Distributed Quota Enforcement for Spam Control

Michael Walfish; J.D. Zamfirescu*, Hari Balakrishnan*, David Karger*, and Scott Shenker"

Abstract

Spam, by overwhelming inboxes, has made email a less
reliable medium than it was just a few years ago. Spam
filters are undeniably useful but unfortunately can flag
non-spam as spam. To restore email’s reliability, a re-
cent spam control approach grants quotas of stamps to
senders and has the receiver communicate with a well-
known quota enforcer to verify that the stamp on the
email is fresh and to cancel the stamp to prevent reuse.
The literature has several proposals based on this general
idea but no complete system design and implementation
that: scales to today’s email load (which requires the en-
forcer to be distributed over many hosts and to tolerate
faults in them), imposes minimal trust assumptions, re-
sists attack, and upholds today’s email privacy. This pa-
per describes the design, implementation, analysis, and
experimental evaluation of DQE, a spam control system
that meets these challenges. DQE’s enforcer occupies a
point in the design spectrum notable for simplicity: mu-
tually untrusting nodes implement a storage abstraction
but avoid neighbor maintenance, replica maintenance,
and heavyweight cryptography.

1 Introduction

Email is a less reliable communication medium than it
was just a few years ago. The culprit is spam (defined as
unsolicited bulk email), which drowned inboxes, mak-
ing it hard for users to see the email they cared about.
Unfortunately, spam filters, which offer inboxes much-
needed relief, have not restored reliability to email: false
positives from filters are now a dominant mode of email
failure. Anecdotal evidence suggests that the rate of false
positives is 1% [11,46], with some estimating their eco-
nomic damage at hundreds of millions of dollars an-
nually [12, 19]. While we have no way to verify these
numbers, we can vouch for the personal inconvenience
caused by false positives. And while our purpose here is
not to cast aspersions on spam filters (indeed, we person-
ally rely on them), we have nonetheless been vexed by
what seems to be the inherent unreliability of content-
based spam control.

Instead, we turn to an approach using guotas or bank-
able postage, where the goal is to limit the number
of messages sent, not divine their intent. Several such
schemes have been proposed before [1,5, 36]. In gen-
eral, these systems give every sender a quota of stamps.

*MIT Computer Science and Al Lab
TUC Berkeley and ICSI

How this quota is determined varies among proposals;
options include proof of CPU or memory cycles [1,47],
annual payment [5], having an email account with an
ISP [36], having a driver’s license, etc. The sending host
or its email server attaches a stamp to each email mes-
sage, and the receiving host or its email server fests the
incoming stamp by asking a quota enforcer whether the
enforcer has seen the stamp before. If not, the receiving
host infers that the stamp is “fresh” and then cancels it by
asking the enforcer to store a record of the stamp. The re-
ceiving host delivers only messages with fresh stamps to
the human user; messages with used stamps are assumed
to be spam. The hope is that allocating reasonable quo-
tas to everyone and then enforcing those quotas would
cripple spammers, who need huge volumes to be prof-
itable, while leaving legitimate users largely unaffected;
see §8.2 for a basic economic analysis. !

Of course, many defenses against spam have been pro-
posed, each with advantages and disadvantages. The pur-
pose of this paper is not to claim that ours is superior
to all others or that its adoption will be easy. Rather,
the purpose is to prove that many technical hurdles in
quota-based systems, described below, can be overcome.
To that end, this paper describes the design, implementa-
tion, analysis, and experimental evaluation of DQE (Dis-
tributed Quota Enforcement), a quota-based spam con-
trol system.

To be viable, DQE must meet two sets of design goals
(see §2). The first set concerns the protocol between re-
ceivers and the enforcer. The protocol must never flag
messages with fresh stamps as spam, must preserve the
privacy of sender-receiver communication, and must not
require that email servers and clients trust the enforcer.
The second set applies to the enforcer: it must scale to
current and future email volumes, requiring distribution
over many machines, perhaps across several organiza-
tions; it must allow faults without letting much spam
through; and it must resist attacks. Also, the enforcer
should tolerate mutual mistrust among its constituent
hosts (which is separate from the requirement, stated
above, that the enforcer not be trusted by its clients).
Finally, the enforcer should achieve high throughput to
minimize management and hardware costs. Previous pro-
posals do not meet these requirements (see §7.1).

Our main focus in this paper is the quota enforcer,
which serves as a “clearing house” for canceled stamps.
The enforcer stores billions of key-value pairs (canceled

stamps) over a set of mutually untrusting nodes and tol-
erates Byzantine and crash faults. It relies on just one
trust assumption, common in distributed systems: that
the constituent hosts are determined by a trusted entity
(84). The enforcer uses a replication protocol in which
churn generates no extra work but which gives tight guar-
antees on the average number of reuses per stamp (§4.1).
Each node uses an optimized internal key-value map that
balances storage and speed (§4.2), and nodes shed load
with a technique that avoids “distributed livelock” (§4.3).

Apart from these techniques, what is most interesting
to us about the enforcer is its simplicity. By tailoring our
solution to the semantics of quota enforcement (specifi-
cally, that the effect of lost data is only that spammers’ ef-
fective quotas increase), we can meet the various design
challenges with an infrastructure in which the nodes need
neither keep track of other nodes, nor perform replica
maintenance, nor use heavyweight cryptography.

In part because of this simplicity, the enforcer is prac-
tical. We have a deployed (though lightly used) system,
and our experimental results suggest that our implemen-
tation can handle the world’s email volume—over 80 bil-
lion messages daily [30, 50]—with a few thousand dedi-
cated high-end PCs (§6).

This work is preceded by a workshop paper [5]. That
paper argued, and this paper concurs, that quota allo-
cation and enforcement should be separate. That paper
proposed a receiver-enforcer protocol that DQE incorpo-
rates, but it sketched a very different (and more complex)
enforcer design based on distributed hash tables (DHTSs).

2 Requirements and Challenges

In this section we discuss general requirements for DQE
and specific challenges for the enforcer. These require-
ments all concern quota enforcement; indeed, in this pa-
per we address quota allocation only briefly (see §8). The
reason for this focus is that these two are different con-
cerns: the former is a purely technical matter while the
latter involves social, economic, and policy factors.

2.1 Protocol Requirements

No false positives Our high-level goal is reliable email.
We assume reused stamps indicate spam. Thus, a fresh
stamp must never appear to have been used before.

Untrusted enforcer We do not know the likely eco-
nomic model of the enforcer, whether monolithic (i.e.,
owned and operated by a single entity) or federated (i.e.,
many organizations with an interest in spam control do-
nate resources to a distributed system). No matter what
model is adopted, it would be wise to design the system
so that clients place minimal trust in the infrastructure.

Privacy To reduce (already daunting) deployment hur-
dles, we seek to preserve the current “semantics” of

email. In particular, queries of the quota enforcer should
not identify email senders (otherwise, the enforcer knows
which senders are communicating with which receivers,
violating email’s privacy model), and a receiver should
not be able to use a stamp to prove to a third party that a
sender communicated with it.

2.2 Challenges for the Enforcer

Scalability The enforcer must scale to current and fu-
ture email volumes. Studies estimate that 80-90 billion
emails will be sent daily this year [30,50]. (We admit
that we have no way to verify these claims.) We set an
initial target of 100 billion daily messages (an average of
about 1.2 million stamp checks per second) and strive to
keep pace with future growth. To cope with these rates,
the enforcer must be composed of many hosts.

Fault-tolerance Given the required number of hosts, it
is highly likely that some subset will experience crash
faults (e.g., be down) or Byzantine faults (e.g., become
subverted). The enforcer should be robust to these faults.
In particular, it should guarantee no more than a small
amount of stamp reuse, despite such failures.

High throughput To control management and hard-
ware costs, we wish to minimize the required number of
machines, which requires maximizing throughput.

Attack-resilience Spammers will have a strong incen-
tive to cripple the enforcer; it should thus resist denial-
of-service (DoS) and resource exhaustion attacks.

Mutually untrusting nodes In both federated and
monolithic enforcer organizations, nodes could be com-
promised. In the federated case, even when the nodes are
uncompromised, they may not trust each other. Thus, in
either case, besides being untrusted (by clients), nodes
should also be untrusting (of other nodes), even as they
do storage operations for each other.

We now show how the above requirements are met,
first discussing the general architecture in §3 and then, in
84, focusing on the detailed design of the enforcer.

3 DQE Architecture

The architecture is depicted in Figure 1. This section de-
scribes the format and allocation of stamps (§3.1), how
stamps are checked and canceled (§3.2), and how that
process satisfies the requirements in §2.1.> We also give
an overview of the enforcer (§3.3) and describe attack-
ers and vulnerabilities (§3.4). Although we will refer to
“sender” and “receiver”, we expect those will be, for
ease of deployment, the sender’s and receiver’s respec-
tive email servers.

3.1 Stamp Allocation and Creation

The quota allocation policy is the purview of a few
globally trusted quota allocators (QAs), each with dis-

Quota Enforcer
Allocators
Portai—
Certificate 2. RESP
. 1. TEST
with quota 3 SET)
Client

Outgoing Mail
Server

Incoming Mail
Server

Mail with certificate
and stamp "

(or mail sender) (or mail recipient)

Fig. 1: DQE architecture.

tinct public/private key pair (QA,,;,, OA,,); the OA,,,
are well known. A participant S constructs public/private
key pair (S pup, S priv) and presents S ,,;, to a QA. The QA
determines a quota for S and returns to S a signed cer-
tificate (the notation {A}p means that string A is signed
with key B):

Cs = {S pu», expiration time, quota}QApm.
Anyone knowing QA,,;, can verify, by inspecting Cs , that
S has been allocated a quota. expiration time is when the
certificate expires (in our implementation, certificates are
valid for one year), and quota specifies the maximum
number of stamps that S can use within a well-known
epoch (in our implementation, each day is an epoch).
Epochs free the enforcer from having to store canceled
stamps for long time periods. Obtaining a certificate is
the only interaction participants have with a QA, and it
happens on, e.g., yearly time scales, so the QA can allo-
cate quotas with great care.

Participants use the quota attribute of their certificates
to create up to quota stamps in any epoch. A partici-
pant with a certificate may give its stamps to other email
senders, which may be a practical way for an organiza-
tion to acquire a large quota and then dole it out to indi-
vidual users.

Each stamp has the form {Cs,{i,z}g }. Each i in
priv
[1, quota] is supposed to be used no more than once in

the current epoch. ¢ is a unique identifier of the current
epoch. Because email can be delayed en route to a recip-
ient, receivers accept stamps from the current epoch and
the one just previous.

An alternative to senders creating their own stamps
would be QAs distributing stamps to senders. We reject
this approach because it would require a massive compu-
tational effort by the QAs.

3.2 Stamp Cancellation Protocol

This section describes the protocol followed by senders,
receivers, and the enforcer. Figure 2 depicts the protocol.

For a given stamp attached to an email from sender S,
the receiver R must check that the stamp is unused and

[y

. § constructs STAMP = {Cs, {i,1}g }

priv

. S > R: {STAMP, msg}.

3. R checks that i < quota (in Cy), that ¢ is the
current or previous epoch, that {i, ¢} is signed
with S i, (S pup is in Cs), and that Cy is signed
with a quota allocator’s key. If not, R rejects the
message; the stamp is invalid. Otherwise, R
computes POSTMARK = HASH(HASH(STAMP)).

4. R — Enf. : TEST(POSTMARK). Enf. replies with
x. If x is HASH(STAMP), R considers STAMP
used. If x is “not found”, R continues to step 5.

5. R — Enf. : SET(POSTMARK, HASH(STAMP)).

[\

Fig. 2: Stamp cancellation protocol followed by sender (S), re-
ceiver (R), and the enforcer (Enf.). The protocol upholds the
design goals in §2.1: it gives no false positives, preserves pri-
vacy, and does not trust the enforcer.

must prevent reuse of the stamp in the current epoch. To
this end, R checks that the value of i in the stamp is less
than S’s quota, that 7 identifies the current or just previ-
ous epoch, and that the signatures are valid. If the stamp
passes these tests, R communicates with the enforcer us-
ing two UDP-based Remote Procedure Calls (RPCs):
TEST and SET. R first calls TEST to check whether the
enforcer has seen a fingerprint of the stamp; if the re-
sponse is “not found”, R then calls SET, presenting the
fingerprint to be stored.? The fingerprint of the stamp is
HASH(STAMP), where HASH is a one-way hash function
that is hard to invert.*

Note that an adversary cannot cancel a victim’s stamp
before the victim has actually created it: the stamp con-
tains a signature, so guessing HASH(STAMP) requires ei-
ther finding a collision in HASH or forging a signature.

We now return to the design goals in §2.1. First, false
positives are impossible: because HASH is one-way, a re-
ply of the fingerprint—HASH(STAMP)—in response to a
TEST of the postmark—HASH(HASH(STAMP))—proves
that the enforcer has seen the (postmark, fingerprint) pair.
Thus, the enforcer cannot falsely cause an email with a
novel stamp to be labeled spam. (The enforcer can, how-
ever, allow a reused stamp to be labeled novel; see §4.)
Second, receivers do not trust the enforcer: they demand
proof of reuse (i.e., the fingerprint). Third, the protocol
upholds current email privacy semantics: the enforcer
sees hashes of stamps and not stamps themselves, so it
doesn’t know who sent the message. More details about
this protocol’s privacy properties are in [5].

3.3 The Enforcer

The enforcer stores the fingerprints of stamps canceled
(i.e., SET) in the current and previous epochs. It com-
prises thousands of untrusted storage nodes (which we

often call just “nodes”), with the list of approved nodes
published by a trusted authority. The nodes might come
either from a single organization that operates the en-
forcer for profit (perhaps paid by organizations with an
interest in spam control) or else from multiple contribut-
ing organizations.

Clients, typically incoming email servers, interact with
the enforcer by calling its interface, TEST and SET. These
two RPCs are implemented by every storage node. For a
given TEST or SET, the node receiving the client’s request
is called the portal for that request. Clients discover a
nearby portal either via hard-coding or via DNS.

3.4 Attackers and Remaining Vulnerabilities

Attackers will likely be spammers (we include in this
term both authors and distributors of spam). Attackers
may control armies of hundreds of thousands of bots that
can send spam and mount attacks.

As discussed in §3.2, attackers cannot forge stamps,
cancel stamps they have not seen, or induce false pos-
itives. DQE’s remaining vulnerabilities are in two cate-
gories: unauthorized stamp use (i.e., theft) and stamp re-
use. We discuss the first category below. Since the pur-
pose of the enforcer is to prevent reuse, we address the
second one when describing the enforcer’s design in §4.

A spammer may be able to steal stamps from its “bot-
ted” hosts. However, such theft by a single spammer is
unlikely to increase spam much: a botnet with 100, 000
hosts and a daily quota of 100 stamps per machine leads
to 10 million extra spams, a small fraction of the tens
of billions of daily spams today. Moreover, out-of-band
contact between the email provider and the customer
could thwart such theft, in analogy with credit card com-
panies contacting customers to verify anomalous activity.

A related attack is to compromise an email relay and
appropriate the fresh stamps on legitimate email. The at-
tacker could then send more spam (but not much more—
one relay is unlikely to carry much of the world’s email).
More seriously, the emails that were robbed now look
like spam and might not be read. But, though the attack
has greater appeal under DQE, the vulnerability is not
new: even without stamps, an attacker controlling a com-
promised email relay can drop email arriving at the relay.
In any case, encrypting emails could prevent stamp theft.

4 Detailed Design of the Enforcer

The enforcer, depicted in Figure 3, is a high-throughput
storage service that replicates immutable key-value pairs
over a group of mutually untrusting, infrequently chang-
ing nodes. It tolerates Byzantine faults in these nodes. We
assume a trusted bunker, an entity that communicates the
system membership to the enforcer nodes. The bunker
assigns random identifiers—whose purpose we describe
below—to each node and infrequently (e.g., daily) dis-

@ In-IISt /’// N\\\‘
=k

node A)
TEST(K) [0St N
T |9 FA] |
77777777777 ia P index Elk)/'ﬂg c
SET(K,V) |[idg[iPg % GET(k) [
e 'B“\\\\;
indlist UT(k, V)“E% D
k —— {ids, idc, idp}

Fig. 3: Enforcer design. A TEST causes multiple GETs; a SET
causes one PUT. Here, A is the portal. The ids are in a circular
identifier space with the identifiers determined by the bunker.

tributes to each node an in-list, a digitally signed, author-
itative list of the members’ identifiers and IP addresses.
Given the required size of the system—thousands of
nodes (§6.5)—we believe the bunker is a reasonable as-
sumption. If a single organization operates the enforcer,
the bunker can be simply the human who deploys the
machines. If the enforcer is federated, a small number
of neutral people can implement the bunker. Managing a
list of several thousand relatively reliable machines that
are donated by various organizations is a “human scale”
job, and the vetting of machines can be light since the
enforcer is robust to adversarial nodes. Of course, the
bunker is a single point of vulnerability, but observe that
humans, not computers, execute most of its functions.
Nevertheless, to guard against a compromised bunker,
nodes accept only limited daily changes to the in-list.
Clients’ queries—e.g., TEST(HASH(HASH(stamp)))—
are interpreted by the enforcer as queries on key-value
pairs, i.e., as TEST(k) or SET(k, V), where k = HASH(V).
(Throughout, we use k and v to mean keys and values.)
Portals implement TEST and SET by invoking at other
nodes a UDP-based RPC interface, internal to the en-
forcer, of GET(k) and PUT(k, v). (Although the enforcer
uses consistent hashing [33] to assign key-value pairs to
nodes, which is reminiscent of DHTSs, the enforcer and
DHTs have different structures and different goals; see
§7.2.) To ensure that GET and PUT are invoked only by
other nodes, the in-list can include nodes’ public keys,
which nodes can use to establish pairwise shared secrets
for lightweight packet authentication (e.g., HMAC [35]).
The rest of this section describes the detailed design
of the enforcer. We first specify TEST and SET and show
that even with crash failures (i.e., down or unreachable
nodes), the enforcer guarantees little stamp reuse. We
then show how nodes achieve high throughput with an
efficient implementation of PUT and GET (§4.2) and a
way to avoid degrading under load (§4.3). We then con-
sider attacks on nodes (§4.4) and attacks by nodes, and
we argue that a Byzantine failure reduces to a crash fail-

procedure TEST(k)
v « GET(k) //local check
if v # “not found” then return (v)
// r assigned nodes determined by in-list
nodes < ASSIGNED_NODES(k)
for each n € nodes do {
v « n.GET(k) //invoke RPC
// if RPC times out, continue
if v # “not found” then return (v)
}
// all nodes returned “not found” or timed out
return (“not found”)

procedure SET(k, v)
PUT(k,v) //local store
nodes < ASSIGNED_NODES(k)
n < choose random n € nodes
n.PUT(k,v) //invoke RPC

Fig. 4: Pseudo-code for TEST and SET in terms of GET and PUT.

ure in our context (§4.5). Our design decisions are driven
by the challenges in §2.2, but the map between them is
not clean: multiple challenges are relevant to each design
decision, and vice versa.

4.1 TEST, SET, and Fault-Tolerance

Each key k presented to a portal in TEST or SET has r as-
signed nodes that could store it; these nodes are a “ran-
dom” subset (determined by k) of enforcer nodes. We say
below how to determine r. To implement TEST(k), a por-
tal invokes GET(k) at k’s r assigned nodes in turn. The
portal stops when either a node replies with a v such that
k = HASH(v), in which case the portal returns v to its
client, or else when it has tried all » nodes without such
a reply, in which case the portal returns “not found”. To
implement SET(k, v), the portal chooses one of the r as-
signed nodes uniformly at random and invokes PUT(k, v)
there. Pseudo-code for TEST and SET is shown in Fig-
ure 4. The purpose of 1 PUT and » GETs—as opposed to
the usual » PUTs and 1 GET—is to conserve storage.

A key’s assigned nodes are determined by consistent
hashing [33] in a circular identifier space using r hash
functions. The bunker-given identifier mentioned above
is a random choice from this space. To achieve near-
uniform per-node storage with high probability, each
node actually has multiple identifiers [61] deterministi-
cally derived from its bunker-given one.

Churn Churn generates no extra work for the system.
To handle intra-day churn (i.e., nodes going down and
coming up between daily distributions of the in-list), por-
tals do not track which nodes are up; instead they apply
to each PUT or GET request a timeout of several seconds
with no retry, and interpret a timed-out GET as simply a
“not found”. (A few seconds of latency is not problem-

atic for the portal’s client—an incoming email server—
because sender-receiver latency in email is often seconds
and sometimes minutes.) Moreover, when a node fails,
other nodes do not “take over” the failed node’s data: the
invariant “every (k,v) pair must always exist at r loca-
tions” is not needed for our application.

To handle inter-day churn (i.e., in-list changes), the as-
signed nodes for most (k, v) pairs must not change; oth-
erwise, queries on previously SET stamps (e.g., “yester-
day’s” stamps) would fail. This requirement is satisfied
because the bunker makes only minor in-list changes
from day-to-day and because, from consistent hashing,
these minor membership changes lead to proportionately
minor changes in the assigned nodes [33].

Analysis We now show how to set » to prevent signif-
icant stamp reuse. We will assume that nodes, even sub-
verted ones, do not abuse their portal role; we revisit this
assumption in §4.5.

Our analysis depends on a parameter p, the fraction of
the n total machines that fail during a 2-day period (recall
that an epoch is a day and that nodes store stamps’ finger-
prints for the current and previous epochs). We will con-
sider only a stamp’s expected reuse. A Chernoff bound
(proof elided) can show that there is unlikely to be a set
of pn nodes whose failure would result in much more
than the expected stamp reuse.

We don’t distinguish the causes of failures—some ma-
chines may be subverted, while others may simply crash.
To keep the analysis simple, we also do not characterize
machines as reliable for some fraction of the time—we
simply count in p any machine that fails to operate per-
fectly over the 2-day period. Nodes that do operate per-
fectly (i.e., remain up and follow the protocol) during this
period are called good. We believe that carefully chosen
nodes can usually be good so that p = 0.1, for example,
might be a reasonably conservative estimate. Neverthe-
less, observe that this model is very pessimistic: a node
that is offline for a few minutes is no longer good, yet
such an outage would scarcely increase total spam.

For a given stamp, portals can detect attempted reuses
once the stamp’s fingerprint is PUT on a good node.
When most nodes are good, this event happens quickly.
As shown in the appendix, the expected number of times
a stamp is used before this event happens is less than
ﬁ + p"n. The second term reflects the possibility (prob-
ability p") that none of the r assigned nodes is good. In
this case, an adversary can reuse the stamp once for each
of the n portals. (The “local PUT” in the first line of SET
in Figure 4 prevents infinite reuse.) These “lucky” stamps
do not worry us: our goal is to keep small the total num-
ber of reuses across all stamps. If we set r = 1 +log;,, n
and take p = 0.1, then a stamp’s expected number of uses
is less than ﬁ + p = 1+3p = 1.3, close to the ideal of
1 use per stamp.

procedure GET(k)
b < INDEX.LOOKUP(k)
if » == NULL then return (“not found”)
a < DISK.READ(b) //array a gets disk block b
ifk ¢ athen //scan all keys ina
return (“not found”) // index gave false location
else return (v) //vnexttokinarraya

procedure PUT(k, v)
if HASH(v) # k then return (“invalid”)
b «— INDEX.LOOKUP(k)
if » == NULL then
b < DISK.WRITE(k,v) // write is sequential
// b is disk block where write happened
INDEX.INSERT(k, b)
else //we think k is in block b
a < DISK.READ(b) //array a gets disk block b
if k ¢ athen // false location: k not in block b
b’ <« DISK.WRITE(k, v)
INDEX.OVERFLOW.INSERT(k, b")

Fig. 5: Pseudo-code for GET and PUT. A node switches between
batches of writes and reads; that asynchrony is not shown.

The above assumes that the network never loses RPCs.
To handle packet loss, clients and portals can retry RPCs,
thereby lowering the effective drop rate and making the
false negatives from dropped packets a negligible contri-
bution to total spam. Investigating whether such retries
are necessary is future work.

4.2 TImplementation of GET and PUT

In our early implementation, nodes stored their inter-
nal key-value maps in memory, which let them give fast
“found” and “not found” answers to GETs. However, we
realized that the total number of stamps that the enforcer
must store makes RAM scarce. Thus, nodes need a way
to store keys and values that conserves RAM yet, as
much as possible, allows high PUT and GET throughput.

This section describes the nodes’ key-value stores, the
properties of which are: PUTs are fast; after a crash,
nodes can recover most previously canceled stamps; each
key-value pair costs 5.3 bytes rather than 40 bytes of
RAM; “not found” answers to GETs are almost always
fast; and “found” answers to GETs require a disk seek.
We justify these properties below.

As in previous systems [39,49,54], nodes write incom-
ing data—key-value pairs here—to a disk log sequen-
tially and keep an index that maps keys to locations in the
log. In our system, the index lives in memory and maps
keys to log blocks, each of which contains multiple key-
value pairs. Also, our index can return false locations: it
occasionally “claims” that a given key is on the disk even
though the node has never stored the key.

Hash Table Overflow Table

© 8-bit cksum 20-byte key 24-bit offset '
' l) X \J '

/

| 24-bitoffset / L /

(k1,v1) (ka.vo) (K3,v3) | (Kygq:V101)
(kg,v4) - (Kq00:V100)

(k200:V200) |

Fig. 6: In-RAM index mapping from & to log block that holds
(k,v).

When a node looks up a key k, the index returns either
“not stored” or a block b. In the latter case, the node reads
b from the on-disk log and scans the keys in b to see if k
is indeed stored. Pseudo-code describing how GETs and
PUTSs interact with the index is shown in Figure 5.

We now describe the structure of the index, depicted in
Figure 6. The index has two components. First is a mod-
ified open addressing hash table, the entries of which are
divided into an 8-bit checksum and a 24-bit pointer to a
block (of size, e.g., 4 KBytes). A key k, like in standard
open addressing as described by Knuth, “determines a
‘probe sequence,” namely a sequence of table positions
that are to be inspected whenever k is inserted or looked
up” [34], with insertion happening in the first empty po-
sition. When insertion happens, the node stores an 8-bit
checksum of k as well as a pointer to the block that holds
k. (The checksum and probe sequence should be unpre-
dictable to an adversary.) A false location happens when
a lookup on key k finds an entry for which the top 8 bits
are k’s checksum while the bottom bits point to a block
that does not hold . This case is handled by the index’s
second component, an overflow table storing those (k, v)
pairs for which k wrongly appears to be in the hash table.
INDEX.LOOKUP(), in Figure 5, checks this table.

We now return to the properties claimed above. PUTSs
are fast because the node, rather than interleaving reads
and writes, does each in batches, yielding sequential disk
writes. For crash recovery: on booting, a node scans its
log to rebuild the index. For the RAM cost: the value of
the hash table’s load factor (i.e., ratio of non-empty en-
tries to total entries) that is space-minimizing is = 0.85
(see Claim 1 in [66]); the corresponding RAM cost is
1.33 entries (see Claim 2 in [66]), where x is the num-
ber of (k,v) pairs stored by the node. The 1.33 entries
with 4 bytes per entry gives the 5.3 bytes claimed above.
For negative GET(k) requests (i.e., k not found), nodes
inspect an average of 6.5 entries in the probe sequence
(see Claim 3 in [66]), and the rare false location incurs a
disk seek. For affirmative GETs (i.e., reused stamps), the
node visits an average of 6.5 entries to look up the block,
b, that holds v; the node then does a disk seek to get b.

These seeks are one of the enforcer’s principal bottle-
necks, as shown in §6.3. To ease this bottleneck, nodes
cache recently retrieved (k, v) pairs in RAM.

Nodes use the block device interface rather than the
file system. With the file system, the kernel would, on re-
trieving a (k, v) pair from disk, put in its buffer cache the
entire disk block holding (k,v). However, most of that
cached block would be a waste of space: nodes’ disk
reads exhibit no reference locality.

4.3 Avoiding “Distributed Livelock”

The enforcer must not degrade under high load. Such
load could be from heavy legitimate use or from attack-
ers’ spurious requests, as in §4.4. In fact, our imple-
mentation’s capacity, measured by total correct TEST re-
sponses, did originally worsen under load. This section
describes our change to avoid this behavior. See §6.6 for
experimental evidence of the technique’s effectiveness.

Observe that the packets causing nodes to do work are
UDP RPC requests or responses and that these packets
separate into three classes. The classes are: (1) TEST or
SET requests from clients; (2) GET or PUT requests from
other enforcer nodes; and (3) GET or PUT responses. To
achieve the enforcer’s throughput goal, which is to max-
imize the number of successful PUTs and GETs, we have
the individual nodes prioritize these packet classes. The
highest priority class is (3), the lowest (1).

When nodes did not prioritize and instead served
these classes round-robin, overload—defined as the CPU
being unable to do the work induced by all arriving
packets—caused two problems. First, each packet class
experienced drops, so many GETs and PUTs were un-
successful since either the request or the response was
dropped. Second, the system admitted too many TESTs
and SETSs, i.e., it overcommitted to clients. The combi-
nation was distributed livelock: nodes spent cycles on
TESTs and SETs and meanwhile dropped GET and PUT
requests and responses from other nodes.

Prioritizing the three classes, in contrast to round-
robin, improves throughput and implements admission
control: a node, in its role as portal, commits to handling
a TEST or SET only if it has no other pending work in its
role as node. We can view the work induced by a TEST or
SET as a distributed pipeline; each stage is the arrival at
any node of a packet related to the request. In this view,
a GET or PUT response means the enforcer as a whole
has done most of the work for the underlying request;
dropping such a packet contradicts the throughput goal.

To implement the priorities, each of the three packet
classes goes to its own UDP destination port and thus its
own queue (socket) on the node. The node reads from
the highest priority queue (socket) with data. If the node
cannot keep up with a packet class, the associated socket
buffer fills, and the kernel drops packets in that class.

A different way to avoid distributed livelock might be
for a node to maintain a window of outstanding RPCs
to every other node. This approach will not work well in
general because it is hard to set the size of the window.
We also note that avoiding distributed livelock and cop-
ing with network congestion are separate concerns; we
briefly address the latter in §4.6.

The general approach described in this section—
which does nothing more than apply the principle that,
under load, one should drop from the beginning of a
pipeline to maximize throughput—could be useful for
other distributed systems. There is certainly much work
addressing overload: see, e.g., SEDA [68, 69], LRP [15],
and Defensive Programming [48] and their bibliogra-
phies; these proposals use fine-grained resource alloca-
tion to protect servers from overload. Other work (see,
e.g., Neptune [57] and its bibliography) focuses on clus-
ters of equivalent servers, with the goal of proper alloca-
tion of requests to servers. All of this research concerns
requests of single hosts and is orthogonal to the simple
priority scheme described here, which concerns logical
requests happening on several hosts.

4.4 Resource Exhaustion Attacks

Two years ago, a popular DNS-based block list (DNSBL)
was forced offline [27], and a few months later another
such service was attacked [63], suggesting that effec-
tive anti-spam services with open interfaces are targets
for various denial-of-service (DoS) attacks. If success-
ful, DQE would be a major threat to spammers, so we
must ensure that the enforcer resists attack. We do not fo-
cus on packet floods, in which zombies [51, 56] exhaust
the enforcer’s bandwidth with packets that are not well-
formed requests. These attacks can be handled using var-
ious commercial (e.g., upstream firewalls) and academic
(see [44] for a survey) solutions. We thus assume that
enforcer nodes see only well-formed RPC requests.

A resource exhaustion attack is a flood of spurious
RPCs (e.g., by zombies). Such floods would waste nodes’
resources, specifically: disk seeks on affirmative GETs,
entries in the RAM index (which is exhausted long be-
fore the disk fills) for PUTs, and CPU cycles to process
RPCs. These attacks are difficult because one cannot dif-
ferentiate “good” from “bad”: requests are TEST(k) and
SET(HASH(v), v) where k, v are any 20-byte values. Ab-
sent further mechanism, handling such an attack requires
the enforcer to be provisioned for the legitimate load plus
as many TESTs and SETs as the attacker can send.

Before we describe the defense, observe that at-
tackers have some bandwidth limit. Let us make the
assumption—which we revisit shortly—that attackers
are sending as much spam as they can, and, specifically,
that they are limited by bandwidth. This limit reflects
either a constraint like the bots’ access links or some

threshold above which the attacker fears detection by the
human owner of the compromised machine.

Observe, also, that the enforcer is indifferent between
the attacker sending (1) a spurious TEST and (2) a single
spam message, thereby inducing a legitimate TEST (and,
rarely, a SET); the resources consumed by the enforcer
are the same in (1) and (2). Now, under the assumption
above, we can neutralize resource exhaustion attacks by
arranging for a TEST or SET to require the same amount
of bandwidth as sending a spam. For if attackers are
“maxed out” and if sending a TEST and a spam cost the
same bandwidth, then attackers cannot cause more TESTS
and SETs than would be induced anyway by current email
volumes—iyfor which the enforcer is already provisioned.
To realize this general approach (which is in the spirit
of [58, 65]), enforcer nodes have several options, such
as asking for long requests or demanding many copies
of each request. This approach does not address hotspots
(i.e., individual, overloaded portals), but if any particular
portal is attacked, clients can use another one.

Of course, despite our assumption above, today’s at-
tackers are unlikely to be “maxed out”. However, they
have some bandwidth limit. If this limit and current spam
volumes are the same order of magnitude, then the ap-
proach described here reduces the enforcer’s required
over-provisioning to a small constant factor. Moreover,
this over-provisioning is an upper bound: the most dam-
aging spurious request is a TEST that causes a disk seek
by asking a node for an existing stamp fingerprint (§6.3),
yet nodes cache key-value pairs (§4.2). If, for example,
half of spurious TESTs generate cache hits, the required
provisioning halves.

4.5 Adversarial Nodes

We now argue that for the protocol described in §4.1, a
Byzantine failure reduces to a crash failure. Nodes do
not route requests for each other. A node cannot lie in re-
sponse to GET(k) because for a false v, HASH(v) would
not be k (so a node cannot make a fresh stamp look
reused). A node’s only attack is to cause a stamp to be
reused by ignoring PUT and GET requests, but doing so
is indistinguishable from a crash failure. Thus, the anal-
ysis in §4.1, which applies to crash failures, captures the
effect of adversarial nodes. Of course, depending on the
deployment (federated or monolithic), one might have to
assume a higher or lower p.

However, the analysis does not cover a node that
abuses its portal role and endlessly gives its clients
false negative answers, letting much spam through. Note,
though, that if adversarial portals are rare, then a ran-
dom choice is unlikely to find an adversarial one. Fur-
thermore, if a client receives much spam with apparently
fresh stamps, it may become suspicious and switch por-
tals, or it can query multiple portals.

Another attack for an adversarial node is to execute
spurious PUTs and GETs at other nodes, exhausting their
resources. In defense, nodes maintain “put quotas” and
“get quotas” for each other, which relies on the fact that
the assignment of (k, v) pairs to nodes is balanced. De-
ciding how to set these quotas is future work.

4.6 Limitations

The enforcer may be either clustered or wide-area. Be-
cause our present concern is throughput, our implemen-
tation and evaluation are geared only to the clustered
case. We plan to address the wide-area case in future
work and briefly consider it now. If the nodes are sep-
arated by low capacity links, distributed livelock avoid-
ance (§4.3) is not needed, but congestion control is. Op-
tions include long-lived pairwise DCCP connections or a
scheme like STP in Dhash++ [14].

S Implementation

We describe our implementation of the enforcer nodes
and DQE client software; the latter runs at email senders
and receivers and has been handling the inbound and out-
bound email of several users for over six months.

5.1 Enforcer Node Software

The enforcer is a 5000-line event-driven C++ program
that exposes its interfaces via XDR RPC over UDP. It
uses libasync [42] and its asynchronous I/O daemon [39].
We modified libasync slightly to implement distributed
livelock avoidance (§4.3). We have successfully tested
the enforcer on Linux 2.6 and FreeBSD 5.3. We play the
bunker role ourselves by configuring the enforcer nodes
with an in-list that specifies random identifiers. We have
not yet implemented per-portal quotas to defend against
resource exhaustion by adversarial nodes (§4.5), a de-
fense against resource exhaustion by clients (§4.4), or
HMAC for inter-portal authentication (§4). The imple-
mentation is otherwise complete.

5.2 DQE Client Software

The DQE client software is two Python modules. The
sender module is invoked by a sendmail hook; it cre-
ates a stamp (using a certificate signed by a virtual quota
allocator) and inserts it in a new header in the departing
message. The receiver module is invoked by procmail;
it checks whether the email has a stamp and, if so, ex-
ecutes a TEST RPC over XDR to a portal. Depending
on the results (no stamp, already canceled stamp, forged
stamp, etc.), the module adds a header to the email for
processing by filter rules. To reduce client-perceived la-
tency, the module first delivers email to the recipient and
then, for fresh stamps, asynchronously executes the SET.

6 Evaluation of the Enforcer

In this section, we evaluate the enforcer experimentally.
We first investigate how its observed fault-tolerance—

The analysis (§4.1, appendix) accurately reflects

how actual failures affect observed stamp reuse. g6 2
Even with 20% of the nodes down, the average num-

ber of reuses is under 1.5.

Microbenchmarks (§6.3) predict the enforcer’s per- §6.4
formance exactly. The bottleneck is disk seeks. '

The enforcer can handle current email volume with §6.5
a few thousand high-end PCs. '

The scheme to avoid livelock (§4.3) is effective. §6.6

Table 1: Summary of evaluation results.

in terms of the average number of stamp reuses as a
function of the number of faulty machines—matches the
analysis in §4.1. We next investigate the capacity of a sin-
gle enforcer node, measure how this capacity scales with
multiple nodes, and then estimate the number of dedi-
cated enforcer nodes needed to handle 100 billion emails
per day (our target volume; see §2.2). Finally, we eval-
uate the livelock avoidance scheme from §4.3. Table 1
summarizes our results.

All of our experiments use the Emulab testbed [18]. In
these experiments, between one and 64 enforcer nodes
are connected to a single LAN, modeling a clustered net-
work service with a high-speed access link.

6.1 Environment

Each enforcer node runs on a separate Emulab host. To
simulate clients and to test the enforcer under load, we
run up to 25 instances of an open-loop tester, U (again,
one per Emulab host). All hosts run Linux FC4 (2.6 ker-
nel) and are Emulab’s “PC 3000s”, which have 3 GHz
Xeon processors, 2 GBytes of RAM, 100 Mbit/s Ether-
net interfaces, and 10,000 RPM SCSI disks.

Each U follows a Poisson process to generate TESTS
and selects the portal for each TEST uniformly at random.
This process models various email servers sending TESTS
to various enforcer nodes. (As argued in [45], Poisson
processes appropriately model a collection of many ran-
dom, unrelated session arrivals in the Internet.) The pro-
portion of reused TESTs (stamps® previously SET by U)
to fresh TESTs (stamps never SET by U) is configurable.
These two TEST types model an email server receiving a
spam or non-spam message, respectively. In response to
a “not found” reply—which happens either if the stamp
is fresh or if the enforcer lost the reused stamp—U issues
a SET to the portal it chose for the TEST.

Our reported experiments run for 12 or 30 minutes.
Separately, we ran a 12-hour test to verify that the per-
formance of the enforcer does not degrade over time.

6.2 Fault Tolerance

We investigate whether failures in the implemented sys-
tem reflect the analysis. Recall that this analysis (in §4.1
and the appendix) upper bounds the average number of
stamp uses in terms of p, where p is the probability a

2 .
2 18}
E -
s
3 e e
2 | e .
= e
. 14 b e -2
50 PR ey upper bound
E 12+ o crashed, analytic
' crashed, observed —&—
_churning, observed ~——&-—

150 17.5 200 225 250
% nodes bad (40 nodes total)

Fig. 7: Effect of “bad” nodes on stamp reuse for two types of
“bad”. Observed uses obey the upper bound from the analysis
(see §4.1 and the appendix). The crashed case can be analyzed
exactly; the observations track this analysis closely.

node is bad, i.e., that it is ever down while a given stamp
is relevant (two days). Below, we model “bad” with crash
faults, only (see §4.5 for the relationship between Byzan-
tine and crash faults).

We run two experiments in which we vary the number
of bad nodes. These experiments measure how often the
enforcer—because some of its nodes have crashed—fails
to “find” stamps it has already “heard” about.

In the first experiment, called crashed, the bad nodes
are never up. In the second, called churning, the bad
nodes repeat a 90-second cycle of 45 seconds of down
time followed by 45 seconds of up time. Both experi-
ments run for 30 minutes. The Us issue TESTs and SETs
to the up nodes, as described in §6.1. Half the TESTs
are for fresh stamps, and the other half are for a reuse
group—=843,750 reused stamps that are each queried 32
times during the experiment. This group of TESTs mod-
els an adversary trying to reuse a stamp. The Us count
the number of “not found” replies for each stamp in the
reuse group; each such reply counts as a stamp use. We
set n = 40, and the number of bad nodes is between 6 and
10, so p varies between 0.15 and 0.25. For the replication
factor (§4.1), we set r = 3.

The results are depicted in Figure 7. The two “ob-
served” lines plot the average number of times a stamp
in the “reuse group” was used successfully. These ob-
servations obey the model’s least upper bound. This
bound, from equation (1) in the appendix, is 1 + % p+
3p? + p*[40(1 = p) = (1 + 3 + 3)| and is labeled “up-
per bound”.® The crashed experiment is amenable to
an exact expectation calculation. The resulting expres-
sion’ is depicted by the line labeled “crashed, analytic”;
it matches the observations well.

6.3 Single-node Microbenchmarks

We now examine the performance of a single-node en-
forcer. We begin with RAM and ask how it limits the

Operation | Ops/sec | bottleneck
PUT 1,100 RAM
slow GET 400 disk
fast GET 38,000 CPU

Table 2: Single-node performance, assuming 1 GByte of RAM.

number of PUTs. Each key-value pair consumes roughly
5.3 bytes of memory in expectation (§4.2), and each is
stored for two days (§3.3). Thus, with one GByte of
RAM, a node can store slightly fewer than 200 million
key-value pairs, which, over two days, is roughly 1100
PUTSs per second. A node can certainly accept a higher
average rate over any given period but must limit the to-
tal number of PUTSs it accepts each day to 100 million
for every GByte of RAM. Our implementation does not
currently rate-limit inbound PUTS.

We next ask how the disk limits GETs. (The disk does
not bottleneck PUTs because writes are sequential and
because disk space is ample.) Consider a key k requested
at a node d. We call a GET slow if d stores k on disk (if
0, d has an entry for k in its index) and k is not in d’s
RAM cache (see §4.2). We expect d’s ability to respond
to slow GETSs to be limited by disk seeks. To verify this
belief, an instance of U sends TESTs and SETs at a high
rate to a single-node enforcer, inducing local GETs and
PUTS. The node runs with its cache of key-value pairs
disabled. The node responds to an average of 400 slow
GETs per second (measured over 5-second intervals, with
standard deviation less than 10% of the mean). This per-
formance agrees with our disk benchmark utility, which
does random access reads in a tight loop.

We next consider fast GETs, which are GETs on keys
k for which the node has k cached or is not storing k.
In either case, the node can reply quickly. For this type
of GET, we expect the bottleneck to be the CPU. To test
this hypothesis, U again sends many TESTs and SETs. In-
deed, CPU usage reaches 100% (again, measured over 5-
second intervals with standard deviation as above), after
which the node can handle no more than 38,000 RPCs. A
profile of our implementation indicates that the specific
CPU bottleneck is malloc ().

Table 2 summarizes the above findings.

6.4 Capacity of the Enforcer

We now measure the capacity of multiple-node enforcers
and seek to explain the results using the microbench-
marks just given. We define capacity as the maximum
rate at which the system can respond correctly to the
reused requests. Knowing the capacity as a function of
the number of nodes will help us, in the next section,
answer the dual question: how many nodes the enforcer
must comprise to handle a given volume of email (as-
suming each email generates a TEST).

Of course, the measured capacity will depend on the
workload: the ratio of fresh to reused TESTs determines
whether RAM or disk is the bottleneck. The former
TESTs consume RAM because the SETs that follow in-
duce PUTSs, while the latter TESTs may incur a disk seek.

Note that the resources consumed by a TEST are dif-
ferent in the multiple-node case. A TEST now generates
r (or r — 1, if the portal is an assigned node) GET RPCs,
each of which consumes CPU cycles at the sender and
receiver. A reused TEST still incurs only one disk seek in
the entire enforcer (since the portal stops GETing once a
node replies affirmatively).

32-node experiments We first determine the capacity
of a 32-node enforcer. To emulate the per-node load of a
several thousand-node deployment, we set r = 5 (which
we get because, from §4.1, r = 1 + logl/,, n; we take
p = 0.1 and n = 8000, which is the upper bound in §6.5).

We run two groups of experiments in which 20 in-
stances of U send half fresh and half reused TESTs at var-
ious rates to this enforcer. In the first group, called disk,
the nodes’ LRU caches are disabled, forcing a disk seek
for every affirmative GET (§4.2). In the second group,
called CPU, we enable the LRU caches and set them
large enough that stamps will be stored in the cache for
the duration of the experiment. The first group of experi-
ments is fully pessimistic and models a disk-bound work-
load whereas the second is (unrealistically) optimistic
and models a workload in which RPC processing is the
bottleneck. We ignore the RAM bottleneck in these ex-
periments but consider it at the end of the section.

Each node reports how many reused TESTS it served
over the last 5 seconds (if too many arrive, the node’s
kernel silently drops). Each experiment run happens at
a different TEST rate. For each run, we produce a value
by averaging together all of the nodes’ 5-second reports.
Figure 8 graphs the positive response rate as a function
of the TEST rate. The left and right y-axes show, re-
spectively, a per-node per-second mean and a per-second
mean over all nodes; the x-axis is the aggregate sent TEST
rate. (The standard deviations are less than 9% of the
means.) The graph shows that maximum per-node capac-
ity is 400 reused TESTs/sec when the disk is the bottle-
neck and 1875 reused TESTs/sec when RPC processing
is the bottleneck; these correspond to 800 and 3750 total
TESTs/sec (recall that half of the sent TESTs are reused).

The microbenchmarks explain these numbers. The
per-node disk capacity is given by the disk benchmark.
We now connect the per-node TEST-processing rate
(3750 per second) to the RPC-processing microbench-
mark (38,000 per second). Recall that a TEST generates
multiple GET requests and multiple GET responses (how
many depends on whether the TEST is fresh). Also, if
the stamp was fresh, a TEST induces a SET request, a
PUT request, and a PUT response. Taking all of these “re-

1 120

§ 3500 | CPU workload —e—
é = 3000 } disk workload —&— 4 100 =
88 2500 f {18 2

=] g
a5 2000 i60 &
B 1500 | w 5
24 1000 | =4
g 20
o
=W

500 'EFEFEFEHB—EHE—EH}B—;:J
O L L L L L
0 50 100 150 200 250 300

Sent "fresh"+"reused" TESTs
(1000s pkts/sec)

0

Fig. 8: For a 32-node enforcer, mean response rate to TEST re-
quests as function of sent TEST rate for disk- and CPU-bound
workloads. The two y-axes show the response rate in differ-
ent units: (1) per-node and (2) over the enforcer in aggregate.
Here, r = 5, and each reported sample’s standard deviation is
less than 9% of its mean.

quests” together (and counting responses as “requests”
because each response also causes the node to do work),
the average TEST generates 9.95 “requests” in this exper-
iment (see [66] for details). Thus, 3750 TEST requests per
node per second is 37,312 “requests” per node per sec-
ond, which is within 2% of the microbenchmark from
§6.3 (last row of Table 2).

One might notice that the CPU line in Figure 8 de-
grades after 1875 positive responses per second per node
(the enforcer’s RPC-processing capacity). The reason is
as follows. Giving the enforcer more TESTs and SETS
than it can handle causes it to drop some. Dropped SETs
cause some future reused TESTS to be seen as fresh by the
enforcer—but fresh TESTs induce more GETs (r or r — 1)
than reused TESTs (roughly (r+1)/2 on average since the
portal stops querying when it gets a positive response).
Thus, the degradation happens because extra RPCs from
fresh-looking TESTs consume capacity. This degradation
is not ideal, but it does not continue indefinitely.

Scaling We now measure the enforcer’s capacity as a
function of the number of nodes, hypothesizing near-
linear scaling. We run the same experiments as for 32
nodes but with enforcers of 8, 16, and 64 nodes. Fig-
ure 9 plots the maximum point from each experiment.
(The standard deviations are smaller than 10% of the
means.) The results confirm our hypothesis across this
(limited) range of system sizes: an additional node at the
margin lets the enforcer handle, depending on the work-
load, an additional 400 or 1875 TESTs/sec—the per-node
averages for the 32-node experiment.

We now view the enforcer’s scaling properties in terms
of its request mix. Assume pessimistically that all reused
TEST requests cost a disk seek. Then, doubling the rate
of spam (reused TEST requests) will double the required
enforcer size. However, doubling the rate of non-spam

% 120 CPU workload —eo—
£)

& 100} disk workload —&—
g

=% 80t

Nz

EE 60}

[} |72

é S 40y

£~ 2}

N .
p=

8 16 32 64

Number of nodes

Fig. 9: Enforcer capacity under two workloads as a function of
number of nodes in the enforcer. The y-axis is the same as the
right-hand y-axis in Fig. 8. Standard deviations are smaller than
10% of the reported means.

100 billion emails daily (target from §2.2)
65% spam [7,43]
65 billion disk seeks / day (pessimistic)
400 disk seeks/second/node (§6.3)
86400 seconds/day

1881 nodes (from three quantities above)

Table 3: Estimate of enforcer size (based on average rates).

(fresh TEST requests) will not change the required en-
forcer size at first. The rate of non-spam will only affect
the required enforcer size when the ratio of the rates of
reused TESTSs to fresh TESTs matches the ratio of a single
node’s performance limits, namely 400 reused TESTs/sec
to 1100 fresh TESTs/sec for every GByte of RAM. The
reason is that fresh TESTs are followed by SETs, and
these SETs are a bottleneck only if nodes see more than
1100 PUTs per second per GByte of RAM; see Table 2.

6.5 Estimating the Enforcer Size

We now give a rough estimate of the number of dedicated
enforcer nodes required to handle current email volumes.
The calculation is summarized in Table 3. Some current
estimates suggest 84 billion email messages per day [30]
and a spam rate of roughly 65% [43]. (Brightmail re-
ported a similar figure for the spam percentage in July
2004 [7].) We assume 100 billion messages daily and fol-
low the lower bound on capacity in Figure 9, i.e., every
reused TEST—each of which models a spam message—
causes the enforcer to do a disk seek. In this case, the
enforcer must do 65 billion disk seeks per day and, since
the required size scales with the number of disks (§6.4),
a straightforward calculation gives the required number
of machines. For the disks in our experiments, the num-
ber is about 2000 machines. The required network band-
width is small, about 3 Mbits/s per node.

So far we have considered only average request rates.
We must ask how many machines the enforcer needs to

[72]

2 70

85 60F

23

L = 50

SE 40|

Sl

T) S 30F

LS

g=pws 20 f

8 10} with scheme —&—
~ ~without scheme -

0 50 100 150 200 250 300 350
Sent TEST rate (1000s pkts/sec)

Fig. 10: Effect of livelock avoidance scheme from §4.3. As the
sent TEST rate increases, the ability of an enforcer without the
scheme to respond accurately to reused TESTs degrades.

handle peak email loads while bounding reply latency.
To answer this question, we would need to determine the
peak-to-average ratio of email reception rates at email
servers (their workload induces the enforcer workload).
As one data point, we analyzed the logs of our research
group’s email server, dividing a five-week period in early
2006 into 10-minute windows. The maximum window
saw 4 times the volume of the average window. Sep-
arately, we verified with a 14-hour test that a 32-node
enforcer can handle a workload of like burstiness with
worst-case latency of 10 minutes. Thus, if global email is
this bursty, the enforcer would need 8000 machines (the
peak-to-average ratio times the 2000 machines derived
above) to give the same worst-case latency.

However, global email traffic is likely far smoother
than one server’s workload. And spam traffic may be
smoother still: the spam in [32]’s 2004 data exhibits—
over ten minute windows, as above—a peak-to-average
ratio of 1.9:1. Also, Gomes et al. [22] claim that spam
is less variable than legitimate email. Thus, many fewer
than 8000 machines may be required. On the other hand,
the enforcer may need some over-provisioning for spu-
rious TESTs (§4.4). For now, we conclude that the en-
forcer needs “a few thousand” machines and leave to fu-
ture work a study of email burstiness and attacker ability.

6.6 Avoiding “Distributed Livelock”

We now briefly evaluate the scheme to avoid livelock
(from §4.3). The goal of the scheme is to maximize cor-
rect TEST responses under high load. To verify that the
scheme meets this goal, we run the following experi-
ment: 20 U instances send TEST requests (half fresh,
half reused) at high rates, first, to a 32-node enforcer
with the scheme and then, for comparison, to an other-
wise identical enforcer without the scheme. Here, r = 5
and the nodes’ caches are enabled. Also, each stamp is
used no more than twice; TESTs thus generate multiple
GETs, some of which are dropped by the enforcer with-

out the scheme. Figure 10 graphs the positive responses
as a function of the sent TEST rate. At high sent TEST
rates, an enforcer with the scheme gives twice as many
positive responses—that is, blocks more than twice as
much spam—as an enforcer without the scheme.

6.7 Limitations

Although we have tested the enforcer under heavy load
to verify that it does not degrade, we have not tested a
flash crowd in which a single stamp s is GETed by all
(several thousand) of the enforcer nodes. Note, however,
that handling several thousand simultaneous GETs is not
difficult because after a single disk seek for s, an assigned
node has the needed key-value pair in its cache.

We have also not addressed heterogeneity. For static
heterogeneity, i.e., nodes that have unequal resources
(e.g., CPU, RAM), the bunker can adjust the load-
balanced assignment of keys to values. Dynamic hetero-
geneity, i.e., when certain nodes are busy, will be handled
by the enforcer’s robustness to unresponsive nodes and
by the application’s insensitivity to latency.

7 Related Work

We first place DQE in context with a survey of work on
spam control (though space precludes a full list) and then
compare the enforcer to related distributed systems.

7.1 Spam Control

Spam filters (e.g., [25,59]) analyze incoming email to
classify it as spam or legitimate. While these tools cer-
tainly offer inboxes much relief, they do not achieve our
top-level goal of reliable email (see §1). Moreover, filters
and spammers are in an arms race that makes classifica-
tion ever harder.

The recently-proposed Re: [21] shares our reliable
email goal. Re: uses friend-of-friend relationships to
let correspondents whitelist each other automatically. In
contrast to DQE, Re: allows some false positives (for
non-whitelisted senders), but on the other hand does not
require globally trusted entities (like the quota alloca-
tors and bunker, in our case). Templeton [62] proposes
an infrastructure formed by cooperating ISPs to handle
worldwide email; the infrastructure throttles email from
untrusted sources that send too much. Like DQE, this
proposal tries to control volumes but unlike DQE pre-
sumes the enforcement infrastructure is trusted. Other
approaches include single-purpose addresses [31] and
techniques by which email service providers can stop
outbound spam [24].

In postage proposals (e.g., [20, 52]), senders pay re-
ceivers for each email; well-behaved receivers will not
collect if the email is legitimate. This class of proposals
is critiqued by Levine [38] and Abadi ef al. [1]. Levine
argues that creating a micropayment infrastructure to
handle the world’s email is infeasible and that potential

cheating is fatal. Abadi et al. argue that micropayments
raise difficult issues because “protection against double
spending [means] making currency vendor-specific
There are numerous other issues ... when considering the
use of a straight micro-commerce system. For example,
sending email from your email account at your employer
to your personal account at home would in effect steal
money from your employer” [1].

With pairwise postage, receivers charge CPU cy-
cles [4, 8, 17] or memory cycles [2, 16] (the latter be-
ing fairer because memory bandwidths are more uni-
form than CPU bandwidths) by asking senders to exhibit
the solution of an appropriate puzzle. Similarly, receivers
can demand human attention (e.g., [60]) from a sender
before reading an email.

Abadi et al. pioneered bankable postage [1]. Senders
get tickets from a “Ticket Server” (TS) (perhaps by pay-
ing in memory cycles) and attach them to emails. Re-
ceivers check tickets for freshness, cancel them with
the TS, and optionally refund them. Abadi er al. note
that, compared to pairwise schemes, this approach of-
fers: asynchrony (senders get tickets “off-line” with-
out disrupting their workflow), stockpiling (senders can
get tickets from various sources, e.g., their ISPs), and
refunds (which conserve tickets when the receiver is
friendly, giving a higher effective price to spammers,
whose receivers would not refund).

DQE is a bankable postage scheme, but TS differs
from DQE in three ways: first, it does not separate al-
location and enforcement (see §2); second, it relies on
a trusted central server; and third, it does not preserve
sender-receiver email privacy. Another bankable postage
scheme, SHRED [36], also has a central, trusted can-
cellation authority. Unlike TS and SHRED, DQE does
not allow refunds (letting it do so is future work for us),
though receivers can abstain from canceling stamps of
known correspondents; see §8.1.

Goodmail [23]—now used by two major email
providers [13]—resembles TS. (See also Bonded
Sender [6], which is not a postage proposal but has the
same goal as Goodmail.) Goodmail accredits bulk mail-
ers, trying to ensure that they send only solicited email,
and tags their email as “certified”. The providers then
bypass filters to deliver such email to their customers di-
rectly. However, Goodmail does not eliminate false pos-
itives because only “reputable bulk mailers™ get this fa-
vored treatment. Moreover, like TS, Goodmail combines
allocation and enforcement and does not preserve pri-
vacy.

7.2 Related Distributed Systems

Because the enforcer stores key-value pairs, DHTs
seemed a natural substrate, and our first design used one.
However, we abandoned them because (1) most DHTs

do not handle mutually untrusting nodes and (2) in most
DHTs, nodes route requests for each other, which can
decrease throughput if request handling is a bottleneck.
Castro et al. [9] address (1) but use considerable mech-
anism to handle untrusting nodes that route requests for
each other. Conversely, one-hop DHTs [28,29] eschew
routing, but nodes must trust each other to propagate
membership information. In contrast, the enforcer relies
on limited scale to avoid routing and on a trusted entity,
the bunker (§4), to determine its membership.

Such static configuration is common; it is used by
distributed systems that take the replicated state ma-
chine approach [55] to fault tolerance (e.g., the Byzan-
tine Fault Tolerant (BFT) literature [10], the recently pro-
posed BAR model [3], and Rosebud [53]) as well as
by Byzantine quorum solutions (e.g., [40, 41]) and by
cluster-based systems with strong semantics (e.g., [26]).

What makes the enforcer unusual compared to the
work just mentioned is that, to tolerate faults (Byzan-
tine or otherwise), the enforcer does not need mecha-
nism beyond the bunker: enforcer nodes do not need to
know which other nodes are currently up (in contrast to
replicated state machine solutions), and neither enforcer
nodes nor enforcer clients try to protect data or ensure its
consistency (in contrast to the Byzantine quorum liter-
ature and cluster-based systems with strong semantics).
The reason that the enforcer gets away with this simplic-
ity is weak semantics. It stores only immutable data, and
the entire application is robust to lost data.

8 Deployment and Economics

Though the following discussion is in the context of
DQE, much of it applies to bankable postage [1] (or
quota-based) proposals in general.

8.1 Deployment, Usage, Mailing Lists

Deployment We now speculate about paths to adop-
tion. First, large email providers have an interest in re-
ducing spam. A group of them could agree on a stamp
format, allocate quotas to their users, and run the en-
forcer cooperatively. If each provider ran its own, sepa-
rate enforcer, our design still applies: each enforcer must
cope with a large universe of stamps. Another possibility
is organization-by-organization adoption (the incremen-
tal benefit being that spoofed intra-organization spam no
longer benefits from a “whitelist”) or even individual-by-
individual (the incremental benefit being that stamping
one’s email and sending to another DQE-enabled user
ensures one’s email will not be caught in a spam filter).
In these cases, the deployment challenge is agreeing on
a quota allocator and establishing an enforcer. The local
changes (to email servers; email clients need not change)
are less daunting.

Usage The amount of stamped spam will be negligi-
ble (see below for a rough argument). Thus, following
the “no false positives” goal, stamped email should al-
ways be passed to the human user. For unstamped email:
before DQE is widely deployed, this email should go
through content filters (again risking false positives),
and under widespread DQE deployment, this email can
be considered spam. Conversely, DQE can incorporate
whitelists, where people agree not to cancel the stamps
of their frequent correspondents. Senders still stamp their
mails to prevent spoofing, but such stamps do not “count”
against the sender’s quota. Such a social protocol is sim-
ilar to TS’s refunds [1].

Mailing lists For moderated lists, senders can spend
a single stamp, and the list owner can then either sign
the message or spend stamps for each receiver. Un-
moderated, open mailing lists are problematic: spam-
mers can multiply their effect while spending only one
stamp. Partially-moderated lists might become more
common under DQE. Here, messages from new contrib-
utors would be moderated (requiring only a glance to de-
termine if the email is spam), and messages from known
valid senders—based on past contributions and identified
by the public key in the stamp—would be automatically
sent to the list, again using either the list owner’s public
key or stamps for each recipient. In such lists, the moder-
ation needed would be little (proportional to the number
of messages from new contributors), so more lists could
convert to this form.

8.2 Economics of Stamps

A quota allocation policy is effective whenever stamps
cost a scarce resource. However, for simplicity, we view
quotas as imposing a per-email monetary cost and do not
discuss how to translate currencies like CPU [1], iden-
tity [5] or human attention [64] into money. Likewise,
we only briefly consider how quotas should be allocated.

Basic analysis We give a rough argument about the ef-
fectiveness of a per-email cost. Assume that spammers
are profit-maximizing and that, today, the industry (or
individual spammers) make a maximal profit of P by
sending m spam messages. Now assume that DQE is de-
ployed and induces a stamp cost of ¢. Then, the maxi-
mum number of messages with fresh stamps that profit-
maximizing spammers can send under DQE must be less
than g: more would consume the entire maximal profit.
To reduce spam (i.e., m) by a factor f, one need only set
c=f 5. That is, to reduce spam by factor f, the price per
message must be f times the profit-per-message.

The preceding analysis assumes that each stamp is
reused only once, but adversaries can reuse each stamp a
little more than once; see §4.1. Nevertheless, the analy-
sis is very pessimistic: consider a variety of scams, each
with a different profit-per-message when sent in the op-

timal amount. If, as we expect, most scams yield low
profit, and few yield high profit, then setting a price ¢
will prevent all scams with rate-of-return less than c. For
example, if each scam sends the same amount, and if the
number of scams returning more than a given amount g
exponentially decays with ¢, then additive price increases
in stamps result in multiplicative decreases in spam.

Pricing and allocation From the preceding analysis,
the quota allocator should set a “price” according to a
target reduction goal (f) and an estimate of spammer
profits (P). Another option is for the quota allocator to
monitor spam levels and find a price adaptively (though
the feedback may occur on time scales that are too long).
One problem is that, as argued by Laurie and Clayton in
the context of computational puzzles [37], no price exists
that affects spammers and not legitimate heavy users. In
response, we note first that heavy users are the ones most
affected by spam and might be willing to pay to reduce
the problem. Second, the analysis in [37] does not take
into account refunds (or uncanceled stamps, in our con-
text), which, as Abadi et al. [1] point out, will strongly
differentiate between a spammer (whose stamps will be
canceled) and a legitimate heavy user.

A difficult policy question is: how can quota alloca-
tion give the poor fair sending rights without allowing
spammers to send? We are not experts in this area and
just mention one possibility. Perhaps a combination of
explicit allocation in poor areas of the world, bundled
quotas elsewhere (e.g., with an email account comes free
stamps), and pricing for additional usage could impose
the required price while making only heavy users pay.

9 Conclusion

The way DQE is supposed to work is that the economic
mechanism of quotas will make stamps expensive for
spammers while a technical mechanism—the enforcer—
will keep stamps from “losing value” through too much
reuse. Whether the first part of this supposition is wishful
thinking is not a question we can answer, and our specu-
lations about various policies and the future trajectory of
email should be recognized as such. We are more confi-
dent, however, about the second part. Based on our work,
we believe an enforcer that comprises a moderate num-
ber of dedicated, mutually untrusting hosts can handle
stamp queries at the volume of the world’s email. Such
an infrastructure, together with the other technical mech-
anisms in DQE, meets the design goals in §2.

The enforcer’s simplicity—particularly the minimal
trust assumptions—encourages our belief in its practi-
cality. Nevertheless, the enforcer was not an “easy prob-
lem.” Its external structure, though now spare, is the end
of a series of designs—and a few implementations—that
we tried. By accepting that the bunker is a reasonable as-
sumption and that lost data is not calamitous, we have

arrived at what we believe is a novel design point: a set
of nodes that implement a simple storage abstraction but
avoid neighbor maintenance, replica maintenance, and
mutual trust. Moreover, the “price of distrust” in this
system—in terms of what extra mechanisms are required
because of mutual mistrust—is zero. We wonder whether
this basic design would be useful in other contexts.

Appendix: Detailed Analysis

In this appendix, we justify the upper bound from §4.1
on the expected number of uses of a stamp. We make a
worst-case assumption that an adversary tries to reuse
each stamp an infinite number of times. Observe that
each use induces a PUT to an assigned node, and once the
stamp is PUT to a good assigned node—good is defined
in §4.1—the adversary can no longer reuse that stamp
successfully. Since PUTs are random, some will be to a
node that has already received a PUT for the stamp (in
which case the node is bad), while others are to “new”
nodes. Each time a PUT happens on a new node, there is
a 1 — p chance that the node is good.

Let /; be an indicator random variable for the event
that the stamp needs to be PUT to at least i — 1 distinct
nodes before hitting a good one, and let T; be the number
of PUTs, after i — 1 distinct nodes have been tried, needed
to get to the i distinct node. As a special case, let T, =
n-— Z;z 1 T; to reflect the fact that if all r assigned nodes
are bad, an adversary can reuse the stamp once at each
portal. E[[;] = Pr[l; = 1] = pland E[T]=r/(r—i+1)
since each attempt for the stamp has a (r—i+1)/r chance
of selecting a new node. Then, assuming adversaries try
to reuse each stamp ad infinitum, the expected number of
PUTS (i.e., uses of the stamp) is

E[IITI + 12T2 +--+ IrTr + Ir+1Tr+1]
= E[LIE[T\] + -+ E[LIE[T,] + E[L;111E[T 1]

r

= 1+pL+~~+pr_1£+pr n—z d

r—1 1 jzlr—j+1

r—1 r r r
= 4+ pn- — . 1
izopr—i P jz;r—j+1 M

An upper bound for this expression is f;ol piﬁ +p'n,

which we can further bound by noting that ;= < 2" and
assuming p < 1/2, giving an upper bound of

1
—+p'n 2
T=ap tP" 2

Acknowledgments

We thank: Russ Cox, Dina Katabi, Sachin Katti, Sara
Su, Arvind Thiagarajan, Mythili Vutukuru, and the
anonymous reviewers, for their comments on drafts;
David Andersen, Russ Cox, Sean Rhea, and Rodrigo

Rodrigues, for useful conversations; Russ Cox, Frank
Dabek, Maxwell Krohn, and Emil Sit, for implementa-
tion suggestions; Shabsi Walfish, for many cryptogra-
phy pointers; and Michel Goraczko and Emulab [18],
for their invaluable help with experiments. This work
was supported by the National Science Foundation under
grants CNS-0225660 and CNS-0520241, by an NDSEG
Graduate Fellowship, and by British Telecom.

Source code for the implementation described in §5 is
available at:

http://nms.csail.mit.edu/dge

Notes

! Although spam control is our motivating application, and certain
details are specific to it, the general approach of issuing and canceling
stamps can apply to any computational service (as noted before in [1]).

ZMost of the ideas in §3.1 and §3.2 first appeared in [5].

30ne might wonder why receivers will SET after they have already
received “‘service” from the enforcer in the form of a TEST. Our answer
is that executing these requests is inexpensive, automatic, and damag-
ing to spammers.

4Qur implementation uses SHA-1, which has recently been found to
be weaker than previously thought [67]. We don’t believe this weakness
significantly affects our system because DQE stamps are valid for only
two days, and, at least for the near future, any attack on SHA-1 is likely
to require more computing resources than can be marshaled in this time.
Moreover, DQE can easily move to another hash function.

SIn this section (§6), we often use “stamp” to refer to the key-value
pair associated with the stamp.

SWe take n = 40(1 — p) instead of n = 40 because, as mentioned
above, the Us issue TESTs and SETs only to the “up” nodes.

7The expression, with m = 40(1 - p), is (1 — p)*(1) + 3p*>(1 = p)a +

3p(1 - pPB+ p3m(1 - (’"7*1)32). ais T i(2) 7 4 (1+ 25). and B
is Z;’:ll i(%)H m=i (2 + % (m-(>+ 1))). See [66] for a derivation.

m(m—1)

References

[1] M. Abadi, A. Birrell, M. Burrows, F. Dabek, and T. Wobber.
Bankable postage for network services. In Proc. Asian
Computing Science Conference, Dec. 2003.

[2] M. Abadi, M. Burrows, M. Manasse, and T. Wobber.
Moderately hard, memory-bound functions. In NDSS, 2003.

[3] A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. BAR fault tolerance for cooperative services. In SOSP,
Oct. 2005.

[4] A.Back. Hashcash.
http://www.cypherspace.org/adam/hashcash/.

[5] H. Balakrishnan and D. Karger. Spam-i-am: A proposal to
combat spam using distributed quota management. In HotNets,
Nov. 2004.

[6] Bonded Sender Program.
http://www.bondedsender.com/info_center. jsp.

[7] Brightmail, Inc.: Spam percentages and spam categories.
http://web.archive.org/web/20040811090755/http:
//www.brightmail.com/spamstats.html.

[8] Camram. http://www.camram.org/.

[9] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer overlay
networks. In OSDI, Dec. 2002.

[10] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM TOCS, 20(4):398-461, Nov. 2002.

[11] ClickZ News. Costs of blocking legit e-mail to soar, Jan. 2004.
http://www.clickz.com/news/article.php/3304671.

[12]

[13]

[14]

[15]

[16]
(171

(18]
[19]

[20]

[21]
[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]
[35]

[36]

(371

[38]

[39]

ClickZ News. Spam blocking experts: False positives inevitable,
Feb. 2004.
http://www.clickz.com/news/article.php/3315541.
ClickZ News. AOL to implement e-mail certification program,
Jan. 2006.
http://www.clickz.com/news/article.php/3581301.

F. Dabek et al. Designing a DHT for low latency and high
throughput. In NSDI, Mar. 2004.

P. Druschel and G. Banga. Lazy receiver processing (LRP): A
network subsystem architecture for server systems. In OSDI,
Oct. 1996.

C. Dwork, A. Goldberg, and M. Naor. On memory-bound
functions for fighting spam. In CRYPTO, 2003.

C. Dwork and M. Naor. Pricing via processing or combatting
junk mail. In CRYPTO, 1992.

Emulab. http://www.emulab.net.

Enterprise IT Planet. False positives: Spam’s casualty of war
costing billions, Aug. 2003.
http://www.enterpriseitplanet.com/security/news/
article.php/2246371.

S. E. Fahlman. Selling interrupt rights: A way to control
unwanted e-mail and telephone calls. IBM Systems Journal,
41(4):759-766, 2002.

S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Maziéres,
and H. Yu. Re: Reliable email. In NSDI, May 2006.

L. H. Gomes, C. Cazita, J. M. Almeida, V. Almeida, and

W. Meira Jr. Charaterizing a spam traffic. In /MC, Oct. 2004.
Goodmail Systems. http://www.goodmailsystems.com.

J. Goodman and R. Rounthwaite. Stopping outgoing spam. In
ACM Conf. on Electronic Commerce (EC), May 2004.

P. Graham. Better bayesian filtering.
http://www.paulgraham.com/better.html.

S. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for internet service
construction. In OSDI, Oct. 2000.

R. F. Guilmette. ANNOUNCE: MONKEYS.COM: Now retired
from spam fighting. newsgroup posting:
news.admin.net-abuse.email, Sept. 2003.

A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for
peer-to-peer overlays. In NSDI, Mar. 2004.

I. Gupta, K. Birman, P. Linka, A. Demers, and R. van Renesse.
Building an efficient and stable P2P DHT through increased
memory and background overhead. In /PTPS, Feb. 2003.

IDC. Worldwide email usage forecast, 2005-2009: Email’s
future depends on keeping its value high and its cost low.
http://www.idc.com/, Dec. 2005.

J. Ioannidis. Fighting spam by encapsulating policy in email
addresses. In NDSS, 2003.

J. Jung and E. Sit. An empirical study of spam traffic and the use
of DNS black lists. In IMC, Oct. 2004.

D. Karger et al. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In ACM STOC, May 1997.

D. E. Knuth. The Art of Computer Programming, chapter 6.4.
Addison-Wesley, second edition, 1998.

H. Krawzyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing
for message authentication, Feb. 1997. RFC 2104.

B. Krishnamurthy and E. Blackmond. SHRED: Spam
harassment reduction via economic disincentives. http:
//www.research.att.com/ bala/papers/shred-ext.ps,
2004.

B. Laurie and R. Clayton. “Proof-of-Work” proves not to work;
version 0.2, Sept. 2004.
http://www.cl.cam.ac.uk/users/rnc1/proofwork2.pdf.

J.R. Levine. An overview of e-postage. Taughannock
Networks, http://www.taugh.com/epostage.pdf, 2003.

J. Li, M. N. Krohn, D. Mazieres, and D. Shasha. Secure
untrusted data repository (SUNDR). In OSDI, Dec. 2004.

[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]
[61]
[62]

[63]

[64]
[65]

[66]

[67]
[68]

[69]

D. Malkhi and M. K. Reiter. Byzantine quorum systems. In
ACM STOC, 1997.

D. Malkhi and M. K. Reiter. Secure and scalable replication in
phalanx. In IEEE Symp. on Reliable Distrib. Systems, Oct. 1998.
D. Mazieres. A toolkit for user-level file systems. In USENIX
Technical Conference, June 2001.

MessageLabs Ltd. http://www.messagelabs.com/Threat_
Watch/Threat_Statistics/Spam_Intercepts,2006.

J. Mirkovic and P. Reiher. A taxonomy of DDoS attacks and
DDoS defense mechanisms. CCR, 34(2), Apr. 2004.

V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson
modeling. IEEE/ACM TON, 3(3):226-244, 1995.

PC World. Spam-proof your in-box, June 2004. http://www.
pcworld.com/reviews/article/®,aid, 115885, 00.asp.
The Penny Black Project. http:
//research.microsoft.com/research/sv/PennyBlack/.
X. Qie, R. Pang, and L. Peterson. Defensive programming:
Using an annotation toolkit to build DoS-resistant software. In
0SDI, Dec. 2002.

S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. In USENIX FAST, Jan. 2002.

Radicati Group Inc.: Market Numbers Quarterly Update Q2
2003.

E. Ratliff. The zombie hunters. The New Yorker, Oct. 10 2005.
F.-R. Rideau. Stamps vs spam: Postage as a method to eliminate
unsolicited commercial email. http:
//fare.tunes.org/articles/stamps_vs_spam.html.

R. Rodrigues and B. Liskov. Rosebud: A scalable
Byzantine-fault-tolerant storage architecture. Technical Report
TR/932, MIT LCS, Dec. 2003.

M. Rosenblum and J. Ousterhout. The design and
implementation of a log-structured file system. ACM TOCS,
10(1):26-52, 1992.

F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys,
22(4):299-319, Dec. 1990.

SecurityFocus. FBI busts alleged DDoS mafia, Aug. 2004.
http://www.securityfocus.com/news/9411.

K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource
management for cluster-based internet services. In OSDI, Dec.
2002.

M. Sherr, M. Greenwald, C. A. Gunter, S. Khanna, and S. S.
Venkatesh. Mitigating DoS attack through selective bin
verification. In /st Wkshp. on Secure Netwk. Protcls., Nov. 2005.
SpamAssassin. http://spamassassin.apache.org/.
Spambouncer. http://www.spambouncer.org.

I. Stoica et al. Chord: A scalable peer-to-peer lookup protocol
for Internet applications. IEEE/ACM Transactions on
Networking, 11(1):17-32, Feb. 2003.

B. Templeton. Best way to end spam.
http://www.templetons.com/brad/spam/endspam.html.
The Spamhaus Project. Spammers release virus to attack
spamhaus.org. http://www.spamhaus.org/news.lasso?article=13,
Nov. 2003.

L. von Ahn, M. Blum, and J. Langford. Telling humans and
computers apart automatically. CACM, 47(2), Feb. 2004.

M. Walfish, H. Balakrishnan, D. Karger, and S. Shenker. DoS:
Fighting fire with fire. In HotNets, Nov. 2005.

M. Walfish, J. D. Zamfirescu, H. Balakrishnan, D. Karger, and
S. Shenker. Supplement to “Distributed Quota Enforcement for
Spam Control”. Technical report, MIT CSAIL, Apr.—May 2006.
Available from http://nms.csail.mit.edu/dqge.

X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full
SHA-1. In CRYPTO, Aug. 2005.

M. Welsh and D. Culler. Adaptive overload control for busy
Internet servers. In USENIX USITS, Mar. 2003.

M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable Internet services. In SOSP, Oct. 2001.

