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Abstract

In this thesis, I designed and implemented a delay-tolerant network stack that allows
applications to send messages to other network nodes when no end-to-end connectivity
is present. CafNet, the Carry-and-Forward Network, is a delay-tolerant network stack
with a CafNet Transport Layer, a CafNet Network Layer, and one or more Mule
Adaptation Layers, corresponding to the traditional transport, network, and link
layers. Nodes can connect to other nodes through a variety of link mechanisms, and
in some cases, the data itself can be physically carried, such as on a USB key or a
PDA. CafNet prioritizes messages such that data with a higher priority is sent during
short bursts of connectivity. The stack was tested on embedded PC systems used in
cars for the CarTel project to determine its performance.
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Chapter 1

Introduction

In today’s world, people carry around a variety of devices with portable storage —

PDAs, USB keys, laptop computers, and more. While some devices can connect

to the Internet, others can only communicate with one another. The Carry-and-

Forward Network (CafNet) protocol aims to take advantage of the mobility and local

networking of these devices and use them to forward messages (data) toward the

target destination, passing them off to other intermediary devices as needed.

1.1 Delay-Tolerant Networks

CafNet can be best described as an implementation of a delay-tolerant network

(DTN), a concept first discussed in Fall [7]. Unlike conventional networks, DTNs

do not necessarily provide end-to-end connectivity between two endpoints, and nodes

may experience greater periods of disconnectivity than periods of connectivity. The

latency to send a message may be on the order of hours or more, rather than frac-

tions of a second. Sensor networks, for example, may collect data to send to a central

server, but given power limitations and remoteness may only be able to infrequently

transmit the data. These “challenged networks” can make use of a DTN can be used

to send the data when connectivity is available.

A DTN addresses the problems posed by challenged networks by creating an over-

lay network on top of other protocols. Bluetooth and other local wireless technologies,
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for example, may be used for local transmissions where Internet access is not present,

whereas TCP may be used to transmit data to remote systems when Internet con-

nectivity is available. Although each of these protocols has its own requirements and

addressing schemes, the DTN can use link-specific modules to operate on top of each

of them.

Each node in the DTN can potentially act as a “data mule,” a device that is

physically carried from one location to another [16, 19]. These mules behave like

“store-and-forward” nodes on the Internet in some ways, but deliver messages not

by immediately forwarding them to a predetermined next-hop, but instead, waiting

until they encounter another device and then potentially forwarding the data, hence

the name “carry-and-forward networking” (CafNet).

1.2 Motivating Application: CarTel

The CarTel1 project features a collection of vehicles, each containing an embedded

PC collecting data from sensors, providing information such as GPS, Wifi availability,

and OBD-II (On-Board Diagnostics) data from the vehicle [2, 10]. This data is then

sent to a central server for analysis, allowing users to track and plot their routes,

find congestion points, and see traffic patterns at different times of day. When they

want to visit an unfamiliar location, they can see the anonymized data of other users

to plan routes. The central server can also notify the user of any vehicle problems

reported by OBD. Cars can also communicate with each other, perhaps streaming

audio to one another, or sharing information about open parking spaces, potential

carpool routes, or nearby store or restaurant specials. Figure 1-1 shows this overall

CarTel architecture.

The way in which CarTel has transmitted the data to the central server has evolved

over time. Very early on, data was stored on a USB key, and the USB key would

be hand-carried between cars and offices. Once the USB key was plugged into the

office computer, software on the computer would automatically upload the data to

1http://cartel.csail.mit.edu/

14



Open Wireless
Access Point

Portal

ICEDB Server
Answers local snapshot queries
Logs continuous query results
Prioritizes data

CafNet
Delay-tolerant relay via 
802.11, Bluetooth, etc.

ICEDB Remote
Adapters log gps, Wi-Fi, OBD, camera data
Data sent via prioritized continuous queries

Queries

GUIs/
Viz

Clients

User's Wireless
Access Point

Internet

Ad-hoc 
network

Figure 1-1: CarTel Architecture [10]

the server without any further interaction required. At the end of the day, the USB

key would be carried back to the car and plugged back in to store more data.

The embedded PC systems in the vehicles support Wifi, and in the next stage

they were configured to upload data opportunistically through access points whose

owners had chosen to opt-in. Periods of connectivity could be brief, however, as the

car might be quickly driving by, and so schemes to quickly scan and associate with

access points were developed [2].

In the future, it may be useful to send to PDAs or laptops with Bluetooth. The

Bluetooth device sits in the car while moving, and the embedded PC continuously

transmits new data to the device. At the destination, the user takes the device to an

office, at which point the device retransmits the data over Bluetooth to a computer,

which then sends it over the Internet to the central server.

Each of these methods of transmitting data requires the data collection applica-

tion to implement completely different protocols and neighbor discovery to determine

15



which data to send where. CafNet aims to simplify application development by pro-

viding the CafNet applications with a simple interface and implementing robust de-

livery protocols.. Given increasing storage capacities, mules can carry large amounts

of data and therefore act as a high-bandwidth but high-latency channel. For data

that can tolerate high latency, mules can be effective data carriers.

1.3 CafNet Requirements

The following requirements drive the design of CafNet:

• CafNet must be able to handle variable-size messages (application data units,

ADU) ranging from a few bytes to a few megabytes.

• Messages sent through CafNet must be time-insensitive as they may be subject

to long delays. Applications requiring end-to-end delivery acknowledgments

must also be able to handle delays in receiving the acknowledgments. Since

retransmission may be necessary if an acknowledgment is not received, the ap-

plication (and not the transport layer) must also retain a copy of the message

available for potential retransmission.

• Each message should have an associated priority. Contact time with other mules

or Wifi access points can potentially be very short, on the order of seconds, and

so not all the data can always be transferred. Higher priority data should be

sent quickly during these brief intervals. When a mule has limited space, higher

priority data should preempt lower priority data.

• Although some applications may require end-to-end acknowledgments, others

may not. CafNet should be able to provide acknowledgments for those appli-

cations that require them, but simply provide best-effort delivery for messages

from other applications, and drop lower priority messages without retransmis-

sion if space is needed.

16



1.4 Thesis Contributions and Outline

At the start of my research, a preliminary CafNet design had been proposed, but no

implementation had yet been started. I wrote the first implementation, correcting

flaws in the design as they were discovered. This improved design is discussed in

Chapter 2. Next, I integrated this implementation with IceDB, a CarTel compo-

nent and one of the first CafNet applications, and made some additional changes to

the CafNet implementation to make it easier for IceDB to implement the necessary

CafNet methods, discussed in Chapter 3. I ensured CafNet worked over a variety

of conditions, such as between multiple computers, and over GPRS with unexpected

disconnections, and then tested the stack’s performance. After using CafNet on the

embedded PC used in CarTel revealed performance problems, I replaced the inter-

process communication CafNet uses with a different protocol, discussed in Chapter 4.

Chapter 5 explores related work, and Chapter 6 looks at future work and a summary

of my research.
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Chapter 2

CafNet Design

The CafNet stack is divided into three layers: the CafNet Transport Layer (CTL),

the CafNet Network Layer (CNL), and the Mule Adaptation Layer (MAL), anal-

ogous to the traditional transport, network, and link layers. CafNet applications

use application-level framing and schedule and later transmit application data units

(ADUs) to the CTL [5]. The CTL passes the message to the CNL, which then buffers

the message until it can send the message to an appropriate node. At that point, the

CNL passes the message to the appropriate MAL, which sends it over the appropriate

network interface.

Many CafNet layers feature the use of callbacks or upcalls [1, 4]. Since messages

may not be immediately sent, lower layers perform upcalls to higher layers to inform

them when certain actions can be done. The CTL performs application callbacks

when it needs to get data, and the CNL performs CTL callbacks when it can buffer

more data.

Unlike the traditional link layer, the MAL is also responsible for determining the

network neighbors of the current device and notify the CNL of any updates in these

neighbors. A Bluetooth MAL might do this by periodically scanning to find nearby

Bluetooth devices that are also running the CafNet stack. A USB key could store

a list of devices it has been connected to previously, and therefore has a reasonable

chance of seeing again. A device connected to the Internet might use a MAL that

that uses TCP to communicate with other CafNet stacks over the Internet. Such
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Figure 2-1: CafNet Stack Design
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a MAL might have a list of known neighbors or broadcast its presence to the local

network.

The CafNet stack consists of one CTL, one CNL, and one MAL per link mechanism

(such as Bluetooth or TCP), as shown in Figure 2-1. An application binds to the

CTL, after which it can send messages to the CTL. On the receiving end, the CTL

can pass up messages it receives that are addressed to the application.

While traditional networks are stream-oriented, CafNet is message-oriented in-

stead, an architecture better suited for messages with potentially high latency [3, 7].

Applications send messages by breaking them up into smaller chunks on their own

if desired and then scheduling the chunks for transmission. The CafNet stack does

not buffer the messages at this point — since connectivity may not be present, if

the stack were to buffer everything applications wished to send, the buffers would

quickly fill up. Because connectivity may only be present for a short amount of time,

the stack must reorder messages and send out high priority messages first. To do

this, the network layer buffers higher priority messages; the transport layer stores

only metadata and then requests additional messages from the applications as space

opens up in the network layer.

2.1 Endpoint Naming

The CNL and CTL of each CafNet stack running on a node are globally addressed

by a string derived from a public key. For historical reasons described in Section 3.6,

the CTL and CNL addresses must be the same. These strings are flat and contain no

other semantic meaning [18]. In the future, these keys can be used for authenticating

and encrypting messages in transit because they are self-certifying [14, 15].

2.2 CafNet Applications

CafNet applications run in a separate process from the CafNet stack, since multiple

CafNet applications can use a single stack. A CafNet application must provide the
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following callback API so that the CTL can communicate with it:

int msg received(String source, String destination,

int priority, String ackType, int aduId);
void ack received(int aduId, String type);

Message get msg(int aduId);

Table 2.1: CafNet application API exposed to the CTL.

When the CTL receives a message for a CafNet application, the CTL calls the ap-

plication’s msg received method, passing on the message, as well as the CNL source

address, the CNL destination address, priority, ACK type requested, and the ADU

ID. Similarly, when the CTL receives an acknowledgment, it calls the application’s

ack received method with the message’s ADU ID and the type of ACK. Finally,

when the CTL is ready to get contents of a message from the application after being

signaled by the CNL, it calls the application’s get msg method.

2.3 CafNet Transport Layer

The transport layer serves two purposes; first, it maintains metadata for messages

that CafNet applications have scheduled and requests full messages from the appli-

cations as necessary. Second, the CTL retransmits messages periodically. The CTL

adds the metadata of all messages that are sent with END-TO-END acknowledg-

ments requested to a list of unacknowledged messages. If a message has remained

unacknowledged for a period of time, the CTL buffers the message again in the CNL.

The CTL presents the following API to CafNet applications:

int bind(String appName, int port);

int unbind(String appName, int port);

int schedule(String appName, String destination,

int priority, String ackType, int size);

void cancel(String aduId);

Table 2.2: CTL API exposed to CafNet applications.

When a CafNet application first starts up, it binds to the CTL, specifying the
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(a) The CafNet application
schedules a message by sending
metadata only.

(b) The CTL returns an ADU ID
corresponding to the message and
requests that the CNL send it.

(c) When CNL buffer space frees
up, the CNL clears the CTL to
send the message.

(d) The CTL gets full message
data from the application.

(e) The application returns the
full message data.

(f) The CTL buffers the message
in the CNL.

Figure 2-2: CTL Message Lists and Message Flow
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(g) At a later point, CafNet re-
ceives an ACK for the message.

(h) The CTL passes the ACK up
to the application.

Figure 2-3: CTL Message Lists and Message Flow (Continued)

name of the application and a TCP callback port for the CTL to use to communi-

cate with the application — the TCP callback port is necessary because the CafNet

application is a separate process. The application name allows the CTL to differen-

tiate messages destined for different applications, and avoids the limitations of port

number used in TCP and UDP, where multiple applications may attempt to use the

same number.

After the application has bound to the CTL, the application is ready to send and

receive messages. The CTL uses this binding when a message or ACK arrives at the

CTL; the CTL checks to see if the correct application is bound, and if so, passes the

message or ACK up to the application.

When the application wishes to transmit a message, it calls the schedule method

with the name of the application, the destination endpoint name, the priority of

the message (a higher number indicates a higher priority), the type of ACK desired

(END-TO-END or NONE), and the number of bytes of data; the CTL then returns

an ADU ID number. The application associates the message with this ADU ID; when

the CTL later calls the application’s get msg with this ID, the application returns it.

The CTL keeps a collection of message metadata that all bound applications have

scheduled. The CTL calls the CNL’s requestToSend with the number of bytes and

24



the priority of the highest priority message. At any point, if an application schedules

a message with higher priority, the CTL then requests to send that message by calling

the CNL’s requestToSend method.

If the application wishes to cancel a message, it calls cancel with the ADU ID

of the message. If the message has either not yet been buffered, or has been buffered

but not yet been acknowledged, the message’s metadata is removed from the CTL.

The CTL also calls the CNL’s cancel method to remove it from the CNL buffer, if

it is present there. If the message has already been forwarded, cancel has no effect

in the CNL.

The CTL presents the following API to the CNL:

void clearToSend(int bytes, int priority);

void bufferResult(boolean result, Message msg);

void msgReceived(Message msg);

Table 2.3: CTL API exposed to the CNL.

When the CNL is ready to get a message from the CTL, the CNL calls the

CTL’s clearToSend method with the number of bytes and the priority corresponding

to the previous requestToSend. At this point, the CTL adds the destination to

the message’s headers and calls the CNL’s buffer method to add the message to

the CNL’s buffer. The CNL then asynchronously calls the CTL’s bufferResult

informing the CTL whether buffering the message succeeded.

When the CNL receives a message, it passes it to the CTL by calling the CTL’s

msgReceived. The CTL then passes it up to the application by calling the applica-

tion’s msg received method.

Finally, when the CTL successfully buffers a message in the CNL, it adds the

message to a list of unacknowledged messages. Periodically, the CTL attempts to

re-buffer any messages that are still unacknowledged.

Figures 2-2 and 2-3 show the lists of messages the CTL maintains and the message

flow between the CafNet layers.
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2.4 CafNet Network Layer

The buffer that the CNL maintains allows the CNL to send messages quickly when

network connectivity is established. The CNL also identifies the endpoint names of

remote nodes and forwards messages to appropriate nodes.

The CNL presents the following API to the CTL:

void buffer(TransportLayer ctl, Message msg);

void cancel(String msgId);

void requestToSend(TransportLayer ctl,

int bytesToSend, int priority);

Table 2.4: CNL API exposed to the CTL.

When the CTL calls requestToSend, the CNL checks to see if there is sufficient

space in the buffer to add the message to the buffer. When there is enough space, it

calls the CTL’s clearToSend method.

When the CTL calls buffer, it generates a unique Message-ID for the message.

The CNL checks to see if a message with the same Message-ID already exists in the

CNL buffer. If so, the new message replaces the old one. Otherwise, the CNL checks

to see if there is space in the buffer, removing lower priority messages if necessary.

The CNL then calls the CTL’s bufferResult informing the CTL whether buffering

the message was successful. Section 3.4.2 explains the details of the CNL’s buffer

management.

Finally, if the CTL calls the cancel method, the message corresponding to the

specified Message-ID is removed from the cache, if it is present.

The CNL presents the following API to each MAL:

void neighborUpdate(MuleAdaptationLayer mal, Collection neighbors);

void msgReceived(MuleAdaptationLayer mal, Message msg);

void sendResult(boolean success, Message msg);

Table 2.5: CNL API exposed to each MAL.

When each MAL starts up, and when the neighbors for the MAL change, the

MAL calls the CNL’s neighborUpdate with a collection of neighbors. This collection
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only contains information about the presence of neighbors, and does not contain

endpoint names. Upon seeing previously unseen neighbors, the CNL will send a

CNL-Self-Identify message to each new neighbor, informing the neighbor what the

CNL’s endpoint name is. This allows the CNL to forward messages appropriately.

When a MAL receives a message, it simply passes it up to the CNL by calling the

CNL’s msgReceived method. Since CNL-Self-Identify messages are passed up by

the MAL just as other messages are, the CNL’s msgReceived needs to sort them out

and save the CNL addresses it received. For all other messages, the CNL just passes

them up to the CTL.

After a CNL asks a MAL to send a message, the MAL will asynchronously call

the CNL’s sendResult method to notify the CNL whether the send was successful. If

the send was successful, the CNL can remove the message from its cache. Otherwise,

the CNL can try again later. This asynchronous callback is used to avoid having the

CNL blocked, and is discussed more in section 3.4.2.

2.5 Mule Adaptation Layer

Each Mule Adaptation Layer communicates with other MALs to transmit messages.

Given that different link mechanisms can work very differently, the overall design of

each MAL can be very different. Nevertheless, they present a common interface to

the CNL, which does not differentiate between MALs:

void send(String dest, Message msg);

Table 2.6: MAL API exposed to the CNL.

When a CNL wants to send a message, it simply calls the MAL’s send method.

The MAL then copies the message to the relevant output stream. If this successfully

happens, the MAL calls the CNL’s sendResult to indicate that the send was suc-

cessful. Note that it is possible for sendResult to indicate a success but not have the

message actually send to the remote MAL, since it just means that the message was

added to the link mechanism’s buffer. If the connectivity that was present disappears,
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but the buffer has not yet filled up, the sendResult will still be successful. In this

case, the message will be removed from the CNL buffer, and the CTL will eventually

retransmit the message.
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Chapter 3

Implementation

When CafNet was first implemented, it was designed to not only work over TCP

connections, but also over Bluetooth, including on cell phones. Nokia cell phones

support Java, Python, and C++. Both Java and Python easily support Bluetooth on

the cell phone — I chose Java for the first CafNet implementation given my familiarity

with it.

3.1 Messages

The CafNet stack stores messages internally as a byte array of payload data, and

a hash of headers, mapping header names to their values. Table 3.1 describes the

headers that the stack uses.

Although all headers are stored in memory, the data can be stored either in mem-

ory or on disk. Devices with limited memory, for example, may choose to store

messages on disk so they can use a larger CNL cache. This implementation of the

CafNet stack uses messages with data stored in memory, but can easily be modified

to use messages with data stored on disk.
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Header Description
Content-Length Number of bytes in the payload.

MAL-Message-Type Differentiates between data and MAL-internal messages:
Valid values are DATA, FIN, and FINACK.

CNL-Source The address of the CNL sending the message.
CNL-Destination The address of the CNL receiving the message; value set

to CNL-Self-Identify when a remote CNL is identifying
itself for the first time.

CTL-Source The address of the source CTL.
CTL-Destination The address of the destination CTL.

CTL-ACK-Requested The kind of ACK requested upon receipt of a message;
valid values are END-TO-END and NONE.

CTL-Message-Type Differentiates between data and CTL-internal messages:
valid values are DATA and END-TO-END.

Priority The priority of the message, expressed as an integer.
Higher numbers represent higher priorities.

Application The name of the destination application.
App-Id An integer used by the application and CTL to uniquely

identify each message within a CTL.
Message-ID A string used by the CTL and CNL to identify a message

in the CNL buffer.
Operation Application method being called by the CTL.

Other headers Parameters for application methods being called; depen-
dent on the operation header.

Table 3.1: CafNet message headers
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3.2 Interprocess Communication

Although the three layers of the CafNet stack are executed within a single process,

CafNet applications run in other processes, and they need to communicate with the

CTL. Initially, we used XML-RPC to perform this communication, as implementa-

tions are available for all common languages, so applications could easily implement

the needed methods, and then simply add XML-RPC.

While this worked well on desktop and laptop computers (such as a Pentium M, 1.7

GHz machine), XML-RPC performed abysmally on the Soekris1 266 MHz embedded

PC used in CarTel, in some cases transferring data at 9 kilobytes per second locally.

Even though the data transferred quickly from the source CTL to the destination

CTL, the messages got queued up between the destination CTL and the destination

application. More details are available in section 4.1.

CafNet now instead communicates with applications using TCP sockets with its

own binary protocol. The CTL and all CafNet applications each listen on a port

for incoming requests. When a new TCP connection is established, the CTL or

CafNet application reads from the connection, executes the requested method, and

then returns the result (if any). As in XML-RPC, each TCP connection is used for

only one method call2.

This protocol uses 32-bit signed integers in big endian (most significant byte first;

also network byte order), the format used by Java’s DataOutputStream. Strings are

represented by an integer indicating how many bytes are in the string, followed by

that number of bytes. Message payloads are transmitted in the same way as strings.

When performing a method call, the string containing the name of the method

to be called (msg received, ack received, or get msg when the CTL communicates

with the application, or bind, unbind, schedule, or cancel when the application

communicates with the CTL) is written to the socket first. Then, each parameter is

written out in the order specified by the method’s signature. The result, if any, is

then returned in the same format.

1http://www.soekris.com/
2Some XML-RPC implementations support reusing connections, though not all do.
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3.3 Communication Between MALs

Communication between MALs, on the other hand, uses a text-based protocol, very

similar to HTTP. Each MAL’s link mechanism (the Bluetooth Serial Port Protocol

or TCP, for example) is assumed to provide reliability and ordering. Each message

starts with several lines of headers in the format Name: Value. One required header,

Content-Length, indicates how many binary bytes of message payload follow. The

end of the headers is signified with a newline, and then any binary data follows. It is

possible for a message to have 0 bytes of data, as occurs with control messages. The

other required header is the MAL-Message-Type header, which can be one of DATA,

FIN, or FINACK. FIN and FINACK messages always have a Content-Length of 0.

Message-ID: client-server-ZPerformanceTest-741795

Application: ZPerformanceTest

CNL-Source: client

Content-Length: 15

MAL-Message-Type: DATA

Priority: 1

MAL-Interface: net1

CTL-Message-Type: DATA

CTL-Source: client

CNL-Destination: server

CTL-ACK-Requested: NONE

App-Id: 741795

CTL-Destination: server

This is a test.

Figure 3-1: MAL Communication Format

Communication between MALs with established connections is bidirectional —

after a connection is made between two MALs, regardless of which MAL connected

to the other, each MAL can send as many DATA messages as it can while the connection

is established. When one MAL has finished sending its messages, it will send a FIN

message. Once the other MAL has received the FIN message, it will respond with a

FINACK message. Once a MAL has received both a FIN message (indicating that the

remote MAL has finished sending messages) and a FINACK message (indicating that
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the remote MAL has received all the messages that this MAL has to send), the MAL

will close the connection.

Not all MALs use FIN and FINACK messages. The Bluetooth MAL uses them

as it needs to constantly scan for new devices and connect to them (since it can

only connect to one other Bluetooth device at a time), and so it cannot continue to

maintain a connection to a particular Bluetooth device. The TCP MAL, on the other

hand, maintains connections with all known neighbors until the TCP connection is

broken by the physical connectivity disappearing, and so never sends any FIN or

FINACK messages.

3.4 CafNet Layers

The CTL, CNL, and MALs each run in their own threads so that each layer can deter-

mine how to prioritize its own requests. This allows the stack to run more efficiently

than processing events from all layers sequentially, without having to implement a

complex system of prioritizing events. When other layers make requests, in most

cases, the requests are not directly executed — instead, they are added to a queue.

Each layer has an event loop that processes items in the queue, prioritizing events

from lower layers over events from higher layers, but executing events from each layer

sequentially. This removes the need to address many potential concurrency issues

that would result if other layers directly executed the methods they called.

3.4.1 Mule Adaptation Layer

In addition to acting as a traditional link layer, each MAL also informs the CNL

of neighbors, that is, other CafNet stacks that this stack can communicate with.

The MAL assigns each neighbor a unique string identifier (similar to Linux network

interfaces, like eth0 or wlan1), and then provides the CNL with these identifiers.

This CafNet implementation features two different kinds of MALs: a Bluetooth

MAL and a TCP MAL. Given the properties of each protocol, the MALs are quite

different.
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Bluetooth MAL

The Bluetooth MAL runs two threads: a server thread, and a scanning thread; unlike

the TCP MAL and the other CafNet layers, it does not have an event loop thread. The

server thread advertises a Bluetooth Serial Port Protocol service with a UUID unique

to CafNet (71f711bfb6214ac8a592ad39250ba141) so that other Bluetooth MALs can

discover this Bluetooth MAL. The scanning thread scans for other MALs advertising

the CafNet UUID, and rescans every 3-7 minutes. It is not possible to continuously

scan, as scanning and sending data cannot happen simultaneously; Bluetooth also

uses the same 2.4 GHz frequency spectrum that Wifi does, so continuously scanning

would be disruptive to other applications using Wifi on the same system and other

nearby Wifi devices.

When the CNL asks the Bluetooth MAL to send a message, the MAL connects

to the remote MAL using the Bluetooth Serial Port Protocol. Once connected, the

MAL starts a thread to process any incoming messages, and then sends the requested

message. When the message has been sent, the MAL sends a FIN message to notify

the remote MAL that it has finished sending messages; the remote MAL should

return a FINACK message acknowledging the FIN message. Once the remote MAL

also sends a FIN, indicating that it has sent all the messages it needs to send, the

MAL closes the connection.

Although not very efficient, the Bluetooth MAL currently only sends one message

per connection for simplicity, and because without additional setup, Bluetooth only

allows a device to connect to one other device at a time. Section 6.1.3 discusses

the possibility of connecting to multiple devices at a time, and how that can be

accomplished.

The Bluetooth MAL was also designed prior to CNL-Self-Identify messages

being developed, and so is not yet integrated into the new design. Since the CNL

does not send any messages on an interface without having previously received a

CNL-Self-Identify message, but the Bluetooth MAL does not associate incoming

messages with a particular Bluetooth device, the CNL will not send any messages to
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the Bluetooth MAL under the current design. Section 6.1.3 also discusses potential

ways of fully integrating the Bluetooth MAL into the CafNet stack.

TCP MAL

In addition to the event loop thread, the TCP MAL has two primary threads: a server

thread, and a trigger thread. The server thread listens for incoming TCP connections

from other MALs. The trigger thread listens on a local TCP port for connections from

an external program notifying it of the presence or absence of external connectivity.

The external program sends a single line with the text IP=ON or IP=OFF indicating

changes in connectivity. Like other events, the trigger events get added to a collection

of pending events; unlike other events, however, trigger events get executed before

any other pending events. If both IP=ON and IP=OFF events are pending, they are

executed in the order they are requested. If multiple IP=ON events are pending, they

are coalesced into one event and the earlier ones are ignored; the same is true for

multiple IP=OFF events.

When an IP=ON event is processed, the TCP MAL attempts to connect to all

known peers, as listed in the CafNet configuration file. After each connection is

made, a new thread is started for sending messages over the connection, the MAL

updates the CNL with the new collection of neighbors, and then another new thread

is started for receiving messages over the collection. The ordering of these events, as

well as the creation of these extra sending and receiving threads, is important, and

will be discussed later in section 3.4.2.

When an IP=OFF event is processed, the MAL closes all open connections, and

then updates the CNL with an empty list of neighbors.

3.4.2 CafNet Network Layer

Forwarding

The CNL forwards messages to each of the MAL neighbors that it knows about. To

do this forwarding, the CNL must know the CNL addresses corresponding to each of

35



the MAL neighbors. Whenever the CNL learns about a previously unknown neighbor,

the CNL sends a message with no payload to the new neighbor. To differentiate this

address announcement from a normal message, the CNL sets the destination CNL

address to CNL-Self-Identify — this is also done since the CNL does not know the

remote CNL’s address and cannot address the message properly. When the remote

CNL learns of this CNL, it too will send a CNL-Self-Identify message,

The CNL associates the remote CNL addresses with the MAL identifiers. Mes-

sages buffered in the CNL that have destination CNL addresses corresponding to one

of the neighbors are then sent to those neighbors. Otherwise, the messages are held

in the CNL buffer until a neighbor with the specified CNL address is seen. At this

time, messages can only be forwarded directly to the destination, and so forwarding

is not supported. Section 6.1.1 explains some of the options available for future work.

Message Priority

The CNL uses a priority queue for its buffer. Messages are sorted by their priority —

messages with higher priority are sent before messages with lower priority. Messages

with lower priority may also be preempted from the buffer by messages with higher

priority if insufficient space is available.

One potential problem is that it is possible that an application could send many

messages and fill the CNL buffer. If the messages are low priority, other messages can

be buffered and preempt the messages with unreachable destinations. If the messages

are high priority, however, all outgoing communication may become blocked, although

incoming messages would still be processed normally.

Message Flow

The CTL can have up to one requestToSend request at a time. If a request is

still pending and the CTL calls requestToSend (perhaps with higher priority data),

the CNL replaces the previous request with the new request. After the request is

processed, the CNL checks to see if there is space available in the CNL buffer.

The CNL determines if space is available for a pending message first by seeing
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if the remaining space in the buffer plus the sizes of all buffered messages of lower

priority is greater than the amount of space requested. If so, the CNL calls the CTL’s

clearToSend method with the number of bytes and priority requested. Otherwise,

the CNL will try again later.

When a message in the buffer has a CNL destination matching the remote CNL

address of any of the neighbors, the CNL calls the appropriate MAL’s send, specifying

the message and the MAL identifier to use to send the message. The MAL then

asynchronously calls the CNL’s sendResult method to indicate whether the send

was successful; if successful, the message is then removed from the CNL’s buffer.

MAL Blocking and Disconnected Connections

Originally, the MAL’s send returned whether sending the requested message was

successful, rather than asynchronously calling the CNL’s sendResult. This caused

the CNL to block while each message was being sent. While this approach worked

reasonably for short messages on fast TCP connections, it would not work very well

for larger messages on lower-bandwidth links, such as the Bluetooth MAL — the CNL

would be unable to send messages out on other links simultaneously, possibly missing

small windows of time in which it can send data on a higher-bandwidth connection.

More importantly, it is possible for the TCP MAL to think its connections are still

connected when in fact they are not. If the physical link goes down while the interface

remains up, for example, connection reset signals are not sent, and the TCP MAL

does not realize the connections are broken until they time out a few minutes later. In

such cases, if send requests were performed synchronously, connections breaking in

these instances will block the MAL for several minutes. By having separate sending

threads for each remote MAL in the TCP MAL, one connection blocking also does

not prevent messages from being sent to other destinations.

In some cases, a MAL may attempt to connect to a remote MAL after a network

disconnection, while the remote MAL still thinks a previous connection is open. The

MAL processes the new connection in the same way as any other new connection,

assigns it a MAL identifier, and then informs the CNL of a new neighbor. When the

37



CNL informs the remote CNL of its CNL address, the remote CNL will see that the

same CNL is connected twice, and it will close the previous MAL connection. This

prevents the CNL from attempting to send messages over to the old, no longer usable,

connection.

An Attempt at Non-Blocking I/O

Initially, instead of using an asynchronous send and having separate sending threads

for each remote MAL, CafNet was going to use non-blocking I/O. The CNL would

attempt to send a message, and if the send failed because it would block, the CNL

would try again after 5 seconds, up to three times. In the meantime, the CNL

would attempt to send messages to other destinations. If the send would still block

after 15 seconds, the CNL would close that particular connection, assuming that the

connection was broken.

After attempting to implement this design, I encountered several problems:

• It is not possible to have blocking reads and non-blocking writes on the same

socket so modifying the previously existing blocking reads complicated the sit-

uation. The workaround I used was to use non-blocking sockets and write a

wrapper class to make the non-blocking reads blocking.

• In contrast to C/C++, non-blocking writes in Java are not all or nothing —

instead, writes write what they can. Therefore, under the non-blocking scheme,

the CNL would have to keep track of how many bytes of each message that it

has sent, and then when it retries, only send the portion that has not yet been

sent. Even if writes were all or nothing, some messages may be larger than the

socket buffer, and would have to be sent in chunks, leading to the same problem.

• It is unclear when the CNL should retry sending the remainder of a message

if only part of was sent. The socket may be functioning normally and not be

stuck, but cannot immediately send additional bytes.

• Partial writes mean that the CNL (for CNL-Self-Identify messages) and the
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MAL cannot send messages on their own without their messages going through

the main message queue, because the CNL might have only sent a fraction of a

different message to the same MAL, and that message needs to be completed

first before sending another message.

• If CNL-Self-Identify messages were to go through the main CNL message

queue rather than be passed to the MAL directly, they would need a CNL

destination header so the CNL can pass them to the correct MAL. However,

the remote CNL address may not yet be known.

Event Loop

The event loop for the CNL is a bit more complicated than the loops for the CTL

and the MAL. In those layers, the event loops simply checks the queue for pending

events; if any exist, it executes the first event and removes it from the queue. In

addition to processing queued events, however, the CNL must also clearToSend

any pending messages (by running an internal clearPending method) and send any

buffered messages that can now be sent (by running an internal sendAll method).

Most events (all but non-CNL-Self-Identify msgReceived calls) require the CNL

to perform these actions after the event is executed since these events change the state

of the CNL. When this happens, the CNL will call both clearPending and sendAll

as long as either results in something happening — clearPending has the potential

of adding a message to the buffer that can be sent, and sendAll may have opened

up space to clearToSend another message.

The sendResult call is an exception — it does not directly cause the CNL to call

clearPending and sendAll. Instead, it sets a flag that tells the CNL to do so, which

it checks after each action. Since many messages may be sent every time sendAll is

called, it does not make sense to call clearPending and sendAll directly after every

message is sent — instead, other actions are allowed to run and the clearPending

and sendAll calls from multiple sendResult actions finishing are coalesced.

39



3.4.3 CafNet Transport Layer

The CTL keeps track of message metadata that the application has scheduled, and

calls the CNL’s requestToSend with the metadata with the highest priority.

Other than the main event loop, the CTL has one thread used for processing

requests from applications. This separate thread allows the CTL to prioritize actions

without having to decide when to read from the application, especially when a high

number of application requests are pending. Applications communicate with the CTL

as described in Section 3.2. This thread parses requests, calls the appropriate method,

and then returns the result. To avoid complicating the API for the application, most

of these methods (bind, unbind, and schedule) bypass the event loop and instead

return results synchronously. cancel does not return anything, and is processed by

the event loop normally.

Message Flow

When the application wants to schedule a message, it calls the CTL’s schedule

method with the metadata for the message. The CTL then adds this metadata to

a list of pending metadata. If the priority of the message scheduled is greater than

the priority of the priority that the CTL has requested the CNL to send, the CTL

replaces its previous requestToSend with a new request at higher priority.

The schedule call returns an application ID for the application to associate with

the message. This ID is an integer and is generated simply by adding 1 to the previous

ID. Application IDs are unique within each CTL (until they get reused because of

overflow).

At some later point, the CNL then calls the CTL’s clearToSend to indicate that

it can buffer a message with the specified priority and number of bytes. The CTL

then calls the application’s get message method with the appropriate application ID,

and then asks the CNL to buffer the returned message.

Right before message is passed to the CNL, though, if the application requested

an END-TO-END ACK, the CTL adds a CTL-ACK-Requested header with value
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END-TO-END to the message and adds the metadata to a list of unacknowledged

messages. When the destination CTL receives the message, it will pass the message

to the application. If the application indicates that it successfully received the mes-

sage, the CTL will then send a message with a CTL-ACK-Hash3 header whose value

is the App-Id of the original message, indicating which message is being acknowl-

edged. Upon receiving the END-TO-END ACK, the origin CTL will then remove the

metadata from the list of unacknowledged messages.

The ACK is sent directly with the CTL calling the CNL’s buffer method. Because

the CNL’s size is based on the total message payload size, and ACKs have no message

payload, ACKs can always be buffered in the CNL even if it is otherwise full. ACKs

are sent with the same priority as the original message.

Every few minutes, the CTL will then go through the list of unacknowledged

metadata, get the messages from the application, and ask the CNL to buffer those

messages. The messages are not passed through the normal requestToSend and

clearToSend process, as some of these messages may still be in the CNL buffer,

and requestToSend would have checked to see whether additional space is available;

rebuffering messages that may happen to still reside in the CNL will replace the

previous copy of the message with the new (likely identical) message, and not take

any additional space. On the other hand, if the message no longer resides in the CNL

buffer because it has been successfully sent, but the END-TO-END ACK has not yet

been processed, the CNL will add the message to its buffer, removing lower priority

messages if necessary. If necessary space cannot be made, the message is not buffered.

If the application wants to cancel transmission of a message, it can do so by calling

the CTL’s cancel method with the corresponding application ID. The CTL removes

the metadata from its pending and/or unacknowledged message lists, and then calls

the CNL’s cancel method. If the message exists in the CNL’s message buffer, the

CNL removes it. No attempt is made to bring back a message that has already been

sent and no longer in the CNL cache.

3This name is historical; previously, hashes of message data were used instead of an App-Id.
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Directive Options Details
verbosity verbosity Controls the output verbosity. 0 indicates errors

only, while 100 indicates almost everything.
NetworkLayer cnlAddress

[,cacheSize]
Starts a CNL with the specified CNL address.
Takes an optional integer argument specifying
the size of the CNL buffer in bytes.

TCPMAL listenPort,
triggerPort,
peers

Starts a TCP MAL. Listens for connections from
other TCP MALs on port listenPort. Starts a
trigger server to listens for connectivity updates
on port connectivityTriggerPort. Connects to
other TCP MALs listed in the space separated
list of peers, specified as hostname:port.

BluetoothMAL Starts a Bluetooth MAL. Takes no options.
TransportLayer ctlAddress,

appPort
[,resendRate]

Starts a CTL with CTL address ctlAddress. Lis-
tens on TCP port appPort for incoming re-
quests from applications. Resends unacknowl-
edged messages every resendRate seconds. If re-
sendRate is not specified, the CTL defaults to a
rate of 60 seconds.

Table 3.2: CafNet stack configuration file directives.

3.5 Combined CafNet Stack

The CafNet stack is started by running a Java JAR file, which reads in a plain text

configuration file to configure one or more CafNet stacks. Each line starts with the

name of a directive (either a CafNet layer or overall stack option), followed an equals

sign and the options, if any, for that layer. Options are separated by commas. Table

3.2 describes these options.

For any particular CafNet stack, the CNL must be listed before any other layers.

MALs and CTLs listed after the CNL are then associated with that CNL.

For historical reasons (see Section 3.6), CTLs and CNLs have separate addresses.

These addresses must be the same for the stack to work correctly.
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3.6 CafNet Transport Layer as a Library

The original CafNet design featured CTLs as a library that applications would link

against, rather than a layer directly part of the stack. Each CTL would have a

different CTL address, and CTLs would bind to the CNL.

This design evolved into the current implementation, where applications instead

bind to a CTL, and only one CTL is associated with each CNL. The current code par-

tially supports both multiple CTLs per CNL and multiple applications per CTL. How-

ever, the CNL assumes a CNL-Destination that is the same as the CTL-Destination,

so it is not possible to actually send messages to a CTL whose address is different

from the address of the CNL it is associated with.

Because multiple CTLs, each potentially generating conflicting application IDs,

would bind to the same CNL, it was necessary to generate Message-IDs for each

message to differentiate messages in the CNL buffer (so that the appropriate message

would be canceled if a CTL requested to cancel a message). The Message-ID is

generated by concatenating the origin CTL address, the destination CTL address,

the name of the application, and the application ID. With only one CTL per CafNet

stack now, however, the distinction between application ID and Message-ID is no

longer necessary.

3.7 Bluetooth, Java, and Cell Phones

Java is very commonly supported on both personal computers and mobile devices, one

of the reasons CafNet was implemented in Java. Personal computers generally run

J2SE (Java 2 Standard Edition), while many portable devices, including Nokia cell

phones, run a more limited edition, J2ME (Java 2 Micro Edition). J2ME implements

MIDP (Mobile Information Device Profile), which defines the Java environment for

mobile devices. Given the limitations of mobile devices, MIDP is limited to provide

compatibility to a wide range of devices that may use it. This limitation, however,

made implementing CafNet on a Nokia cell phone infeasible.
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3.7.1 JSR-82: Bluetooth in Java

J2SE does not have support for Bluetooth, so a library that provides APIs for using

Bluetooth on normal computers is required. The JSR-82 specification4 defines these

APIs, but does not provide an implementation. Some of these implementations are

OS-dependent, though there are implementations available for Windows, Linux, and

MacOS from different vendors. CafNet uses AvetanaBluetooth, available for Linux

from http://sourceforge.net/projects/avetanabt/.

3.7.2 J2ME: Java on Cell Phones

Because the phone has limited memory, it is not possible to store very many messages

(< 1 MB) in memory. Instead, one could potentially write the messages to the phone’s

filesystem. In attempt to provide device independence, however, J2ME by itself does

not allow access to the phone’s filesystem. Instead, it allows long-term storage by

providing a simple database system called a record store to write data to memory.

Unfortunately, it is not possible to append to a record store in the database

system, and so records can only be created entirely at once — that is, from a message

in memory. Since some messages are larger than the maximum amount of memory

Java can use, however, it is not possible to use the record store without breaking

messages up into separate records, introducing undesired complexity.

Another issue with the record store is that it is only accessible by Java applications.

While the computer version of CafNet communicates with CafNet applications with

sockets, MIDP 1.0 does not support sockets, and so on the cell phone, CafNet must

communicate with applications. Only Java applications can read from the record

store, however, and so the record store cannot be used for CafNet applications in

general.

4http://www.jcp.org/en/jsr/detail?id=82
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3.7.3 JSR-75: J2ME Java Filesystem access

One alternative to the record system is to use the FileConnection (JSR-75) package5,

which is an optional API for J2ME that allows reading and writing from the device’s

filesystem. The Nokia 7610, however, does not support this API. The Nokia 6682,

which I later obtained, does support this API, but at that point, I started focusing

on getting CafNet to work under J2SE instead. JSR-75, however, would allow the

phone to hold messages larger than the available memory in the device, since it does

not have to allocate memory to hold the entire message at once.

5http://www.jcp.org/en/jsr/detail?id=75
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Chapter 4

Performance

After implementing the CafNet stack, I conducted performance testing on several

machines, including the Soekris 266 MHz embedded PC used in CarTel, to determine

what throughput the stack could deliver. Initial testing revealed that the XML-

RPC protocol, used for interprocess communication between the CTL and CafNet

applications, reduced the potential performance of the stack when running on the

Soekris box, and so I replaced XML-RPC with a custom binary protocol over plain

TCP sockets.

4.1 XML-RPC

As mentioned in section 3.2, the initial design of the CafNet stack used XML-RPC

to communicate between the CTL and CafNet applications. Once the CafNet stack

was fully implemented with the XML-RPC communication, cncp, a Python program

designed to use CafNet to transfer files, was used to test transferring files between

two CafNet stacks on the same host.

cncp divides files that it sends into smaller blocks of data and sends each chunk

as a message. The initial tests varied the size of the chunks to test what the overhead

of message headers for each chunk and message processing in the CafNet stack was.

Transferring an approximately 50 MB file on a Pentium 4, 2.4 GHz machine with a

CNL cache of 1 MB yielded the following results:
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Block Size Time Transfer Rate
1 MB 73 seconds 662 kilobytes per second

100 KB 85 seconds 569 kilobytes per second
10 KB 203 seconds 238 kilobytes per second

Table 4.1: Initial CafNet file transfer results on a Pentium 4

While these transfer rates seem reasonable, they become much worse on the 266

MHz Soekris box used in CarTel:

Block Size Time Transfer Rate
1 MB N/A seconds 15 kilobytes per second

100 KB N/A seconds 9 kilobytes per second

Table 4.2: Initial CafNet file transfer results on a Soekris box

On the Soekris box, once the source application passes messages to the source

CTL, the messages quickly flow to the source CNL, between the MALs, reaching the

destination CNL and then the destination CTL, where they become queued. The

application receives these queued messages quite slowly, indicating that the trans-

mission between the destination CTL and the destination application is a bottleneck

in message delivery. In the case of the tests shown in Figure 4.2, no total transfer

time is available because so many pending messages accumulated at the CTL, and

the CafNet stack exited from using too much memory, as the Soekris box only has

128 MB of memory.

Since communication between the CTL and application is performed using XML-

RPC, and there is no performance problem between the two MALs, the test suggests

that XML-RPC is inefficient. XML-RPC is a text-only protocol, so any field that

might contain binary data must be base64-encoded. During each message transfer,

the message must be base64-encoded and base64-decoded twice, leading to this inef-

ficiency.
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Figure 4-1: The CafNet stack scales reasonably well with increasing number of mes-
sages and shows increased performance as more messages were sent. The stack was
tested with a 1 MB CNL cache with different numbers of 100-byte messages with no
ACKs requested. The number of messages shown is the number of messages sent in
each direction.
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4.2 Plain Sockets

To increase CafNet’s performance, I replaced XML-RPC with a custom protocol as

described in section 3.2. Like XML-RPC, both CafNet applications and the CTL open

server sockets to process incoming requests. Although it would be convenient to make

requests using some standard format like XML or YAML, no common format allows

the use of binary data, and XML and YAML both require base64 encoding. CafNet,

therefore, must make use of a custom protocol to avoid the overhead of converting

message payload data to text.

Figure 4-1 shows the performance of the previous XML-RPC CafNet stack and

the current plain socket CafNet stack. Not surprisingly, the time it takes to send

messages of a fixed size scales somewhat linearly with the number of messages.

Unlike with the Soekris box, however, the Pentium 4 and Pentium M machines

in many cases performed better with XML-RPC than with plain sockets. This is

likely because the plain socket implementation opens a new TCP connection for every

method call between the CTL and the application. While some XML-RPC imple-

mentations (such as the Python implementation) do the same thing, other XML-RPC

implementations (such as the Java implementation CafNet used1) have a Keep-Alive

option to reuse a single connection. The tests shown by Figure 4-1 were performed

with a Java CafNet application, and therefore made use of the Keep-Alive feature.

In the future, the custom plain socket protocol could be improved to support a similar

feature.

Figure 4-2 shows the performance of the XML-RPC and plain socket CafNet stacks

with varying message sizes. In each test, a number of messages was sent such that

the total payload data would equal 1 MB. As expected, the larger messages had less

overhead, since they have less header data to transmit, and since there are fewer

messages for the CafNet stack to process.

Table 4.3 also suggests that most of the overhead in the CafNet stack is the

number of messages, not the size of the message payload. The 1000-byte messages

1Apache XML-RPC version 2; http://ws.apache.org/xmlrpc/
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Machine 100-byte Messages 1000-byte Messages
Pentium 4, Sockets 61 seconds 33 seconds
Pentium M, Sockets 56 seconds 43 seconds

Soekris, Sockets 137 seconds 138 seconds
Pentium 4, XML-RPC 10 seconds 13 seconds
Pentium M, XML-RPC 5 seconds 7 seconds

Soekris, XML-RPC 180 seconds 211 seconds

Table 4.3: CafNet performance for sending 1000 messages of different sizes.

did not take appreciably longer to send, and in the case of the non-Soekris machines,

experimental variation caused the 1000-byte messages to be sent more quickly than

the 100-byte messages in some cases.
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Figure 4-2: CafNet’s overhead depends on the number of messages transmitted, not
the total payload data transmitted. The stack was tested with a 1 MB CNL cache
with different sizes of messages sent with no ACKs requested. For each size, the total
payload data sent in each direction equaled 1 MB.
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Chapter 5

Related Work

Much work has been done in delay-tolerant networking and similar fields. Some parts

of CafNet build upon ideas from this previous work, while other parts use other

designs.

5.1 Addressing

Research performed at Intel describes a DTN setup that divides nodes into regions

with globally unique names [6, 7]. Within each region, nodes communicate with a

common network protocol. To send messages to nodes in other regions, nodes transmit

data to a DTN gateway at the border between two regions, which converts the data

transmission between protocols if necessary. Nodes are identified with “node tuples”

containing a region name and an entity name; the entity name is opaque outside

the region. When sending messages, the message is first delivered to the destination

region. Once there, internal routing is used to deliver messages to the local entity

name.

5.2 Routing

Jain [11] explores the difference between proactive and reactive routing in DTNs. In

proactive routing, routing tables are computed and pushed to nodes as updates in

53



the network topology occur. DSDV (Destination Sequenced Distance Vector) and

OLSR (Optimized Link-State Routing), used in ad-hoc networks, are both proactive

routing protocols. Protocols that use reactive routing, on the other hand, calculate

routes as they are needed. When a node sends a message to another node, the route

is determined on-demand. AODV (Ad-hoc On-demand Distance Vector) and DSR

(Dynamic Source Routing) are reactive routing protocols in ad-hoc networks.

While proactive routing may be more efficient, the routing tables required would

be rather large and may consume both significant memory and network resources. On

the other hand, reactive routing may be slower, given that end-to-end connectivity is

not present and so additional hops may be required to determine the path.

One of the algorithms explored in Jain [11] is a form of reactive source routing.

The minimum total delay for a route is calculated by summing the Minimum Expected

Delay (MED) between each pair of two consecutive nodes, which takes into account

the average waiting time, propagation delay, and transmission delay. Unlike many

other algorithms, MED does not require knowledge of future encounter times, and

instead, simply relies on the average expected time.

Jones [12] expands on MED and establishes the Minimum Estimated Expected

Delay (MEED). Like MED, each node computes expected delays to other nodes and

propagates that information to the rest of the network. Unlike MED, MEED dy-

namically routes messages at each hop and dynamically updates the routing table

whenever neighbors arrive. If the sending node unexpectedly comes in contact with a

neighbor that can get the message to the destination faster than the expected neigh-

bor, the node passes the message to the unexpected neighbor rather than holding on

to it and passing it to the expected neighbor as it would have otherwise done.

5.3 Social Routing

Herrmann [9] explores a mobility model that focuses not on geographic positions,

but instead on social mobility and groups of people coming together at times and

interacting with each other. This model assigns each mobile node, representing a
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user, a list of meeting points to visit. For each meeting point, the model assigns a

meeting time while ensuring that the time does not overlap with any other times

the user is busy. Simulations of data sets created with this model exhibit properties

similar to those of real social networks. Such a model can be used in a DTN where

data is primarily passed between users to predict how data will flow, and to route

messages appropriately.

In contrast with these models, Su [17] uses actual data from interactions between

users to determine whether using mobile devices to form an ad-hoc network is feasible.

First, users were given devices that would record encounters with other such users.

This trace data was then used to run simulations of message delivery using epidemic

routing, in which data is sent to every node encountered and flooding the network.

Not all intermediate nodes were equally successful at delivering the messages, sug-

gesting that this information can be used to improve routing.

5.4 Mobile Sensor Networks

While many sensor networks involve stationary nodes, ZebraNet [13] is a sensor net-

work that tracks zebra movements by recording GPS data and sending it through

other mobile zebra nodes to roaming researchers. Since end-to-end connectivity is

not present, mobile ad-hoc network protocols cannot be used. The researchers are

continuously moving and have unpredictable positions, so data cannot simply be for-

warded to a known position.

Given the power requirements of the ZebraNet project, data cannot simply be

flooded to every node each zebra encounters. Instead, ZebraNet uses known ze-

bra movement patterns (such as grazing, searching for water, and lack of significant

sleeping) and previous history to predict expected zebra encounters and routing the

collected data appropriately.
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5.5 Transport Layer

Harras [8] discusses transport layer operations in DTNs using epidemic routing and

different ways of ensuring messages are reliably transmitted. The first way is hop-by-

hop reliability, in which the next hop takes responsibility for delivering the message.

Fall [7] calls this mechanism “custodial transfer,” which is discussed further in Sec-

tion 6.1.2. The second approach is “active receipt,” which is what CafNet uses — the

acknowledgment message is sent back as a separate message and forwarded through

the DTN. While effective, this approach uses more DTN resources as it sends two

messages through the network, rather than just the original one. A third approach

is “passive receipt” — nodes do not send explicit acknowledgments, but if they en-

counter another node sending a message that has already been delivered, they inform

the node to stop sending that message. Eventually, a node that has stopped sending

the message will encounter the source and ask the source to stop sending the message,

completing the acknowledgment process.

5.6 Full DTN Design

Demmer [6] describes a different complete DTN design. The primary component of

this design is the Bundle Router, which receives information from many events, and

then uses this information to schedule messages. Messages to be forwarded are then

sent to a Bundle Forwarder, which executes the instructions received from the router

and sends messages to one of several Convergence Layers. Each Convergence Layer is

an adapter between the DTN and an underlying link mechanism, similar to a CafNet

Mule Adaptation Layer.

Operations that take place in the CafNet Network Layer are separated out into

several modules in this design. The Persistent Store, similar to the buffer in the

CafNet Network Layer, holds messages to be forwarded later. The Contact Manager

maintains the status, performance, and history of each link.

Finally, like the CafNet Transport Layer, this design communicates with DTN
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applications using interprocess communication. The Registration Module communi-

cates with the application, processes application messages, and passes messages the

stack receives to the appropriate application.
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Chapter 6

Conclusion

6.1 Future Work

While CafNet is functional enough for use in CarTel, more work remains to be done

to make it a fully-featured DTN.

6.1.1 Routing

At the moment, the CafNet stack will only route messages directly to their destination

— that is, if a CTL with address A wants to send a message to a CTL with address

B, CTL A will pass it to CNL A, and CNL A will only pass it to another CNL if its

CNL address is B.

While CNLs already exchange CNL-Self-Identify messages so they can identify

themselves to each other, they will also need to identify what neighbors they are likely

to see, and when they next expect to encounter them. The sending CNL can then

determine whether it should send certain messages through the remote CNL, even if

it is not the destination. Implementing routing such as MEED [12] as mentioned in

Section 5.2 will then allow CafNet to forward messages through other nodes.
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6.1.2 Custodial Transfers

Some DTN applications may have data they want to ensure gets to the destination,

but for space or power limitations, may be unable to save a copy of the message in

case an END-TO-END ACK is not received. Fall [7] describes a system of custodial

transfers, in which the responsibility of delivery is shifted to another node. The appli-

cation requests a custodial ACK; after an intermediate node that supports custodial

transfers sends an acknowledgment back, the sending node can remove its copy of

the message. From that point on, the intermediate node is responsible for delivering

the message and retransmitting as necessary, unless it passes that responsibility to

another node that supports custodial transfers and completes the transfer.

Not all nodes need to support custodial transfer for the transfer to work. Suppose

a message travels from A to B, B to C, and C to D, and the message requests a

custodial transfer, and only node C supports custodial transfers. A sends the message

to B, and B sends the message to C. C returns a custodial ACK to A indicating it

has accepted custody of the message. At this point, A no longer has to retransmit

the message and can remove it from memory, and C is responsible for ensuring the

message reaches its destination.

CafNet currently does not implement custodial transfers, although it would be

useful for it to do so. This could be implemented by having a special application

for each CTL that stores the messages acquired through custody transfer from other

nodes. This application then schedules all the messages as normal while requesting

END-TO-END ACKs and optionally requesting custody transfers itself.

6.1.3 Bluetooth

As mentioned in section 3.4.1, work on the Bluetooth MAL remains to be done

before it is fully integrated into the CafNet stack. A single connection should allow

MALs on both ends to send multiple messages at the same time, without establishing

a new connection for each direction. One way in which this might be done is to

stop using FIN and FINACK messages to indicate the end of message transmission.
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Instead, if one endpoint has stopped transmitting messages for 5-15 seconds or so, it

is considered finished and the connection can be closed if the other endpoint is also

finished. Connection status, however, is currently done in the Message class, so a bit of

work may be needed to gain access to the connection status. Alternatively, a timeout

could be added to the appropriate part of the appropriate Message constructor.

When the Bluetooth MAL discovers other Bluetooth devices that support the

CafNet protocol, it should connect to each one in turn so that CNL-Self-Identify

(and potentially other messages) can be exchanged. After this initial connection, the

CNL can maintain the association between the MAL ID and remote CNL address

until the remote device goes out of range. This makes the Bluetooth MAL act more

like the TCP MAL, even if it does not continuously maintain the connections to each

of its neighbors.

Piconets and Scatternets

As previously mentioned, Bluetooth by default only allows connecting to one other

device at a time. However, it is possible to form small ad-hoc networks called piconets,

which are formed by a master device and up to seven slave devices. In the case of

normal computing devices, like a Bluetooth keyboard and mouse, the computer is

the master, and the keyboard and mouse are each slave devices. Having one CafNet

node act as a master and up to seven other nodes act as slaves would allow a form

of multicasting such that a sender could send to seven other devices simultaneously,

and the other seven devices to send to the master at the same time, saving time and

power by not having to make separate transmissions. Using piconets also reduces

collisions that might occur, since these devices will not all try to connect the other

devices at the same time.

It is possible for devices to be in multiple piconets, forming a scatternet. A

node can be a slave in two different piconets at the same time, or be a slave in

one piconet and a master in another, so even with the 8 node per piconet limit, it

is still possible to have all local Bluetooth devices communicate each other without

continuously disconnecting and establishing new connections. However, some method
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of determining which devices should be masters and which devices should be slaves

will need to be determined.

6.1.4 Security

Security will also be an issue. As it is now, the network is extremely susceptible to

denial of service attacks in the form of message floods. A malicious sender may send

a large number of supposedly high-priority messages to attempt to force the device

to drop previous legitimate messages in favor of the junk messages.

Another security issue is the privacy and protection of the data getting sent. The

messages will be kept on mobile devices that may belong to absolute strangers. In

such a case, there is little that the protocol can do to prevent strangers from reading

the data. Privacy and protection will thus need to be implemented on an end-to-

end basis, probably by signing and encrypting the message before sending it. Using

public keys as CTL addresses is a first step to do so, since it makes it easy to encrypt

messages sent over CafNet.

6.2 Conclusion

In this thesis, I designed and implemented CafNet, a delay-tolerant network stack,

for use with CarTel. While writing the first CafNet implementation, I corrected flaws

in and improved upon the pre-existing design. Initial versions of this implementa-

tion revealed many unexpected issues, such as properly dealing with link mechanism

disconnections and ensuring the stack does not block when they occur. Performance

testing of the network stack showed that the Soekris box used in CarTel did not

perform well with the XML-RPC stack used in the implementation, and so it was

replaced with a custom protocol over plain TCP sockets.

While more work, such as implementing muling by supporting forwarding to neigh-

bors other than the final destination, remains to be done to make CafNet a fully-

featured delay-tolerant networking stack, the CafNet stack now has good performance

and can be used in CarTel and with other delay-tolerant network applications.
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