodificationtoobjecta whichthisFEhasnotyet
seen.Objecta is in �6��� 1 and ./��� 1 sotheORmustabort���

1. TheORalsosendsaninvalidationmessagefor object
a. Since ./��� 2 7 ,-��� 1 89;: , the FE will automatically
abort

�4�
2 without sendinga commitrequestto theOR for

it.
���

3 is committedsuccessfully. ThentheFE processes
theinvalidationmessageandsendstheacknowledgementto
theOR.Finally theFEpassesbackto theapplicationthelist
of tentative transactionid’s thatfailedto commit.
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Figure 2. Synchronizing the Log

3.2 Application Support for Disconnected Opera-
tion

In additionto thesupportprovidedby theFEfor discon-
nectedoperation,theapplicationmustalsoprovidesupport
for disconnectedoperation,namelysupportspecificto ap-
plication semantics.This supportcanbe divided into the
threecomponentsof preparingfor disconnection,operating
disconnected,andreconnecting.A specificexampleof an
applicationandthesupportit provideswill bediscussedin
Section4.1.

3.2.1 Preparing for Disconnect

Application specifichoarding queries areusedto prepare
theclient for disconnectionfrom theOR.A hoardingquery
is anoperationon thepersistentobjectsin thedatabasethat
causesobjectsto be fetchedor hoardedfrom the OR into
theFEcacheprior to disconnectingfrom theOR.

3.2.2 Operating Disconnected

Whendisconnected,attemptingto commita transactionre-
turnsanid for thetentativecommit.An applicationwill use
this id to identify dataassociatedwith the tentative trans-
actionif it shouldabort. This contextual datacaninclude
operationtype,parameters,or priority. Eachoperationtype
couldalsohave anassociatedresolutionfunctionwhich at-
temptsto usethesavedparametersfrom thetentative trans-
action context to resolve a failure to commit. This extra
supportis necessarysinceThorprovidesonly anotification
of conflictsanddoesno resolutionitself.

3.2.3 Reconnect

On reconnect,after the entiretentative transactionlog has
beenreplayed,the applicationreceivesa list of the id’s of
abortedtransactionsandthendealswith their resolution.It
doesthis by iteratingthroughthe list of failed transactions
and calling their appropriateresolutionfunctions. In the
processof calling a resolutionfunction, it is possiblethat
thetransactionwill beabortedagainanda seriesof nested
callsto resolutionfunctionsandabortsmayoccur.

To resolveaconflict,theapplicationhastheflexibility to
do a varietyof resolutionssincetheapplicationhascontrol
over whereconflictsaredetectedandalsohassaved con-
text for eachtransaction.While Thorprovidesconservative
abortsemanticsthat guaranteeserializabilityof operations
on sharedobjects,successfulretriesof a failed tentative
transactionactuallyallow applicationsthat do not require
Thor’sconservativeabortsemanticstoachievemorerelaxed
semantics.



4 Evaluation

This sectiondiscusseshow well disconnectedoperation
in Thorachievesthegoalsof consistentshareddataandflex-
ibleconflictresolutionthroughthedevelopmentof asample
applicationon top of the Thor framework. In addition,an
analysisof performanceis presentedtodiscusstheoverhead
from disconnectedoperation.

4.1 Sample Client Program: A Shared Calendar

A sharedcalendarsystemwas implementedas an ap-
plicationusingthedisconnectedThor framework described
in Section3. Thecalendarsystemmaintainsa databaseof
calendarswhereeachcalendaris associatedwith a userbut
multiple usersmay modify a singlecalendar. Concurrent
modificationsto a singlecalendararepossible.A usercan
addanddeleteeventsto andfrom a calendar. Eachevent
hasanassociateddayandtime.

Theessentialaspectof thedesignof thecalendarappli-
cationwasthedatamodellingphaseor developmentof the
application’s schema. The schemais the organizationor
structureof thedataasrepresentedin thedatabase.In the
datamodellingphaseit is importantto considertheeffectof
concurrency on thedata. It is especiallyimportantin Thor
sinceconflictsaredetectedat the granularityof an object
andthereforethedesignof theobject-orientedschemawill
directly impactwhatconflictsaredetected.In thecalendar
application,concurrentadditionsof eventsto auser’scalen-
dararepermissibleso long asthey do not overlapin time.
The correctbehavior is for a conflict to be detectedonly
whenconcurrentupdatesto thecalendarmodify eventsthat
conflict in time. However, theseconflicts arenot always
significantand in somesituations,a usermay want more
relaxedsemantics.Thesesituationscanbeaccommodated
with theflexible resolutionof conflicts.

Calendar

Time Slots ...
Event

Description

Figure 3. Calendar Schema

To achieve thecorrectcalendarconflict semanticsin the
calendarapplication, the schemawas designedto detect
conflictsat the granularityof time slot objectsratherthan
theentirecalendarobject.Thisisdepictedin Figure3where

thecalendaris a setof time slot objectsandeachtime slot
canbeassignedtosomeevent.With thisdesign,if twousers
concurrentlymodify thesametimeslotobject,thenaconflict
will bedetectedby Thor. This is thecorrectsemanticsfor
aconflict in a calendar, namelywhentwo appointmentsare
madefor overlappingtimes. However sincethe usermay
want to allow this at times,it is importantto considerthe
conflict resolutionand the differentpropertiesthat a user
mightwantto beableto have in hiscalendar.

With the describeddesignof the calendar, we maintain
consistency in addition to getting the correctconflict se-
mantics. Consistency is maintainedsincemultiple users
canconcurrentlyaddeventsto thecalendarwithout having
aconflictaslongasatransactiondoesnotreadstaleobjects
in thecalendar. An additionalfactorto considerin thecal-
endarapplicationdesignis thata transactionthatwritesan
event shouldbe carefulnot to includereadsof other time
slots. This requiresthat the applicationdeveloperbe very
careful in the organizationof commit points in the appli-
cation. For example,in a transactionthataddsanevent to
thecalendar, theapplicationshouldnot alsoreadall of the
objectsin thecalendar, sincethiswill increasethelikelihood
of anabort.

Conflict resolutionin thecalendarapplicationis flexible
sinceit is possiblefor the applicationto have controlover
whereconflictsaredetected.In thecaseof thecalendar, we
know thatconflictsareovertimeslots,soif aconflictoccurs,
we know it is becauseanotheruserhasalreadymodified
that sametime slot. It is then up to the applicationto
dealwith this conflict. In order to be able to dealwith a
conflict theapplicationneedsto understandthecontext for
a transaction.Therefore,asdiscussedin section3.2.2,the
calendarapplicationsaves the high-level operationsmade
by thetransactionandany argumentsto theoperations.

Usingthesavedcontext andhaving fine-grainedcontrol
over conflict detectionthroughthe designof the applica-
tion schema,any numberof policiescanbeimplementedto
resolveconflicts.

4.2 Performance

Theoverallperformanceof theThorsystemis discussed
in [1]. Thor comparesfavorably with similar systems
in termsof throughputand scalability. This sectiondis-
cussesthe addedoverheadof supportingdisconnectedop-
eration. First, the numberof tentative transactionsis lim-
ited by theamountof memoryin theclient. Theoverhead
variesby the numberof tentative transactionsin the log,
the read:write:new objectratio in thecommitsets,andthe
level of contentionor percentageof abortsfor agivennum-
ber of tentative transactionsin the log. The remainderof
thissectionwill discusstheoverheadof disconnectedoper-
ation in Thor usingexperimentsbasedon the OO7bench-



markwhichprovidesacomprehensivetestof object-oriented
databasemanagementsystemperformance.Thedetailsof
thisbenchmarkaredescribedin [2].

In comparisonto connectedoperationin Thor, the de-
sign of disconnectedoperationin Thor hasseveral differ-
encesthataffectperformance.Thesedifferencesoccurboth
while operatingdisconnectedanduponreconnection.Ex-
perimentswereconductedwith a singleFE and OR. The
OR wasrun on a 400 Mhz dual PentiumII with 128 MB
of RAM runningtheLinux Redhatdistribution6.2. TheFE
wasrun a 450Mhz PentiumII with 128MB of RAM run-
ning Linux Redhatdistribution 6.2. TheFE cachesizefor
all experimentswas24MB. All communicationbetweenthe
two machineswasonanisolatednetwork sothatvariations
in network traffic wouldnotaffect theexperimentalresults.

EachexperimentusesanOO7traversalto comparecon-
nectedwith disconnectedoperation. Thedifferencebetween
disconnectedand connectedoperationoccursat commit
points. During connectedoperation,the applicationsim-
ply waits for the responseto a commit requestfrom the
OR. In disconnectedoperation,a commit has two parts.
Thefirst part is to tentatively commit thetransactionwhile
disconnected.This placesthe transactionin the tentative
transactionlog. The secondpart is to reconnectandsend
thetentativetransactionfrom thelog to theORasacommit
request.

Upon reconnection,replayof the log incurstwo major
coststhat do not occur in connectedcommits. The first
overheadincurredis, in preparationto sendthe tentative
transactionasa commit requestto the OR, newly created
objectsthathave temporaryorefsmustbeupdatedto have
new permanentorefs.Gettingpermanentorefsis acostthat
is alsoincurredduringconnectedcommits,howeverobjects
in the MOS andNOS needto be updatedwith thesenew
orefs.Thisupdatingincurstheextracostof asecondtraver-
sal of the objectsin the MOS andNOS for all tentatively
committedtransactionsin thelog.

We evaluatedtheaverageoverheadto be36.32%for up-
datingtemporaryorefson logsrangingfrom 10-100tenta-
tivetransactionswith aworkloadof anOO7insertionquery
with 5 new compositeobjectsand2 modifiedobjectsper
transaction.The growth of the time to tentatively commit
andreconnectis linear with respectto the numberof ten-
tative transactions.However it doesgrow at a fasterrate
thanconnectedcommits.This is dueto anincreasingnum-
ber of permanentorefs to searchthroughwhen replacing
temporaryorefswith permanentones.

Thesecondmajorsourceof overheadfrom disconnected
operationcomesfrom aborts.If atransactionis aborted,the
log mustbe updatedto abortany dependenttransactions.
This dependency checkhasthe extra costof scanningthe
log with a backwardsundo(asdescribedin Section3.1.3)
eachtimeanaborthappens.
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Figure 4. Abort Overhead (20% abort rate)

Experimentswereconductedin both low andmoderate
contention(abortrate)environmentssimilar to experiments
madeby Adya for concurrency controlstudiesin Thor [1].
Theexperimentsmake useof theOO7T2atraversalrather
thanthe Tnew sincethe Tnew traversalcreatesdependent
tentative transactions.By usingthe T2a traversalboth the
low and moderateabort rate experimentshave no depen-
denciesbetweentransactionsto show thecaseof maximal
scanning.Figure4 showstheresultsfor anOO7T2atraver-
sal with a 20% abort rate which is consideredmoderate
contention.Theresultsfor alow 5%abortrateshow similar
trends.

5 Related Work

Providing consistentshareddatain thepresenceof dis-
connectedoperationisnotanew problem.Researchershave
analyzedtheissuesandsystemshavebeenimplementedthat
supportdisconnectedoperationandthesharingof data.

The major relevant analytical work is [11]. Discon-
nectedoperationin Thor largely implementsthe behavior
describedin thecachingexamplein this paper:themobile
computerperformsweaktransactionswhile disconnected.
Thesetransactionsarecommittedonly if they donotconflict
with the strict transactionsat the server. Beyond actually
implementingthismodel,wehavestartedtounderstandhow
applicationscanmakeuseof thissystem.

SomeimplementationsincludeBayou,Rover, andCoda
asmentionedin Section1.3. Having discussedthe design
of disconnectedoperationin Thor andevaluatedits effec-
tivenessin achieving consistentshareddatawith flexible
conflict resolution,this sectionvisits eachof the systems
describedin Section1.3 to seehow they compare.In gen-
eraleachsystemusesasimilarnotionof “tentative” datafor
datamodifiedwhile disconnectedbut hasdifferentmethods
for handlingconcurrency andconflicts.



Codasupportsdisconnectedoperationbut it is oriented
arounda file system. Conflicts are detectedonly at the
granularityof files which gives an applicationmuch less
control over the semanticsof conflicts. Thor on the other
hand,canbe usedfor a varietyof applicationswheredata
easily fits into an object model whereobjectsare small.
However if an applicationis concernedover file-sharing
suchas in a collaborative documentediting system,Coda
mayactuallybea moresuitablechoice.

Both BayouandRover do not provide for any built-in
notion of consistency. It is up to the applicationto define
in its procedures,checksfor conflictsandtheproceduresto
resolve them. Thor takessomeof theburdenof this away
from theapplicationby having built-in conflictsdetectedon
objects.While it is truethattheapplicationdoesplayarole
in definingconflictssincethe applicationschemamustbe
carefullydesignedto achievethecorrectconflictsemantics,
Thor providesa framework with which theapplicationcan
work. In additionthis framework is a familiar onesinceit
is essentiallytheframework of anobject-orientedprogram-
ming language.

Bayou and the approachto disconnectedoperationin
Thor aresimilar in that application-specificconflict detec-
tion and resolutionare facilitated. Bayou’s dependency-
check procedureis analogousto schemadesignin Thor
sincethemannerin which theschemais designed,controls
what conflictsaredetected.Bayou’s merge-procfunction
is analogousto applicationconflict resolutionin Thor. The
differencebetweenthe two is that thereis no built in no-
tion of consistency in Bayou. While Thor allows for an
applicationto have controloverwhereconflictswill bede-
tected,theserializabilityof datawill not beviolatedat any
point. Thor could perhapsbenefitfrom Bayou’s notionof
merge-procs.SinceThor applicationsmustnow includeall
conflict resolutioncodeinsidethe application,it would be
beneficialto addto Thor, a framework for applicationsto
write resolutionfunctionsor perhapsevenselectfrom a set
of commonresolutionfunctions.

6 Conclusion

This paperhasdescribeda systemthat can,with more
experimentation,beextendedto supporta varietyof appli-
cations. Theseapplicationswill behave well usingshared
datawhetherthenetwork is availableor not.

Disconnectedoperationin Thor suitsa varietyof appli-
cationssinceit canprovidestrictconsistency rulesfor appli-
cationsthatrequirethemsuchasabankingsystemor airline
reservation system. Yet, with the framework provided, it
alsoallows applicationswith morerelaxedconsistency re-
quirementsto have enoughcontrolover conflictsandtheir
resolutionto achievemoreflexible consistency semantics.
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