Flexplane: An Experimentation Platform for Resource Management in Datacenters

Amy Ousterhout, Jonathan Perry, Hari Balakrishnan (MIT CSAIL), Petr Lapukhov (Facebook)

Abstract

Flexplane enables users to program data plane algorithms
and conduct experiments that run real application traffic
over them at hardware line rates. Flexplane explores an
intermediate point in the design space between past work
on software routers and emerging work on programmable
hardware chipsets. Like software routers, Flexplane en-
ables users to express resource management schemes in
a high-level language (C++), but unlike software routers,
Flexplane runs at close to hardware line rates. To achieve
these two goals, a centralized emulator faithfully emu-
lates, in real-time on a multi-core machine, the desired
data plane algorithms with very succinct representations
of the original packets. Real packets traverse the network
when notified by the emulator, sharing the same fate and
relative delays as their emulated counterparts.

Flexplane accurately predicts the behavior of several
network schemes such as RED and DCTCP, sustains ag-
gregate throughput of up to 760 Gbits/s on a 10-core ma-
chine (= 20x faster than software routers), and enables
experiments with real-world operating systems and appli-
cations (e.g., Spark) running on diverse network schemes
at line rate, including those such as HULL and pFabric
that are not available in hardware today.

1 Introduction

Recently the networking community has witnessed a re-
newed flurry of activity in the area of programmability,
with the goal of enabling experimentation and innova-
tion [17, 25, 34, 38]. Programmable networks facilitate
experimentation at several different levels: researchers
can experiment with new network protocols, network op-
erators can test out new protocols before deployment,
developers can debug applications with new network opti-
mizations, and students can implement, run, and measure
network algorithms on real hardware.

Much of this work has focused on the control plane;
platforms for programming resource management algo-
rithms in the data plane remain limited. Examples of such
algorithms include:

* Queue management: what packet drop or ECN-
marking [23] policy should be used? Examples
include RED [24], DCTCP [10], HULL [11], and
D?TCP [50].

* Scheduling: which queue’s packet should be sent
next on a link? Examples include weighted fair
queueing (WFQ) [20], stochastic FQ [37], priority
queueing, deficit round-robin (DRR) [44], hierarchi-
cal FQ [16], pFabric [12], and LSTF [39].

* Explicit control: how should dynamic state in packet
headers be created, used, and modified? Examples
include XCP [32], RCP [22, 49], PDQ [29], D? [53],
and PERC [30].

Because datacenters are typically controlled by a single
entity and involve workloads with measurable objectives,
they are an ideal environment for experimentation. Nev-
ertheless, most proposed resource management schemes
have been evaluated only in simulation because no exist-
ing platform enables experimentation in router data planes
with the desired level of programmability and usability.
Unfortunately simulations capture only part of the story;,
they don’t accurately model the nuances of real network
stacks, NICs, and applications.

Previous work has explored two approaches to enabling
data plane programmability. First, programmable hard-
ware [7, 13, 34, 45, 47] enables users to program some
data plane functions such as header manipulations. To
date programmable switching chips have not provided suf-
ficient flexibility to support many resource management
schemes. This remains an active area of research [45, 46],
but is not a viable option today. Furthermore, even if pro-
grammable hardware proves fruitful, users must replace
their existing hardware to take advantage of it. Second,
software routers [19, 21, 27, 33, 48] offer excellent flex-
ibility, but provide insufficient router capacity for many
applications, with the best results providing an aggregate
throughput of only 30-40 Gbits/s.

In this paper we explore an alternative approach to pro-
gramming resource management schemes in switches. We
develop a system called Flexplane, which functions as
an intermediate point between software routers and hard-
ware. It remains as programmable as software routers, but
provides substantially higher throughput. Flexplane does
not match the performance of hardware, but is still well-
suited for prototyping by researchers and students, evalu-
ating new networking schemes with real-world operating
systems and applications, and small-scale production.

The key idea in Flexplane is to move the software that
implements the programmable data plane “off-path”. We
implement a user-specified scheme in a centralized emu-
lator, which performs whole-network emulation in real
time. The emulator maintains a model of the network
topology in software, and users implement their schemes
in the emulated routers. Before each packet is sent on the
real network, a corresponding emulated packet traverses
the emulated network and experiences behavior specified
by the resource management scheme. Once this is com-
plete, the real packet traverses the network without delay.
Thus, applications observe a network that supports the

programmed scheme (Figure 1).

The rationale for this design is that resource manage-
ment schemes are data-independent; they depend only on
a small number of header fields, which typically comprise
less than 1% of the total packet size.! Thus it suffices for
resource management schemes to operate over short de-
scriptions of packets, called abstract packets, rather than
entire packets. This allows a software entity to support
much higher aggregate throughput with the same network
bandwidth.

We have implemented Flexplane, and have written
seven different resource management schemes in it. We
performed experiments to answer the question: does off-
path emulation over abstract packets provide a viable plat-
form for experimentation with network resource manage-
ment schemes? Our results show that Flexplane provides
accuracy, utility, and sufficient throughput for datacenter
applications:

e Accuracy: Flexplane accurately reproduces the
queue occupancies and flow completion times of
schemes already supported in commodity hardware
such as DropTail, RED, and DCTCP. For example,
Flexplane matches the average normalized flow com-
pletion times for small flows in DCTCP to within
12% (§5.1).

Utility: With Flexplane, users can implement a large
number of schemes such as HULL, pFabric, etc. in
a few dozen lines of code. They can use Flexplane
to evaluate trade-offs between resource management
schemes and to quickly tune protocol parameters for
different link rates. Finally, users can experiment
with real applications such as Spark and observe
results that are not possible to observe in simula-
tion, because they depend on the CPUs and network
stacks of real endpoints (§5.2).

Throughput: By limiting communication between
cores, the Flexplane emulator scales nearly linearly
to achieve 760 Gbits/s of throughput with 10 cores,
for a topology of seven racks. This is about 20x
as much as the RouteBricks software router while
using one-third as many cores (§5.3).

2 Use Cases

In this section, we present three settings in which Flex-
plane can be useful and then describe the benefits of Flex-
plane over existing approaches.

Prototyping schemes. Network researchers frequently
develop new resource management schemes. While pro-
totyping, they need to test their schemes under realistic
network conditions and to quickly iterate on their ideas.

I'This contrasts with some router functions, such as encapsulation or
encryption, which require the entire packet.

Evaluating schemes. Many people are eager to try out
new schemes and to evaluate the performance impact of
them on their applications. For example, network opera-
tors have a choice of what switch algorithms to run in their
networks and may consider upgrading their hardware to
support schemes that are newly available in ASICs (e.g.,
CONGA [9]). Before replacing their hardware, however,
operators must test a new scheme with their specific ap-
plications to evaluate the potential benefits. As another
example, students may want to implement, run, and mea-
sure resource management schemes to better understand
them.

Programmable resource management in production.
Although implementing resource management schemes
in hardware provides the best performance, Flexplane
can be used to achieve custom resource management in
a small production network in the interim until a new
scheme is supported in hardware. Fastpass [40] can be
used for a similar purpose but today supports only one
objective (max-min fairness). In contrast, Flexplane pro-
vides flexible APIs that enable users to express arbitrary
new policies in only dozens of lines of code. For example,
if one wishes to run applications on HULL in a produc-
tion setting, Flexplane provides that ability over existing
hardware.

2.1 Benefits over Existing Approaches

Simulation. Today, many resource management schemes
(e.g., PDQ [29], pFabric [12], PERC [30], and LSTF [39])
are developed and tested exclusively using network simu-
lators such as ns [6, 28] and OMNeT++ [51]. Flexplane
provides flexibility similar to that of simluators, and also
provides three additional benefits.

First, simulations are insufficient by themselves to
demonstrate a scheme’s effectiveness, because they do
not capture the nuances of real network stacks and NICs.
For many resource management schemes, implementation
details matter, and endpoint optimizations can inform pro-
tocol design. For example, burstiness due to Interrupt Coa-
lescing and other features led the authors of HULL [11] to
add an endpoint pacer to their design. These NIC features
are not easy to model in simulations, and without testing
in a real network, it is hard to predict which optimizations
matter. By using real machines as endpoints, Flexplane
inherently captures these behaviors, allowing researchers
to better understand how their protocols would work in
practice.

Second, Flexplane enables users to evaluate resource
management schemes using real applications. Realistic
applications are not solely network bound; they involve
a complex mixture of network I/O, disk I/O, and compu-
tation. These aspects of applications are hard to model
in network simulations, but can be captured naturally by
running Flexplane with unmodified applications. Further-

Emulated Network

Real Network

3: reflect

class MyScheduler {.}

2: emulate

Figure 1: In Flexplane, endpoints convey their demands to the
emulator in abstract packets, the emulator emulates packets
traversing the network and experiencing the user-implemented
scheme, and the results are reflected back onto the physical net-
work. In the real network, dashed arrows represent an abstract
packet, and the solid arrow represents the corresponding real
packet.

more, with Flexplane users can evaluate real applications
without porting them to simulation, which could be oner-
ous for complex distributed systems (e.g., memcache or
Spark). By enabling users to evaluate resource manage-
ment schemes on real network hardware with real applica-
tions, Flexplane could mitigate risk for network operators
and potentially enable greater adoption of new protocols.

Third, Flexplane experiments run in real time, complet-
ing much more quickly than simulations. For example,
a 30ms ns-2 simulation with 100,000 flows took over 3
minutes to complete; this is 6000x slower than real time.

Software routers. Software routers are often used for
research and experimentation (e.g., as in [54]), but Flex-
plane is a better approach for the use cases described
above. Conducting large-scale experiments with soft-
ware routers is infeasible because they provide insuffi-
cient throughput. Throughputs of 30-40 Gbits/s per router
limit experiments to only a few servers per router with 10
Gbits/s links; Flexplane provides 20x as much through-
put.

Programmable hardware. FPGAs and programmable
switching chips do not provide the convenience of express-
ing schemes in C++, as in Flexplane, and do not enable
experimentation in existing network infrastructure.

3 Design

Flexplane’s goal is to enable a network to support a re-
source management scheme, even when the switch hard-
ware does not provide it. More specifically, packets
should arrive at their destinations with the timings and
header modifications (e.g., ECN marks) that they would
have in a hardware network that supported the desired
scheme.

To achieve this goal, Flexplane implements the scheme
in software in a single centralized multi-core server called
the emulator, which endpoints consult before sending

each packet.” The transmission of every packet in Flex-
plane involves three steps (Figure 1):

1. Convey: At the sending endpoint, Flexplane inter-
cepts the packet before it is sent on the network. It
constructs an abstract packet summarizing the key
properties of the packet and sends it to the emulator
(§3.1).

2. Emulate: The emulator models the entire network
and emulates its behavior in real time. It delays
and modifies abstract packets in the same way the
corresponding real packets would be delayed and
modified, if they traversed a hardware network im-
plementing the same scheme (§3.2).

3. Reflect: As soon as an abstract packet exits the emu-
lation, the emulator sends a response to the source
endpoint. The endpoint immediately modifies the
corresponding real packet (if necessary) and sends
it, reflecting its fate onto the real network (§3.3).

These steps run in real time, with the result that packets

experience the network-level behavior in the emulator
rather than in the hardware network. While a real packet
waits at an endpoint, its abstract packet traverses the emu-
lated topology and encounters queueing and modifications
there. When emulation is complete and the real packet
traverses the real network, it will encounter almost no
queueing and no modifications. Higher-layer protocols
perceive that the packet is queued and modified by the re-
source management scheme implemented in the emulator.
At the highest layer, datacenter applications experience a
network that supports the emulated scheme.

3.1 Abstract Packets

An abstract packet concisely describes a chunk of data
(e.g., a packet) to be sent onto the network. It includes
the metadata required to route the packet through the em-
ulated topology and the header fields that are accessed by
routers running the chosen resource management scheme.
All abstract packets include the source and destination
addresses of the chunk of data, a unique identifier, and a
flow identifier.

In addition, a scheme can include custom header fields
in abstract packets, such as the type-of-service (DSCP) or
whether the sender is ECN-capable. Flexplane provides
a general framework that allows schemes to convey arbi-
trary packet information in abstract packets (§3.5). The
ability to convey any information enables Flexplane to
support existing resource management schemes as well as
those that will be developed in the future. It also enables
Flexplane to support schemes that require non-standard
packet formats (e.g., pFabric [12]).

ZFastpass [40] previously introduced the idea of scheduling in a
centralized entity at the granularity of individual packets. However,
Fastpass schedules packets to achieve an explicit objective whereas
Flexplane schedules packets to achieve the behavior of a distributed
resource management scheme.

For simplicity of emulation, all abstract packets rep-
resent the same amount of data; this can consist of one
large packet or multiple smaller packets in the same flow.
In this paper, an abstract packet represents one maximum
transmission unit (MTU) worth of packets (1500 bytes in
our network).

Network bandwidth. Because communication between
endpoints and the emulator occurs over the same network
used to transmit real packets, it reduces the available
network bandwidth (§6). However, abstract packets sum-
marize only the essential properties of a chunk of data,
and are quite small compared to the amount of data they
represent. In a typical case, an abstract packet contains 2
bytes for each of its source, destination, flow, and unique
identifier, and 4 bytes of custom data. These 12 bytes are
less than 1% of the size of the corresponding MTU.

Abstract packets must be sent between endpoints and
the emulator in real packets, adding additional overhead.
However, multiple abstract packets can often be sent in
the same real packet, e.g., when a single send() or sendto()
call on a socket contains several packets worth of data.
Abstract packets are also efficiently encoded into real
packets; when an endpoint requests several packets in the
same flow, the flow information is not included multiple
times in the same packet to the emulator.

3.2 Emulation

The purpose of emulation is to delay and modify ab-
stract packets just as they would be in a hardware net-
work running the same resource management scheme. To
achieve this, the emulator maintains an emulated network
of routers and endpoints in software, configured in the
same topology and with the same routing policies as the
real network. When abstract packets arrive at the emu-
lator, they are enqueued at their emulated sources. They
then flow through the emulated topology, ending at their
emulated destinations. As they flow through the emulated
network, they may encounter queueing delays, acquire
modifications from the routers they traverse (e.g., ECN
marks), or be dropped, just as they would in a real net-
work. The emulator is, effectively, a real-time simulator.

To simplify emulation, the emulator divides time into
short timeslots. The duration of a timeslot is chosen to be
the amount of time it takes a NIC in the hardware network
to transmit the number of bytes represented by an abstract
packet. Thus sending an abstract packet in the emulation
takes exactly one timeslot. In each timeslot, the emulator
allows each port on each emulated router and endpoint to
send one abstract packet into the emulated network and to
receive one abstract packet from the emulated network.’
Timeslots simplify the task of ensuring that events in the

3We assume, for simplicity, that all links in the network run at the
same rate. If this is not the case, multiple abstract packets could be sent
and received per timeslot on the higher-bandwidth links.

emulation occur at the correct time. Instead of schedul-
ing each individual event (e.g., packet transmission) at
a specific time, the emulator only needs to ensure that
each timeslot (which includes dozens of events) occurs
at the right time. This contrasts with ns [28, 6] and other
event-based simulators.

We assume that servers in the network support and
run any part of a scheme that requires an endpoint imple-
mentation (e.g., the endpoint’s DCTCP or XCP software).
This frees the emulator from the burden of performing
computation that can be performed in software at the end-
points instead. The emulator only emulates in-network
functionality, from the endpoint NICs onwards, and the
emulated endpoints act simply as sources and sinks to the
rest of the emulation.

3.3 Reflection

As soon as an abstract packet exits the emulation, the
emulator sends a response to the source endpoint indicat-
ing how to handle the corresponding real packet on the
real network. If the abstract packet was dropped during
emulation, the emulator will instruct the real endpoint
to drop the corresponding packet without sending it. Al-
ternatively, if the abstract packet reached its emulated
destination, the emulator will instruct the real endpoint
to immediately modify the corresponding real packet (if
necessary) and send it.

Modifying packets before sending them is required for
correctness for schemes whose behavior depends upon re-
ceived headers. For example, in ECN-based schemes [10,
11, 24, 50], routers set the ECN field in IP headers when
congestion is experienced and the recipient must echo this
congestion indication back to the sender. The receivers
in explicit control schemes [22, 29, 30, 32, 53] similarly
echo information about the network back to the senders.

Once a real packet has been modified, it will be sent
onto the network. It will traverse the same path through
the network that the corresponding abstract packet took
through the emulation, because the emulator is configured
to match the routing policies of the real network. The
packet will not acquire more modifications in the real
network, so it will arrive at its destination with the headers
specified by the emulator.

3.4 Accuracy

To be a viable platform for experimentation, Flexplane
must be accurate, meaning that its behavior predicts that
of a hardware network. More precisely, we define accu-
racy as the similarity between results obtained by running
an application over Flexplane with a given resource man-
agement scheme and results obtained by running the same
application over a hardware network running the scheme.

Accuracy can be measured by comparing metrics at sev-
eral different levels of the network stack. In section §5.1

int route(AbstractPkt *pkt) return a port to enqueue this packet to
Emulator int classify(AbstractPkt *pkt, int port) return a queue at this port to enqueue this packet to
pattern enqueue(AbstractPkt *pkt, int port, int queue) enqueue this packet to the given port and queue
AbstractPkt *schedule(int output_port) return a packet to transmit from this port (or null)
Emulator input(AbstractPkt **pkts, int n) receive a batch of n packets from the network
generic output(AbstractPkt **pkts, int n) output up to n packets into the network
Endpoints prepare_request(sk_buff *skb, char *request_data) copy abstract packet data into request_data
prepare_to_send(sk_buff *skb, char *allocation_data) | modify packet headers before sending

Table 1: Flexplane API specification. Flexplane exposes C++ APIs at the emulator for implementing schemes and C APIs at the
physical endpoints, for reading custom information from packets and making custom modifications to packet headers. An sk_buff is
a C struct used in the Linux kernel to hold a packet and its metadata.

we evaluate the extent to which Flexplane provides accu-
racy at the network and application levels, by analyzing
metrics such as queue occupancies and flow completion
time. Here we analyze Flexplane’s accuracy at the granu-
larity of individual packets, to better understand the ways
in which Flexplane deviates from perfect accuracy.

To understand Flexplane’s accuracy at the packet level,
we compare the latency I’ of a packet in a Flexplane net-
work to the latency [of a packet in an identical hardware
network that implements the same resource management
scheme. For now, we assume that both networks consist
of a single rack of servers. In the hardware network, the
latency [experienced by a packet will be the sum of the
unloaded delay u (the time to traverse the network when
empty) and the queueing delay g: [= u+ ¢. Note that the
unloaded delay is the sum of the speed-of-light propaga-
tion delay (negligible in datacenter networks), processing
delay at each switch, and the transmission delay (the ratio
of the packet size to the link rate).

In the Flexplane network, the latency I’ of a packet
consists of the round-trip time r the abstract packet takes
to the emulator and back, the emulated transmission delay
t, (the emulator does not model switching or propagation
delays), the emulated queueing delay g, the time the real
packet takes to traverse an unloaded network u, and any
queueing delay it encounters in the real network, ¢’. For
an emulator in the same rack, r < 2u and the emulation
ensures that 7, < u.

I'=r+te+qetutq <4utq +qe (1

Flexplane does not guarantee zero queueing within the
hardware network so ¢’ may be nonzero, adding some
jitter to I’. However, the emulation enforces bandwidth
constraints, guaranteeing that there will be sufficient band-
width to transmit all real packets admitted into the net-
work to their destinations. This means that though there
might be small amounts of transient queueing in the net-
work, ¢’ cannot grow indefinitely. In practice we find that
¢’ is very small, approximately 8-12 us on average for a
fully utilized link (§5.1).

Emulation also contributes an additive delay to /. Equa-
tion | estimates that for an unloaded network, the added
latency in Flexplane is about three times the latency ex-

perienced in an equivalent hardware network, or less.
However, our experiments indicate that in practice this
additional latency is much smaller, about 1.3 times (§5.1).
This difference is because a significant fraction of the
unloaded delay u is spent in endpoint network stacks.
The emulator uses kernel bypass, reducing r significantly
below 2u, and the emulation does not model endpoint
network stacks, causing 7, to be significantly less than
u. In addition, for loaded networks with congestion and
queueing, these latency overheads contribute a smaller
fraction of the overall latency, and Flexplane’s latencies
better match hardware.

Multiple racks. Flexplane supports multi-rack topolo-
gies. With multiple racks, the entire network is still sched-
uled using a single centralized emulator. As a result,
round-trip times to the emulator and back (r) may vary
slightly across endpoints. In addition, unloaded delays
in the real network () will vary across packets that take
different-length paths. To ensure that all packets experi-
ence the same delay overhead from Flexplane, endpoints
delay packets so that the sum of r, u, and this additional
delay equals the sum of the maximum values of r and u
for any packet in the network. Thus with multiple racks,
the delay imposed by Flexplane will increase from that
described above, but will remain an additive factor that
is constant across all packets. With larger networks ¢,
the queueing delay in the real network, can also increase,
adding more jitter to the end-to-end packet delay, I’.

In multi-rack topologies, real packets must follow the
same paths as those taken by their emulated counterparts
through the emulated network, in order to avoid causing
congestion in the real network. When the implemented
resource management scheme does not control packets’
paths, this agreement can be achieved by configuring the
routing policies in the emulated routers. For example, if
ECMP is used in the real network with a known hash func-
tion, emulated routers can run ECMP with the same hash
function. When the implemented resource management
scheme does control packets’ paths (as in CONGA [9] or
DeTail [54]), packets can be made to follow the prescribed
paths using tunneling or ECMP spoofing, as described
in [40].

3.5 Flexplane APIs

Flexplane exposes simple APIs to users so that they can
write their own resource management schemes. It decou-
ples the implemented network schemes from the emula-
tion framework, so that users only need to worry about
the specific behavior of their scheme. The framework
handles passing abstract packets between different emu-
lated components and communicating with the physical
endpoints.

Emulator APIs. To add a scheme to Flexplane, users
can choose between two C++ APIs to implement at the
emulator, as shown in Table 1. In the pattern API (the API
we expect most users to follow), users implement four
functions. These functions divide packet processing into
routing (choosing an output port), classification (choosing
amongst multiple queues for a given port), enqueuing
(adding a packet to the chosen queue or dropping it),
and scheduling (choosing a packet to dequeue from a
port). The framework calls the route, classify, and
enqueue functions, in order, for each packet arriving at
arouter, and calls the schedule function on each output
port in a router once per timeslot. Each of these functions
is implemented in a separate C++ class, enabling them to
be composed arbitrarily. If the user wants more flexibility
than the pattern API, we provide a more general API
specified in the generic row of Table 1.

Endpoint APIs. Flexplane also provides a C API for
users to read and modify packet headers at the physical
endpoints. For schemes that require access to packet fields
beyond the default abstract packet fields, the user specifies
how to copy the desired custom information from the
real packet into the abstract packet, by implementing the
function prepare_request. Flexplane then conveys
this data to the emulator along with the rest of the abstract
packet so that it will be available to the emulated scheme.

Similarly, users may modify packet headers at the end-
points (e.g., to add ECN marks) by implementing the
function prepare_to_send. This function is called
for each packet immediately before it is sent on the real
network and includes a pointer to the packet as well as an
array of bytes from the abstract packet, populated by the
resource management scheme in the emulator.

3.6 Scaling the Emulator with Multi-core

Supporting large networks with Flexplane is challenging
because it requires high aggregate emulator throughput.
The emulator uses multi-core to achieve this. It runs on a
dedicated multi-core machine; as long as each additional
core increases total throughput, the emulator can scale to
large networks by using many cores.

Common approaches to multi-core packet-processing
are ill-suited for Flexplane. For example, if Flexplane
processed each abstract packet to completion on a sin-

Aggregation

ToR

Endpoints

Figure 2: The emulator pins network components (grey) to
CPU cores (purple) to avoid sharing state across cores.

gle core (similar to RouteBricks [21]), all cores would
contend for the shared state of emulated routers and end-
points, limiting scalability. Passing abstract packets down
a linear pipeline (as in Fastpass [40]) does not work ei-
ther, because different packets may access router state in
different orders.

Instead, Flexplane’s multi-core architecture leverages
the fact that networks of routers and endpoints are natu-
rally distributed. Flexplane pins each component of the
emulated network topology to a core and passes abstract
packets from core to core as they traverse the topology.
With this architecture, router state is never shared across
cores and cores only communicate when their network
components have packets to send to or receive from a dif-
ferent core. This limited communication between cores
allows throughput to scale with the number of available
cores (§5.3).

To assign emulated components to cores, the emula-
tor distributes the routers amongst the available cores
and assigns endpoints to the same core that handles their
top-of-rack switch (Figure 2). The Flexplane framework
handles inter-core communication with FIFO queues of
abstract packets.

For large routers or computationally heavy schemes,
one core may not provide sufficient throughput. Future
work could explore splitting each router across multiple
cores. Different output ports in a router typically have
little or no shared state, so one option would be to divide
a router up by its output ports and to process different
ports on different cores.

Inter-core communication. Flexplane employs three
strategies to reduce the overhead of inter-core commu-
nication. First, Flexplane maintains only loose synchro-
nization between cores. Each core independently ensures
that it begins each timeslot at the correct time using CPU
cycle counters, but cores do not explicitly synchronize
with each other. Tight synchronization, which we at-
tempted with barriers, is far too inefficient to support high
throughput. Second, Flexplane batches accesses to the
FIFO queues so that all abstract packets to be sent on or
received from a queue in a single timeslot are enqueued
or dequeued together. This is important for reducing con-
tention on shared queues. Third, Flexplane prefetches
abstract packets the first time they are accessed on a core.
This is possible because packets are processed in batches;

later packets can be prefetched while the core performs
operations on earlier packets. This is similar to the group
prefetching technique described in [31].

3.7 Fault Tolerance

Abstract packets. Flexplane provides reliable delivery of
abstract packets both to and from the emulator. Because
each abstract packet corresponds to a specific packet or
group of packets (uniquely identified by their flow and se-
quential index within the flow), they are not interchange-
able. For correct behavior, the emulator must receive
an abstract packet for each real packet. If the physical
network supports simple priority classes, then the traf-
fic between endpoints and the emulator should run at
the highest priority, making these packets unlikely to be
dropped. Flexplane uses ACKs and timeouts to retransmit
any abstract packets in the unlikely event that they are
still dropped.

Emulator. We handle emulator fail-over in the same way
as in Fastpass [40]. The emulator maintains only soft
state so that a secondary emulator can easily take over on
failure. The primary sends periodic watchdog packets to
the secondary; when the secondary stops receiving them
it takes over and begins emulation. Endpoints update the
secondary with their pending abstract packets.

4 Implementation

We implemented Flexplane by extending Fastpass [40].
The Flexplane emulator uses the Intel Data Plane Devel-
opment Kit (DPDK) [3] for low-latency access to NIC
queues from userspace. Support for Flexplane at the end-
points is implemented in a Linux kernel module, which
functions as a Linux gdisc, intercepting and queueing
packets just before they are passed to the driver queue.

We have implemented and experimented with seven
different schemes in Flexplane:

DropTail: DropTail queues with static per-queue buffers.

RED: Random Early Detection as described in [24], with
and without ECN [23].

DCTCP: ECN marking at the switches, as in [10].

Priority queueing: strict priority queueing across at most
64 queues with classification based on the DSCP field.

Deficit round-robin: round-robin across at most 64
queues, as described in [44], with classification by flow.

HULL: phantom queues as described in [11]. We omit
the hardware pacer at the endpoints.

pFabric: pFabric switches as described in [12]. We use
standard TCP cubic at the endpoints, omitting the probe
mode and other rate control optimizations. We use the
remaining flow size as the priority for each packet.
Fastpass [40] relies on clock synchronization using
the IEEE1588 Precision Time Protocol (PTP) to ensure

Hardware

@
=}

—4- Flexplane

Latency (us)
3

@
=)

1 H ! {

0

]

l l l l
0 100,000 200,000 300,000 400,000
Sending rate (packets per second)

T
500,000

Figure 3: Packet latency under varying loads for one sender
in Flexplane and the baseline hardware network. Points show
medians; error bars show minimum and 99th percentile observed
over 30 seconds.

that endpoints send packets at precisely the prescribed
times. However, we found that it is sufficient to clock
the transmissions of real packets using the arrivals of
the corresponding abstract packets at the endpoint. This
renders PTP unnecessary.

5 Evaluation

We conduct experiments in a large production network
on a single rack of 40 servers, each connected to a top-
of-rack (ToR) switch. Each server has two CPUs, each
with 20 logical cores, 32GB RAM, one 10 Gbits/s NIC,
and runs the Linux 3.18 kernel. One server is set aside for
running the emulator. The switch is a Broadcom Trident+
based device with 64x10 Gbits/s ports and 9 MBytes of
shared buffer. The switch supports a few schemes such
as WRED with ECN marking, which we disable in all
experiments except in explicit comparisons for emulation
accuracy. We use an MTU size of 1500 bytes, and we
disable TCP segmentation offload (TSO) (§6.2).
Our experiments address the following questions:
1. Accuracy: How well does Flexplane predict the
behavior of schemes already supported in hardware?
2. Utility: How easy is Flexplane to use and what
forms of experimentation can it enable?
3. Emulator throughput: Does the Flexplane emula-
tor provide sufficient throughput to support datacen-
ter applications?

5.1 Accuracy

In this section, we evaluate how faithfully Flexplane pre-
dicts results obtained with hardware switches, in terms
of latency for individual packets, throughput and queue
occupancies in the network, and flow completion times
observed by applications.

Latency. First we compare the latency of packets in Flex-
plane to that of packets running on bare hardware, in an
uncongested network. For this experiment, one client
sends MTU-sized UDP packets to a server in the same
rack, using the sockperf utility [5]; the receiver sends
back responses. We measure the RTT of the response
packets at several different rates of packets sent per sec-
ond, and estimate the one-way latency as the RTT divided

by two. We run DropTail both in Flexplane and on the
hardware switch.

The results in Figure 3 demonstrate that the per-packet
latency overhead of Flexplane is modest. Under the light-
est offered load we measure (10,000 packets/s), the me-
dian latency in Flexplane is 33.8 us, compared to 14.9 pus
on hardware. As the load increases, the latency in Flex-
plane increases slightly due to the additional load on the
kernel module in the sending endpoint. Flexplane is un-
able to meet the highest offered load (6 Gbits/s), because
of the CPU overhead of the kernel module. Note that state-
of-the-art software routers add latencies of the same order
of magnitude for each hop, even without the added round-
trip time to an off-path emulator: 47.6-66.4 us [21] for a
CPU-based software router; 30 ps [31] or 140-260 ps [27]
for GPU-based software routers.

Throughput. Next we evaluate accuracy for bulk-transfer
TCP, using network-level metrics: throughput and in-
network queueing. In each experiment, five machines
send TCP traffic at maximum throughput to one receiver.

We compare Flexplane to hardware for three schemes
that our router supports: TCP-cubic/DropTail, TCP-
cubic/RED, and DCTCP. We configure the hardware
router and the emulator using the same parameters for
each scheme. For DropTail we use a static per-port
buffer size of 1024 MTUs. For RED, we use min_th=150,
max_th=300, max_p=0.1, and weight=5. For DCTCP, we
use an ECN-marking threshold of 65 MTUs, as recom-
mended by its designers [10].

Flexplane achieves similar aggregate throughput as the
hardware. All three schemes consistently saturate the
bottleneck link, achieving an aggregate throughput of
9.4 Gbits/s in hardware, compared to 9.2-9.3 Gbits/s in
Flexplane. This 1-2% difference in throughput is due to
bandwidth allocated for abstract packets in Flexplane.

Queueing. During the experiment described above, we
sample the total buffer occupancy in the hardware router
every millisecond, and the emulator logs the occupancy
of each emulated port at the same frequency.

Table 2 shows that Flexplane maintains similar queue
occupancies as the hardware schemes. For DropTail it
maintains high occupancies (close to the max of 1024)
with large variations in occupancy, while for the other two
schemes the occupancies are lower and more consistent.
Flexplane does differ from hardware in that its occupan-
cies tend to be slightly lower and to display more variation.
We believe this is due to the effectively longer RTT in
Flexplane. When the congestion window is reduced, the
pause before sending again is longer in Flexplane, allow-
ing the queues to drain more.

During the Flexplane experiments, the hardware queue
sizes remain small: the mean is 7-10 MTUs and the 95th
percentile is 14-22 MTUs. These numbers are small com-

Queue Occupancies (MTUs)

Hardware Flexplane
median | o | median c
DropTail 931 73.7 837 98.6

RED 138 12.9 104 325
DCTCP 61 4.9 51 13.0

Table 2: Flexplane achieves similar queue occupancies and
standard deviations in occupancies (o) as hardware.

pared to the queue sizes in the emulator or in the hardware
queues during the hardware experiments, and indicate that
queueing in the hardware network does not significantly
impact the accuracy of Flexplane (§3.4).

Flow completion time. Next we evaluate Flexplane’s ac-
curacy at the application level in terms of flow completion
time (FCT). We run an RPC-based application in which
four clients repeatedly request data from 32 servers. The
size of the requested data is determined by an empirical
workload derived from live traffic in a production datacen-
ter that supports web search (first presented in [10]). It
includes a mixture of flows of different sizes. 53% of the
flows are small flows of less than 100KB, but 37% of the
bytes come from large flows of 10MB or larger. Request
times are chosen by a Poisson process such that the clients
receive a specified load between 10% and 80%. We nor-
malize the FCT for each flow to the average FCT achieved
by a flow of the same size, in an unloaded network, when
flows are requested continuously.

We run this application for DropTail and DCTCP, in
Flexplane and in the hardware network. Figure 4 shows
the average normalized FCTs. For both small flows and
large flows, results with Flexplane closely match results
obtained with a hardware network. For loads up to 60%
with both schemes, Flexplane estimates average normal-
ized FCTs of hardware to within 2-8% for small flows
and 3-14% for large flows. Accuracy decreases slightly
for higher loads of 70% and 80%, but remains within 18%
for small flows and 24% for large flows.

5.2 Flexplane Utility

In this section, we evaluate the utility of Flexplane. We
study how easy it is to write new schemes in Flexplane and
provide four examples of how Flexplane can be useful.

Ease of use. To demonstrate the simplicity of implemen-
tation, we show the key portions of the source code for
priority queueing scheduling in Figure 5. Most schemes
require only a few dozen lines of code to implement, as
shown in Table 3. pFabric requires significantly more
code than other schemes because it does not maintain
packets in FIFO order between the enqueue and dequeue
stages; 170 of the 251 lines of code are used to implement
custom queueing.

Parameter tuning. Flexplane enables users to quickly
tune protocol parameters to accommodate different net-

o
o

-A Flexplane
< -& Hardware

o
o
L

IS
L

IS
L

N
h

Average Normalized FCT
r 9

Average Normalized FCT
@

o
o

&~ o o
L L

& o o
L L

N
h

N
h

Average Normalized FCT
@

Average Normalized FCT
@

02 06 08 02 06 08

0.4
Load

(b) DCTCEP, (0, 100KB]

0.4
Load

(a) DropTail, (0, 100KB]

o
o

02 06 08 02 06 08

0.4
Load

(d) DCTCP, (10MB, o)

0.4
Load

(¢) DropTail, (10MB, o)

Figure 4: Flexplane closely matches the average normalized flow completion times of hardware for DropTail and DCTCP. The left
two graphs show results for small flow sizes; the right two graphs show results for large flow sizes.

class PriorityScheduler
public:
AbstractPkt* PriorityScheduler::schedule (uint32_t
port) {
/* get the mask of non-empty queues x*/
uint64_t mask = m_bank->non_empty_gmask (port) ;

: public Scheduler {

uint64_t g_index;
/* bsfqg: find the first set bit in mask x/
asm("bsfqg %1,%0":"=r" (gq_index) :"r" (mask));

return m_bank->dequeue (port, g_index);
}
private:
PacketQueueBank »*m_bank;

}

Figure 5: Source code for a priority scheduler in Flexplane over
< 64 queues. A PacketQueueBank stores packets between the
calls to enqueue and schedule.

scheme LOC
drop tail queue manager 39
RED queue manager 125
DCTCP queue manager 43
priority queueing scheduler 29
round robin scheduler 40
HULL scheduler 60
pFabric QM, queues, scheduler | 251

Table 3: Lines of code (LOC) in the emulator for each resource
management scheme.

works. For example, the authors of HULL [11] conducted
evaluations using a testbed with 1 Gbits/s links; we use
Flexplane to tune HULL’s parameters to fit our 10 Gbits/s
network. We use the recommended phantom queue drain
rate of 95% of the link speed (9.5 Gbits/s). The HULL au-
thors use a 1 KB marking threshold in a 1 Gbits/s network,
and suggest a marking threshold of 3-5 KB for 10 Gbit-
s/s links. We found, however, that throughput degraded
significantly with a 3 KB marking threshold, achieving
only 5 Gbits/s total with four concurrent flows. We there-
fore increased the marking threshold until our achieved
throughput was 92% of the drain rate (this is what [11]
achieves with their parameters); the resulting threshold is
15 KB. Flexplane helped us conduct this parameter search
quickly and effectively.

Evaluating trade-offs. In this example, we demonstrate
how one might use Flexplane to evaluate the performance

250 4 Priority Queueing
HULL S o
0 o o
2300
=
o
I
2 better
5350 °
s
:51 O- DCTCP -O- Priority Queueing DropTail
I O i
400 DropTail <@ RED
©O-HULL O Round Robin
O pFabric
T T T T T
55 50 40 35 30

45

Low priority FCT (ms)

Figure 6: Flexplane enables users to explore trade-offs between
different schemes. Large points show averages over the entire

experiment, faded points show averages over 1s, and ellipses
show one standard deviation. Note the flipped axes.

of a specific application with different resource manage-
ment schemes. We do not argue that any scheme is better
than any other, but instead demonstrate that there are trade-
offs between different schemes (as described in [47]), and
that Flexplane can help users explore these trade-offs.

We use an RPC-based workload and consider the trade-
off that schemes make between performance for short
flows and performance for long flows. In the experiment,
four clients repeatedly request data from 32 servers. 80%
of the requests are short 1.5 KB “high priority” requests,
while the remaining 20% are 10 Mbyte “low priority”
requests. Request times are chosen by a Poisson process
such that the client NICs are receiving at about 60% of
their maximum throughput. We evaluate the schemes
discussed in §5.1, as well as TCP-cubic/per-flow-DRR,
TCP-cubic/priority-queueing, HULL, and pFabric.

Figure 6 shows the trade-off each scheme makes on
this workload. With DropTail, large queues build up in
the network, leading to high flow completion times for the
high-priority requests. However, DropTail senders rarely
cut back their sending rates and therefore achieve good
FCTs for the long requests. At the other end of the spec-
trum, HULL’s phantom queues cause senders to decrease
their sending rates early, leading to unutilized bandwidth
and worse performance for the low priority flows; the
high priority flows achieve relatively good performance
because they encounter little queueing in the network.

6 20

-A- DCTCP

-# HULL

-@- pFabric

4- -@ TCP-DropTail

5-

a

Normalized FCT
w
1
Normalized FCT
o

o

T 1 0 T
0.6 0.8 0.2

041_051d
(a) (0, 100KB]: Average

i
04

Load
(b) (0, 100KB]: 99th percentile

S =)
1 1

Normalized FCT

S}
1

0- J
0.2

i 1
0.6 0.8

1 1
0.4 0.6
Load

(c) (I0MB, «): Average

0.8

Figure 7: Normalized flow completion times for the web search workload, for four different schemes run in Flexplane. Note the

different y axes.

Priority queueing performs well on this simple workload,
achieving good performance for both flow types. A net-
work operator could use these results to determine what
scheme to run in their network, depending on how they
value performance of high priority flows relative to low
priority flows.

Real applications. In addition to enabling experimenta-
tion with network-bound workloads like the one above,
Flexplane enables users to evaluate the performance im-
pact of different resource management schemes on real
applications whose performance depends on both net-
work and computational resources. We consider two ap-
plications that perform distributed computations using
Spark [1]. The first uses block coordinate descent [2]
to compute the optimal solution to a least squares prob-
lem; this is a staple of many machine learning tasks. The
second performs an in-memory sort [4]. For this exper-
iment, we use a small cluster of 9 machines (1 master
and 8 workers), each with 8 cores, connected via a single
switch with 1 Gbit/s links. We use Flexplane to run each
application with DropTail, DCTCP, and HULL.

Table 4 shows that different Spark applications are
affected in different ways by a change in resource man-
agement scheme. The sort application, which includes
multiple waves of small tasks and small data transfers,
shows small improvements in completion time, relative to
DropTail, when run with DCTCP or HULL. In contrast,
coordinate descent takes 4.4% longer to complete when
run with DCTCP, and 29.4% longer when run with HULL.
This is because this application sends data in a small num-
ber of bulk transfers whose throughput is degraded by
HULL’s, and to a lesser extent DCTCP’s, more aggressive
responses to congestion. Flexplane enabled us to quickly
evaluate the impact of a change in resource management
scheme on these real-world applications. Because these
applications spend much of their time performing com-
putation (>75%), it is not possible to accurately conduct
this experiment in a network simulator today.

Reproducible research. Here we demonstrate how ex-

% Change in Completion Time

Coordinate descent Sort
DCTCP +4.4% -4.8%
HULL +29.4% -2.6%

Table 4: Percent change in completion time of two Spark appli-
cations when run with DCTCP or HULL, relative to when run
with DropTail.

periments that researchers conducted in simulation in
the past can be conducted on a real network with Flex-
plane, and how results in a real network might differ from
those in simulation. To do so, we recreate an experi-
ment that has been conducted in several other research pa-
pers [12, 14, 26]. We use the same network configuration
and workload as in the flow completion time experiment
in §5.1; this is the same workload used in prior work.

Figure 7 shows the results of running this workload for
DropTail, DCTCP, HULL, and pFabric, in Flexplane, at
loads ranging from 10% to 80%. We present the average
and 99th percentile normalized flow completion time for
small flows, and the average normalized flow completion
time for large flows, as in prior work.

We observe the same general trends as in prior work.
For the small flows, DropTail performs the worst, with
performance degrading significantly at the highest loads
and at the 99th percentile. In contrast, pFabric maintains
good performance for small flows, even at high load and
at the tail. For large flows, DCTCP and DropTail maintain
the best performance, while HULL and pFabric degrade
significantly at loads of 70%-80%. For HULL, this is
because the required bandwidth headroom begins to sig-
nificantly limit large flows. For pFabric, performance
degrades at high load because short queues cause many
packets to be dropped. This may be exacerbated by the
fact that we do not use all TCP modifications at the end-
points, including the probe mode (which is particularly
important at high load).

Our results demonstrate an unexpected phenomenon.
One would expect that under low load (e.g., 10%),
small flows would achieve a normalized FCT close to

1; previous simulation results have corroborated this in-
tuition [12, 26]. In contrast, our results show that the
average normalized FCTs across all schemes begin at
around 2.5, even under the lightest load. These results
obtained in Flexplane agree with those obtained on the
hardware network, for DropTail and DCTCP (Figure 4).

This unexpected behavior is due to the properties of real
endpoint network stacks. In real endpoints, application-
layer latency depends on the rate at which packets are
sent; when packets are sent at a high enough rate, the
latency decreases significantly. For example, in our net-
work, the ping utility reports average ping latencies of
77 us when pings are sent every 2 ms; this decreases to
14 us when pings are sent every 50 us. Because many
of the bytes in this workload belong to large flows, the
number of queries per second is relatively small (513
per second to saturate a 10 Gbits/s NIC). The result is
that, under most loads, packets are not sent at a high
enough rate for small flows to achieve the ultra-low la-
tency achieved when flows are requested continuously;
their normalized FCTs are thus much higher than 1. Large
flows still approach normalized FCTs of 1 because the
FCT is dominated by the transmission time. This behavior
would be hard to capture accurately in simulation, but is
automatically captured with Flexplane.

5.3 Emulator Throughput

The aggregate throughput of the Flexplane emulator de-
termines the size of network and the types of applications
that Flexplane can support. In this section we evaluate
how emulator throughput scales with the number of cores
and how it varies across resource management schemes.

Workload. For all throughput experiments, we generate
a synthetic network load using additional cores on the
emulator machine. Sources and destinations are chosen
uniformly at random. Timings obey Poisson arrivals and
we vary the mean inter-arrival time to produce different
network loads. We run an automated stress test to deter-
mine the maximum sustainable throughput for a given
configuration. It begins with low load and periodically
adjusts the load, increasing it as long as all cores are able
to sustain it, and decreasing it when a core falls behind.
We report the total throughput observed over the last 30
seconds, aggregated over all routers in the topology. We
conduct experiments on a 2.4 GHz Intel Xeon CPU E7-
8870 with 10 cores and 32GB of RAM.

Scaling with number of cores. We consider several vari-
ants on a simple datacenter network topology. Each topol-
ogy includes racks of 32 endpoints connected via a ToR
switch; ToRs are connected by a single aggregation (Agg)
switch. We assign the Agg switch to its own CPU core,
and assign each ToR and its adjacent endpoints to another
core, as shown in Figure 2. As we vary the number of
racks in the topology, we also vary the fraction of traffic

—A— racks connected with Agg

—e— isolated racks

3
0 T i i T i i i
o 0 1 2 3 4 5 6 7 8

Emulation cores
Figure 8: Maximum throughput achieved by the Flexplane
emulator for different numbers of emulation cores. The grey
dashed line indicates linear scaling based on the throughput
achieved with a single emulation core.

whose source and destination are in different racks so that
in any given configuration, all routers process the same
amount of network throughput. All routers run DropTail.

The largest topology we measure has seven racks and
achieves a total throughput of 761 Gbits/s. Thus, for
example, the emulator could support a network of 224
servers sending at an average rate of 2.5 Gbits/s or a
network of 56 servers sending continuously at 10 Gbits/s.
This is sufficient throughput for small scale datacenter
applications with high network utilization, or medium
scale applications with lower network utilization.

Figure 8 shows how throughput scales with different
numbers of racks in the topology and correspondingly
with different numbers of emulation cores. When racks
are connected with an Agg switch (red line), throughput
falls short of linear scaling (grey line), but each additional
core still provides about 77 Gbits/s of additional through-
put. To understand the shortfall from linear scaling, we
also show the throughput achieved by a simplified topol-
ogy of isolated racks in which there is no Agg switch
and all traffic is intra-rack (blue line). With this topology,
throughput scales almost linearly, achieving 112 Gbits/s
of added throughput per core on average, 95% of the
118 Gbits/s achieved by a single core. Thus only a small
portion (at most 15%) of the throughput shortfall with
connected racks is due to unavoidable contention between
cores for shared resources such as the L3 cache. The
majority of the shortfall is due to communication with
the extra Agg core; a more sophisticated mechanism for
inter-core communication might help reduce this shortfall.

Throughput across schemes. Figure 9 shows the max-
imum throughput achieved by each of the schemes we
implemented in Flexplane, for a simple topology with
one rack of 32 endpoints. DCTCP and DropTail achieve
the highest throughput, about 120 Gbits/s. Most other
schemes are only slightly more complex and achieve sim-
ilar throughputs. The most complex scheme, pFabric,
achieves 85 Gbits/s, demonstrating that even complex
schemes can achieve sufficient throughput in Flexplane.

Comparison with software routers. Flexplane outper-
forms existing software routers in terms of individual

- o
N g N n
o o O (&)
1 1 1 1

Throughput (Gbits/s)

: I I I I I I
0 I

DCTCP DropTall Pnonly Round HULL ED
Queueing Robin
Resource management scheme

Figure 9: Maximum throughput achieved by the emulator for
different resource management schemes with one rack of 32
machines.

pFabrlc

router capacity. When emulating a single router with 32
endpoints, Flexplane achieves a total throughput of 118
Gbits/s, compared to a maximum of 35 Gbits/s in Route-
Bricks [21] and 40 Gbits/s in PacketShader [27], with
minimal forwarding.

The difference between Flexplane and previous ap-
proaches is even more pronounced when we compare
throughput per clock cycle, to normalize for different
numbers of cores used and different clock frequencies. In
its largest configuration, RouteBricks achieved 35 Gbits/s
of throughput with 32 2.8 GHz cores. In comparison, our
7 rack configuration achieves a total router throughput
of 761 Gbits/s with 10 2.4 GHz cores (8 emulation cores
plus 2 stress test cores). This amounts to 81 times as
much throughput per clock cycle in Flexplane.

The difference arises for two reasons. Because Flex-
plane only processes abstract packets, its memory foot-
print is relatively small; all of the memory used in the
stress test fits in the 30 MB L3 cache shared by the 10
cores. In contrast, RouteBricks applications accessed 400-
1000 bytes from memory for each 64-byte packet, likely
degrading throughput. In addition, Flexplane performs no
processing on its forwarding path involving data or header
manipulation, leaving the hardware routers to handle that
and focusing only on resource management functions.

6 Discussion

6.1 Overheads

Flexplane consumes some network resources; in this sec-
tion, we quantify these overheads.

Network bandwidth. Communication between end-
points and the emulator consumes some of the network
bandwidth. We measured the total throughput loss due to
this communication (including abstract packets, acknowl-
edgements, and retransmissions) to be only 1-2% of the
total achievable throughput on a 10 Gbits/s link (§5.1).

Emulator NICs. To support larger networks, the em-
ulator may need multiple NICs. Assuming 10 Gbits/s
NICs and that traffic to the emulator is about 1-2% of
all network traffic, the emulator needs one NIC for every
500-1000 Gbits/s of network throughput provided.

Emulator CPUs. The emulator requires about one com-
munication core per 550 Gbits/s of network throughput
and one emulation core per 77 Gbits/s of throughput. This
means that every 550 Gbits/s of network throughput re-
quires about § cores in the emulator.

6.2 Limitations

Though Flexplane has many uses (§5.2), it has a few
limitations. First, Flexplane cannot scale to support arbi-
trarily large networks, because of throughput limitations
at the emulator. Our 10-core emulator supports up to
760 Gbits/s of throughput (§5.3), sufficient for experi-
ments spanning a few racks with 10 Gbits/s links, but
insufficient for large-scale experiments involving dozens
of racks. Second, in order to provide high performance,
Flexplane maintains a fixed abstract packet size (§3.1);
this may degrade accuracy with schemes whose behavior
depends on packet size (e.g., fair queueing [20]) under
workloads with diverse packet sizes. Third, because Flex-
plane adds some latency overhead (§3.4), it is not suitable
for experimentation with schemes that display drastically
different behavior with small changes in network latency.
Finally, in order to faithfully emulate in-network behavior,
Flexplane requires the ability to control the transmission
time of each individual packet. This means that TCP
segmentation offload (TSO) must be disabled in order to
use Flexplane. Without TSO, many network stacks are
unable to saturate high speed links (e.g., 10 Gbits/s and
faster) with a single TCP connection; a multi-core stack
may overcome this limitation.

7 Related Work

Existing approaches to programming and experimenting
with resource management schemes fall into three broad
categories: simulation (as discussed in §2.1), programma-
bility in software, and programmable hardware.

7.1 Programmability in Software

Software routers. Software routers such as
Click [18, 33], Routebricks [21], PacketShader [27] and
GSwitch [52] process packets using general-purpose
processors or GPUs, providing similar flexibility to
Flexplane. However, Flexplane requires much less CPU
and network bandwidth — a fiftieth to a hundredth of each
— to achieve the same router throughput. Other software
approaches [8, 35, 43] supplement hardware with
programmable elements, but face the same throughput
limitations because they must process packets “on-path”
with CPUs for full flexibility.

End host approaches. Eden provides a programmable
data plane for functions that can be implemented purely
at the end hosts [15]. Unlike Flexplane, it cannot support
schemes that require in-network functions beyond priority
queueing, such as D3 [53], PDQ [29], or pFabric [12].

7.2 Programmable Hardware

Several approaches such as NetFPGA [34], RiceNIC [42],
CAFE [36], Chimpp [41], Switchblade [13], and [47]
use FPGAs to enable programmable header manipula-
tions or resource management. Though these approaches
provide higher performance than software approaches,
programming an FPGA is typically much harder than pro-
gramming Flexplane in C++. In addition, a network must
be equipped with FPGAs to benefit from such approaches.

Other work targets programmable switching chips. The
P4 language [17] aims to provide a standard header ma-
nipulation language to be used by SDN control protocols
like OpenFlow [38]. However, P4 does not yet provide
the primitives necessary to support many resource man-
agement schemes, and, as a domain-specific language,
P4 falls short of the usability of C++. The Domino lan-
guage [45] allows users to express resource management
schemes in a C-like language, which the Domino com-
piler then compiles to programmable switches. Domino
approaches the flexibility of Flexplane, but users must
upgrade to new programmable switches in order to reap
the benefits. In contrast, Flexplane provides a way to
experiment in existing network infrastructure.

8 Conclusion

In this paper we presented Flexplane, an experimentation
platform for users to program resource management algo-
rithms in datacenter networks. We demonstrated that Flex-
plane accurately reproduces the behavior of schemes al-
ready supported in hardware, sustains aggregate through-
put of up to 760 Gbits/s with a 10-core implementation,
and enables experimentation with schemes not yet sup-
ported in commodity routers. Flexplane offers a practical
alternative to simulation for researchers, a way of evaluat-
ing new protocols for network operators, and a platform
for experimenting in real networks for students.

Acknowledgements

We thank Omar Baldonado and Sanjeev Kumar of Face-
book for their enthusiastic support of this collaboration,
Vadim Balakhovski of Mellanox for his generous assis-
tance with Mellanox drivers and equipment, Devavrat
Shah for useful discussions, Kay Ousterhout and Shiv-
aram Venkataraman for their assistance in running Spark
applications, and our shepherd Anja Feldmann and the
NSDI reviewers for their useful feedback. Ousterhout
was supported by an NSF Fellowship and a Hertz Foun-
dation Fellowship. Perry was supported by a Facebook
Fellowship. This work was funded in part by NSF Grant
CNS-1526791. We thank the industrial members of the
MIT Center for Wireless Networks and Mobile Comput-
ing for their support and encouragement.

References

(1]
(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

Apache Spark. http://spark.apache.org/.

Distributed Matrix Library.

com/amplab/ml-matrix.

https://github.

DPDK Boosts Packet Processing, Performance,
and Throughput. http://www.intel.com/go/
dpdk.

MemorySortJob. https://github.
com/kayousterhout/spark—-1/blob/
monoDeadline/examples/src/main/scala/
org/apache/spark/examples/monotasks/
MemorySortJob.scala

Network Benchmarking Utility. https://github.
com/mellanox/sockperf.

The Network Simulator - ns-2. http://www.isi.
edu/nsnam/ns/index.html.

M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wol-
rich, and H. Wilkinson. The Next Generation of
Intel IXP Network Processors. Intel Technology
Journal, 6(3):6-18, 2002.

M. Al-Fares, R. Kapoor, G. Porter, S. Das, H. Weath-
erspoon, B. Prabhakar, and A. Vahdat. NetBump:
User-extensible Active Queue Management with
Bumps on the Wire. In ANCS, 2012.

M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,
F. Matus, R. Pan, N. Yadav, G. Varghese, et al.
CONGA: Distributed Congestion-Aware Load Bal-
ancing for Datacenters. In SIGCOMM, 2014.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data Center TCP (DCTCP). In SIGCOMM,
2010.

M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a
little Bandwidth for Ultra-Low Latency in the Data
Center. In NSDI, 2012.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. pFabric: Min-
imal Near-Optimal Datacenter Transport. In SIG-
COMM, 2013.

M. B. Anwer, M. Motiwala, M. b. Tariq, and
N. Feamster. SwitchBlade: A Platform for Rapid De-
ployment of Network Protocols on Programmable
Hardware. In SIGCOMM, 2010.

http://spark.apache.org/
https://github.com/amplab/ml-matrix
https://github.com/amplab/ml-matrix
http://www.intel.com/go/dpdk
http://www.intel.com/go/dpdk
https://github.com/kayousterhout/spark-1/blob/monoDeadline/examples/src/main/scala/org/apache/spark/examples/monotasks/MemorySortJob.scala
https://github.com/kayousterhout/spark-1/blob/monoDeadline/examples/src/main/scala/org/apache/spark/examples/monotasks/MemorySortJob.scala
https://github.com/kayousterhout/spark-1/blob/monoDeadline/examples/src/main/scala/org/apache/spark/examples/monotasks/MemorySortJob.scala
https://github.com/kayousterhout/spark-1/blob/monoDeadline/examples/src/main/scala/org/apache/spark/examples/monotasks/MemorySortJob.scala
https://github.com/kayousterhout/spark-1/blob/monoDeadline/examples/src/main/scala/org/apache/spark/examples/monotasks/MemorySortJob.scala
https://github.com/mellanox/sockperf
https://github.com/mellanox/sockperf
http://www.isi.edu/nsnam/ns/index.html
http://www.isi.edu/nsnam/ns/index.html

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and
H. Wang. Information-Agnostic Flow Scheduling
for Commodity Data Centers. In NSDI, 2015.

H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor,
T. Karagiannis, L. Koromilas, and G. O’Shea. En-
abling End-host Network Functions. In SIGCOMM,
2015.

J. C. R. Bennett and H. Zhang. Hierarchical Packet
Fair Queueing Algorithms. In SIGCOMM, 1996.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker. P4: Program-
ming Protocol-Independent Packet Processors. SIG-
COMM CCR, July 2014.

B. Chen and R. Morris. Flexible Control of Par-
allelism in a Multiprocessor PC Router. In ATC,
2001.

D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner.
Router Plugins: A Software Architecture for Next
Generation Routers. In SIGCOMM, 1998.

A. Demers, S. Keshav, and S. Shenker. Analysis
and Simulation of a Fair Queueing Algorithm. In
SIGCOMM CCR, Sep. 1989.

M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting Parallelism
To Scale Software Routers. In SOSP, 2009.

N. Dukkipati and N. McKeown. = Why Flow-
Completion Time is the Right Metric for Congestion
Control. SIGCOMM CCR, Jan. 2006.

S. Floyd. TCP and Explicit Congestion Notification.
SIGCOMM CCR, Oct. 1994.

S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4), Aug. 1993.

N. Foster, R. Harrison, M. J. Freedman, C. Mon-
santo, J. Rexford, A. Story, and D. Walker. Frenetic:
A Network Programming Language. In ICFP, 2011.

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N.
Watson, A. W. Moore, S. Hand, and J. Crowcroft.
Queues Don’t Matter When You Can JUMP Them!
In NSDI, 2015.

S. Han, K. Jang, K. Park, and S. Moon. Packet-
Shader: a GPU-Accelerated Software Router. In
SIGCOMM, 2010.

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell,
and J. Kopena. Network Simulations with the ns-3
Simulator. SIGCOMM demonstration, 2008.

C. Y. Hong, M. Caesar, and P. Godfrey. Finish-
ing Flows Quickly with Preemptive Scheduling. In
SIGCOMM, 2012.

L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McK-
eown, and S. Katti. High Speed Networks Need
Proactive Congestion Control. In HotNets, 2015.

A. Kalia, D. Zhou, M. Kaminsky, and D. G. Ander-
sen. Raising the Bar for Using GPUs in Software
Packet Processing. In NSDI, 2015.

D. Katabi, M. Handley, and C. Rohrs. Congestion
Control for High Bandwidth-Delay Product Net-
works. In SIGCOMM, 2002.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The Click Modular Router. TOCS,
18(3):263-297, 2000.

J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
NetFPGA—An Open Platform for Gigabit-rate Net-
work Switching and Routing. In IEEE International
Conference on Microelectronic Systems Education,
2007.

G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu,
Y. Xiong, R. Gao, and Y. Zhang. ServerSwitch: A
Programmable and High Performance Platform for
Data Center Networks. In NSDI, 2011.

G. Lu, Y. Shi, C. Guo, and Y. Zhang. CAFE: A
Configurable Packet Forwarding Engine for Data
Center Networks. In PRESTO, 2009.

P. E. McKenney. Stochastic Fairness Queuing. In
INFOCOM, 1990.

N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks. SIGCOMM CCR, Apr. 2008.

R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker.
Universal Packet Scheduling. In NSDI, 2016.

J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: A Centralized “Zero-Queue”
Datacenter Network. In SIGCOMM, 2014.

E. Rubow, R. McGeer, J. Mogul, and A. Vahdat.
Chimpp: A Click-based Programming and Simula-
tion Environment for Reconfigurable Networking
Hardware. In ANCS, 2010.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

J. Shafer and S. Rixner. RiceNIC: A Reconfigurable
Network Interface for Experimental Research and
Education. In ExpCS, 2007.

A. Shieh, S. Kandula, and E. G. Sirer. SideCar:
Building Programmable Datacenter Networks with-
out Programmable Switches. In HotNets, 2010.

M. Shreedhar and G. Varghese. Efficient Fair Queu-
ing Using Deficit Round-Robin. IEEE/ACM Trans-
actions on Networking, 4(3), June 1996.

A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Al-
izadeh, H. Balakrishnan, G. Varghese, N. McKe-
own, and S. Licking. Packet Transactions: High-
Level Programming for Line-Rate Switches. In SIG-
COMM, 2016.

A. Sivaraman, S. Subramanian, M. Alizadeh,
S. Chole, S.-T. Chuang, A. Agrawal, H. Balakrish-
nan, T. Edsall, S. Katti, and N. McKeown. Pro-
grammable Packet Scheduling at Line Rate. In SIG-
COMM, 2016.

A. Sivaraman, K. Winstein, S. Subramanian, and
H. Balakrishnan. No Silver Bullet: Extending SDN
to the Data Plane. In HotNets, 2013.

T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb.
Building a Robust Software-Based Router Using
Network Processors. In SOSP, 2001.

C. Tai, J. Zhu, and N. Dukkipati. Making Large
Scale Deployment of RCP Practical for Real Net-
works. In INFOCOM, 2008.

B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-
Aware Datacenter TCP (D>TCP). SIGCOMM, 2012.

A. Varga et al. The OMNeT++ Discrete Event Sim-
ulation System. In ESM, 2001.

M. Varvello, R. Laufer, F. Zhang, and T. Laksh-
man. Multi-Layer Packet Classification with Graph-
ics Processing Units. In CoNEXT, 2014.

C. Wilson, H. Ballani, T. Karagiannis, and A. Row-
stron. Better Never than Late: Meeting Deadlines
in Datacenter Networks. In SIGCOMM, 2011.

D. Zats, T. Das, P. Mohan, D. Borthakur, and
R. Katz. DeTail: Reducing the Flow Completion
Time Tail in Datacenter Networks. SIGCOMM,
2012.

	Introduction
	Use Cases
	Benefits over Existing Approaches

	Design
	Abstract Packets
	Emulation
	Reflection
	Accuracy
	Flexplane APIs
	Scaling the Emulator with Multi-core
	Fault Tolerance

	Implementation
	Evaluation
	Accuracy
	Flexplane Utility
	Emulator Throughput

	Discussion
	Overheads
	Limitations

	Related Work
	Programmability in Software
	Programmable Hardware

	Conclusion

