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Abstract 

Router mechanisms designed to achieve fair bandwidth al- 
locations, like Fair Queueing, have many desirable proper- 
ties for congestion control in the Internet. However, such 
mechanisms usually need to maintain state, manage buffers, 
and/or perform packet scheduling on a per flow basis, and 
this complexity may prevent them from being cost-effectively 
implemented and widely deployed. In this paper, we pro- 
pose an architecture that significantly reduces this imple- 
mentation complexity yet st,ill achieves approximately fair 
bandwidth allocations. We apply this approach to an is- 
land of routers - that is, a contiguous region of the net- 
work and we distinguish between edge routers and core 
routers. Edge routers maintain per flow state; they estimate 
the incoming rate of each flow and insert a label into each 
packet header based on this estimate. Core routers main- 
tain no per flow state; they use FIFO packet scheduling aug- 
mented by a probabilistic dropping algorithm that uses the 
packet labels and an estimate of the aggregate traffic at the 
router. We call the scheme Core-Stateless Fair Queueing. 
We present simulations and analysis on the performance of 
this approach, and discuss an alternate approach. 

1 Introduction 

A central tenet of the Internet architecture is that conges- 
tion control is achieved mainly through end-host algorithms. 
However, starting with Nagle [16], many researchers ob- 
served that such end-to-end congestion control solutions are 
greatly improved when routers have mechanisms that allo- 
cate bandwidth in a fair manner, Fair bandwidth allocation 
protects well-behaved flows from ill-behaved ones, and al- 
lows a diverse set of end-to-end congestion control policies 
Lo co-exist in the network [7]. As we discuss in Section 4, 
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sorne maintain that fair bandwidth allocation’ plays a uer- 
essary, not just beneficial, role in congestion control [7, 191. 

Until now, fair allocations were typically achieved by us- 
ing per-flow queueing mechanisms - such as Fair Queueing 
[7, 181 and its many variants [2, 10, 20]- or per-flow dropping 
mechanisms such as Flow Random Early Drop (FRED) [14]. 
These mechanisms are more complex to implement than t,ra- 
ditional FIFO queueing with drop-tail, which is the most 
widely implemented and deployed mechanism in routers to- 
day. In particular, fair allocation mechanisms inherently 
require the routers to maintain state and perform opera- 
tions on a per flow basis. For each packet that arrives at the 
router, the routers needs t,o clnssi~$ the packet into a flow, 
update per flow state variables, and perform certain opera- 
tions based on the per flow state. The operations can be as 
simple as deciding whether to drop or queue the packet (e.g., 
FRED), or as complex as manipulation of priority queues 
(e.g., Fair Queueing). While a number of techniques have 
been proposed to reduce the complexity of the per packet> 
operations [I, 20, 211, and commercial implementations are 
available in some intermediate class routers, it is still MI- 
clear whether these algorithms can be cost-effectively implr- 
mented in high-speed backbone routers because all these al- 
gorithms still require packet classification and per flow state 
management. 

In this paper we start with the assumption that (1) fair 
allocation mechanisms play an important, perhaps even nec- 
essary, role in congestion control, and (2) the complexity 
of existing fair allocation mechanisms is a substantial hin- 
drance to their adoption. Both of these points are debat- 
able; developments in router technology may make such al- 
gorithms rather inexpensive to implement, and there may 
be solutions to congestion control that do not require fair 
allocation (we discuss this point more fully in Sectiou 4). 
By using these two assumptions as our starting points we 
are not claiming that they are true, but rather are only 
looking at the implications if indeed they 2uere true. If one 
starts with these assumptions then overcoming the complex- 
ity problem in achieving fair allocation becomes a vitally 
important problem. 

To this end, we propose and examine an architecture and 
a set of algorithms that allocate bandwidth in an approxi- 
mately fair manner while allowing the routers on high-speed 
links to use FIFO queueing and maintain no per-flow state. 

‘We use the max.mm defimtmn of fairness [la] which, whole not 
the only possible candidate for fairness, LS certamly a reasonable one 
and, moreover, can be implemented with only local mformatlon 
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In this approach, we identify an island of routers’ and dis- 
tinguish between the edge and the core of the island. Edge 
routers compute per-flow rate estimates and label the pack- 
ets passing through them by inserting these estimates into 
each packet header. Core routers use FIFO queueing and 
keep no per-flow state. They employ a probabilistic drop- 
ping algorithm that uses the information in the packet la- 
bels along with the router’s own measurement of the aggre- 
gate traffic. The bandwidth allocations within this island of 
routers are approximately fair. Thus, if this approach were 
adopted within the high speed interiors of ISP’s, and fair al- 
location mechanisms were adopted for the slower links out- 
side of these high-speed interiors, t,hen approximately fair 
allocations could be achieved everywhere. However, this 
approach, like, Fair Queueing [7] or RED [9], still provides 
benefit if adopted in an incremental fashion, although the 
incremental adoption must be done on an island-by-island 
basis, not on a router-by-router basis. 

We call this approach Core-Stateless Fair Queueing (CSFQ) 
since the core routers keep no per-flow state but instead use 
the state that is carried in the packet labels.3 We describe 
the details of this approach - such as the Rate estimation 
algorithm and the packet dropping algorithm - in Section 2. 

Such a scheme cannot hope t,o achieve the nearly-perfect 
levels of fairness obtained by Fair Queueing and other so- 
phisticated and stateful queueing algorithms. However, our 
interest is not in perfect,ion, but only in obtaining reason- 
able approximations to the fair bandwidth allocations. We 
derivt, a worst-case bound for the performance of this algo- 
rithm in an idealized setting. This bound is presented in 
Section 2. 

This worst-case analysis does not give an adequate guide 
to the typical functioning of CSFQ. In Section 3 we present 
results from simulation experiments to illustrate the perfor- 
mance of our approach and to compare it to several other 
schemes: DR.R (a variant of Fair Queueing), FRED, RED, 
and FIFO. We also discuss, therein, the relative mechanistic 
complexities of these approaches. 

The first 3 sections of the paper are narrowly focussed 
on the details of the mechanism and its performance (both 
absolute and relative), with the need for such a mechanism 
taken for granted. In Section 4 we return to the basic ques- 
tion of why fair allocations are relevant to congestion con- 
trol. Allocating bandwidth fairly is one way to address what 
we call the unfriendly flow problem; we also discuss an alter- 
nate approach to addressing this problem, the identification 
approach as described in [8]. We conclude with a summary 
in Section 5. A longer version of this paper, containing 
proofs of the theoretical results as well as more complete 
pseudocode, can be found at http: //www .cs .cmu. edu/-isto 
ica/csfq. 

2 Core-Stateless Fair Queueing (CSFQ) 

In this section, we propose an architecture that approxi- 
mates the service provided by an island of Fair Queueing 
routers, but has a much lower complexity in the core routers. 
The architecture has two key aspects. First, to avoid main- 
taining per flow state at each router, we use a distributed 

‘By mland we meal, a contiguous portion of the network, with 
well-defined intenor and edges. 

30bviously these core routers keep some state, but none of it is 
per-flow state, so when we say “stateless” we are referring to the 
absence of per-flow state. 

algorithm in which only edge routers maintain per flow state, 
while core (non-edge) routers do not maintain per flow state 
but instead utilize the per-flow information carried via a la- 
bel in each packet’s header. This label contains an estimate 
of the flow’s rate; it is initialized by the edge router based 
on per-flow information, and then updated at each router 
along the path based only on aggregate information at t,hat, 
router. 

Second, to avoid per flow buffering and scheduling, as re- 
quired by Fair Queueing, we use FIFO queueing with prob- 
abilistic dropping on input. The probability of dropping a 
packet as it arrives to the queue is a function of the rate 
estimate carried in the label and of the fair share rate at 
that router, which is estimated based on measurements of 
the aggregate traffic. 

Thus, our approach avoids both the need to maintain 
per-flow state and the need to use complicated packet schedul- 
ing and buffering algorithms at core routers. To give a better 
intuition about how this works, we first present the idealized 
bit-by-bit or fluid version of the probabilistic dropping algo- 
rithm, and then extend the algorithm to a practical packet- 
by-packet version. 

2.1 Fluid Model Algorithm 

We first consider a bufferless fluid model of a router with 
output link speed C, where the flows are modelled as a con- 
tinuous stream of bits. We assume each flow’s arrival rate 
r,(t) is known precisely. Max-min fair bandwidth alloca- 
tions are characterized by the fact that all flows that are 
bottlenecked (i.e., have bits dropped) by this router have 
the same output rate. We call this rate the fair share rate of 
the server; let a(t) be the fair share rate at time t. In gen- 
eral, if max-min bandwidth allocations are achieved, each 
flow i receives service at a rate given by min(r,(t),cw(t)). 
Let A(t) denote the total arrival rate: A(t) = ~~=, rl(t). If 

A(t) > C then the fair share a(t) is the unique solution to 

C=k min(r,(t), 4t)), (1) 
*cl 

If A(t) 5 C then no bits are dropped and we will, by con- 
vention, set cr(t) = max, r,(t). 

If rl(t) < a(t), i.e., flow i sends no more than the server’s 
fair share rate, all of its traffic will be forwarded. If r,(t) > 

a(t), then a fraction r’cz;ty(t) of its bits will be dropped, so 

it will have an output rate of exactly a(t). This suggests a 
very simple probabilistic forwarding algorithm that, achieves 
fair allocation of bandwidth: each incoming bit of flow i is 
dropped with the probability 

max(a,l- -$J) 

When these dropping probabilities are used, the arrival 
rate of flow i at the next hop is given by min[r,(t), cult)]. 

2.2 Packet Algorithm 

The above algorithm is defined for a bufferless fluid system 
in which the arrival rates are known exactly. Our task now 
is to extend this approach to the situat,ion in real routers 
where transmission is packetized, there is substantial buffer- 
ing, and the arrival rates are not known. 
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Figure 1: The architecture of the output port of an edge 
rout,er, and a core router, respectively. 

We still employ a drop-on-input scheme, except that now 
we drop packets rather than bits. Because the rate esti- 
mation (described below) incorporates the packet size, the 
dropping probability is independent of the packet size and 
depends only, as above, on the rate r;(t) and fair share rate 

u(t). 
We are left with two remaining challenges: estimating 

the rates r,(t) and t,he fair share o(t). We address these two 
issues in turn in the next two subsections, and then discuss 
the rewriting of the labels. Pseudocode reflecting this algo- 
rithm is described in Figure 2. We should note, however, 
that, the main point, of our paper is the overall architecture 
and that the detailed algorithm presented below represents 
only an init,ial prototype. While it serves adequately as a 
proof-of-concept of our architecture, we fully expect that the 
details of this design will continue to evolve. 

2.2.1 Computation of Flow Arrival Rate 

Recall that in our architecture, the rates rt(t) are estimated 
at t,he edge routers and then these rates are inserted into 
the packet labels. At each edge router, we use exponential 
averaging to estimate the rate of a flow. Let tf and 1: be 
the arrival time and length of the lath packet of flow i. The 
estimated rate of flow i, T,, is updated every time a new 
packet is received: 

where T,k = tt - tr-’ and K is a constant. We discuss 

the rationale for using the form e-Tak/Ji for the exponential 
weight in Section 2.7. In the longer version of this paper 
[22] we show that, under a wide range of conditions, this 
estimation algorithm converges. 

2.2.2 Link Fair Rate Estimation 

In this section, we present an estimation algorithm for o(t). 
To give intuition, consider again the fluid model in Sec- 
tion 2. t where the arrival rates are known exactly, and as- 
sumr the system performs the probabilistic dropping algo- 
rithm according to Eq. (2). Then, the rate with which the 
algorithm accepts packets is a function of the current esti- 
mate of the fair share rate, which we denote by 6(t). Letting 
.“‘(&(t)) denote this acceptance rate, we have 

F(qt)) = 2 min (rl(t), G(t)) 
r=, 

Note that F(.) is a continuous, nondecreasing, concave, and 
piecewise-linear function of cr. If the link is congested (A(t) > 
C) we choose G(t) to be the unique solution to F(s) = C. 
If the link is not congested (A(t) < C) we take G(t) to be 
the largest rate among the flows that traverse the link, i.e., 
G(t) = maxi<,<,(r,(t)). From Eq (4) note that if we knew -- 
the arrival rates rl(t) we could then compute o(t) directly. 
To avoid having to keep such per-flow state, we seek instead 
to implicitly compute G(t) by using only aggregate measure- 
ments of F and A. 

We use the following heuristic algorithm with three ag- 
gregate state variables: G, the estimate for the fair share 

rate; A, the estimated aggregate arrival rate; F, the esti- 
mated rate of the accepted traffic. The last two variables 

are updated upon the arrival of each packet. For A we use 
exponential averaging with a parameter e -T/Xi, where T is 
the inter-arrival time between the current and the previous 
packet : 

where Aold is the value of A before the updating. We use 

an analogous formula to update F. 
The updating rule for ;i depends on whether the link is 

congested or not. To filter out the estimation inaccuracies 
due to exponential smoothing we use a window of size K,. 

A link is assumed to be congested, if A^ 2 C at all times dur- 
ing an interval of length EC,. Conversely, a link is assumed 

to be uncongested, if A^ < C at all times during an interval 
of length I(,. The value% is updated only at the end of an 
interval in which the link is either congested or uncongested 
according to these definitions. If the link is congested then 
G is updated based on the equation F(G) = C. We approxi- 
mate F(‘) by a linear function that intersects the origin and 

has slope p/Gold. This yields 

h c 
CYnezLi = QoldT 

F 
(6) 

If the link is not congested, (r,,, is set to the largest rate 
of any active flow (i.e., the largest label seen) during the 
last Ii’, time units. The value of ;u^,,,,, is then used to com- 
pute dropping probabilities, according to Eq. (2). For com- 
pleteness, we give the pseudocode of the CSFQ algorithm in 
Figure 2. 

We now describe two minor amendments to this algo- 
rithm related to how the buffers are managed. The goal of 
estimating the fair share G is to match the accepted rate to 
the link bandwidth. Due to estimation inaccuracies, load 
fluctuations between G’s updates, and the probabilistic na- 
ture of our algorithm, the accepted rate may occasionally 
exceed the link capacity. While ideally the router’s buffers 
can accommodate the extra packets, occasionally the router 
may be forced to drop the incoming packet, due to lack of 
buffer space. Since drop-tail behavior will defeat the purpose 
of our algorithm, and may exhibit undesirable properties in 
the case of adaptive flows such as TCP [9], it, is important 
to limit, its effect. To do so, we use a simple heuristic: every 
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on receiving packet, p 
if (edge router) 

2 =classify(p); 
p,label = estimate-rate(r,,p); /* ~dse Ep. (3) */ 

prob =max(O, 1 - a/p.label); 
if @rob >unifrand(O, 1)) 

0 =estimate-cY (p, 1); 

drop(p); 
else 

0 =estimate-rw (p, 0); 
tmqueue(p); 

if (prob > 0) 
p.label = cy; /+ relabel p */ 

estimate-u (p, dropped) 

estimate-rate(X,p); /* est. arrival rate (use Eq. (5)) */ 

if (dropped == Fz4-LSE) 
estimate-rate(F,p); /* est. accepted trafic rate */ 

if(A^>C) 
if (congested == FALSE) 

congested = TRUE; 
start-time = crt-time; 

else 
if (crt-time > start-time + Ii,) 

6 = 2 x c/F; 
start-ti’me = crt-time; 

else /* 2 < C */ 
if (congested == TRUE) 

congested = FALSE; 
start-time = crt-time; 
tmp-cy = 0; /* use to compute new cy */ 

else 
if (crt-time < start-time + KC) 

tmp-cu =max(tmp-cu,l,.label); 
else 

Cu = tmp-ff ; 
start-time = crt-time; 
tmp-rw = 0; 

return G;; 

Figure 2: The pseudocode of CSFQ. 

time the bufl’er overflows, ;u^ is decreased by a small fixed per- 
centage (taken to be 1% in our simulations). Moreover, to 
avoid overcorrection, we make sure that during consecutive 
updates su^ does not decrease by more than 25%. 

In addition, since there is little reason to consider a link 
congested if the buffer is almost empty, we apply the fol- 
lowing rule. If the link becomes uncongested by the test in 
Figure 2, then we assume that it remains uncongested as 
long as the buffer occupancy is less than some predefined 
threshold. In this paper we use a threshold t,hat is half of 
the I,otal bufl’er capacity. 

2.2.3 Label Rewriting 

Our rate estimation algorithm in Section 2.2.1 allows us to 
label packets with their flow’s rate as they enter the island. 
Our packet dropping algorithm described in Section 2.2.2 
allows us to limit flows to their fair share of the bandwidth. 
After a flow experiences significant losses at a congested link 

inside the island, however, the packet labels are no 1o11gr1 
an accurate estimate of its rate. We cannot rcr,m our es- 
timation algorithm, because it involves per-flow state. IJor.- 
tunately, as note in Section 2.1 the outgoing rat,<! is merely 
the minimum between the incoming rate and the fair ra(,e 
N. Therefore, we rewrite the the packet, label I, as 

L - min(Ldd, a), new - (7) 

By doing so, the outgoing flow rates will be properly reprc- 
sented by the packet labels. 

2.3 Weighted CSFQ 

7’1~ CSFQ algorithm can be ext,ended to support, Hews with 
diH’erent weights. Let w, denote the weight of flow I. Re- 
turning to our Huitl model, the meaning of t,hese weights 
is that we say a fair allocat,ion is one in which all bottle- 
necked Hows have the same value for 2. l’hen, if A(t) > C, 
the normalized fair rate a(t) is the unique value such that 

CL w, min (0, 2) = C. The expression for the drop- 

ping probabilities in the weighted case is max (0, I - (Y?). 

The only other major change is that the label is now rlj$L, 
instead simply rz. Finally, without going into details we 
note that the weighted packet-by-packet version is virtually 
identical to the corresponding version of the plain CSFQ 
algorithm. 

It is import,ant to note that with weighted CSFQ we can 
only approximate islands in which each How has t,he same 
weight at all routers in an island. That is, our algorithm 
cannot accommodate situations where the relative weights 
of Hows differ from router to router within an island. How- 
ever, even with this limitation, weighted CSFQ may prove 
a valuable mechanism in implementing differential services, 
such as the one proposed in [24] 

2.4 Performance Bounds 

We now present the main theoretical result of the paper. 
For generality, this result is given for weighted CSFQ. The 
proof is given in [22]. 

Our algorithm is built around several estimat,ion proce- 
dures, and thus is inherently inexact. One natural concern 
is whether a flow can purposely “exploit” these inaccuracies 
to get more than its fair share of bandwidth. We cannot 
answer this question in full generality, but we can analyze a 
simplified situation where the normalized fair share rate N 
is held fixed and there is no buffering, so the drop probabil- 
ities are precisely given by Eq. (2). In addition, we assume 
that when a packet arrives a fraction of that, packet equal to 
the flow’s forwarding probability is transmitted. Note that 
during any time interval [tl, t2) a flow with weight w is enti- 
tled to receive at most, zua(tz - tl) service time; we call any 
amount above this the excess service. We can bound this 
excess service, and the bounds are independent of both the 
arrival process and the length of the time interval during 
which the How is active. The bound does depend crucially 
on the maximal rat,e R at which a Hows packets can arrive 
at, a router (limited, for example, by the speed of the flow’s 
access link); the smaller this rate R the tighter the bound. 

Theorem 1 Consider a link with a constant normalizedfair 
rute CY, and a flow with weight u). Then, the e.rcess seruzce 

received by a flow ,witla weight w, that sends at a ratr, no 
lurger than R is bounded above by 
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2.7 Miscellaneous Details 

Having presented the basic CSFQ algorithm, we now return 
to discuss a few aspects in more detail. 

We have used exponential averaging to estimate the ar- 
rival rate in Eq. (3). However, instead of using a constant 

exponential weight we used e-‘/Ii where T is the inter- 
packet arrival time and li is a constant. Our motivation 
was that e-Tt1’ more closely reflects a fluid averaging pro- 
cess which is independent of the packetizing structure. More 
specifically, it can be shown that if a constant weight is used, 
the estimated rate will be sensitive to the packet length dis- 
tribution and there are pathological cases where the esti- 
mated rate differs from the real arrival rate by a factor; 
this would allow flows to exploit the estimation process and 
obtain more than their fair share. In contrast, by using a 
parameter of e-‘/Ii, the estimated rate will asymptotically 
converge to the real rate, and this allows us to bound the 
excess service that can be achieved (as in Theorem 1). We 
used a similar averaging process in Eq. (5) to estimate the 
total arrival rate A. 

The choice of li in the above expression e-‘r”i presents 
us with several tradeoffs. First, while a smaller Ei increases 
the system responsiveness to rapid rate fluctuations, a larger 
I( better filters the noise and avoids potential system insta- 
bility. Second, I< should be large enough such that the esti- 
mated rate, calculated at the edge of the network, remains 
reasonably accurate after a packet traverses multiple links. 
This is because the delay-jitter changes the packets’ inter- 
arrival pattern, which may result in an increased discrep- 
ancy between the estimated rate (received in the packets’ 
labels) and the real rate. To counteract this effect, as a rule 
of thumb, I< should be one order of magnitude larger that 
the delay-jitter experienced by a flow over a time interval of 
the same size, K. Third, I( should be no larger than the 
average duration of a flow. Based on this constraints, an 
appropriate value for li would be between 100 and 500 ms. 

A second issue relates to the requirement of CSFQ for a 
label to be carried in each packet. One possibility is to use 
the Type Of Service byte in the IP header. For example, by 
using a floating point representation with four bits for man- 
tissa and four bits for exponent we can represents any rate 
between 1 Kbps and 65 Mbps with an accuracy of 6.25%. 
Another possibility is to define an IP option in the case of 
lPv4, or a hop-by-hop extension header in the case of IPv6. 

whew r a = ,IUJ, and l,,, represents the maximum length of 
a packet. 

By bounding the excess service, we have shown that. in 
this idealized setting the asymptotic throughput cannot ex- 
ceed the fair share rate. Thus, flows can only exploit the 
system over short time scales; they are limited to their fair 
share over long time scales 

2.5 Implementation Complexity 

At core routers, both the time and space complexity of our 
algorithm are constant with respect to the number of com- 
pet,iiig flows. and thus we think CSFQ could be implemented 
in very high speed core rout,ers. At each edge router CSFQ 
needs to maintain per flow state. Upon each arrival of each 
packet, the edge router needs to (1) classify the packet to a 
flow, (2) update the fair share rate estimation for the cor- 
responding outgoing link, (3) update the flow rate estima- 
t,ion, and (4) label the packet. All these operations with 
the exception of packet classification can be efficiently im- 
plemented today. 

E:fficient and general-purpose packet, classification algo- 
rithins are still under act,ive research. We expect to lever- 
age lhese results. W e a so note that packet classification 1 
at irigress nodes is needed for a number of other purposes, 
such as in the context of Multiprotocol Label Switching 
(MPLS) [4] or for accounting purposes; therefore, the classi- 
fication required for CSFQ may not be an extra cost. In ad- 
dition, if the edge routers are typically not on the high-speed 
backbone links then there is no problem as classification at 
rnoderate speeds is quite practical. 

2.6 Architectural Considerations 

We have used the term flow wit,hout defining what we mean. 
This was int,entional, as the CSFQ approach can be applied 
to varying degrees of flow granularity; that is, what consti- 
tutes a flow is arbitrary as long as all packets in the flow 
follow the same path within the core. In this paper, for con- 
venience, a flow is implicitly defined as a source-destination 
pair, but one could easily assign fair rates to many other 
granularities such as source-destination-ports. Moreover, 
the unit of Vlow” can vary from island to island as long 
as the rates are re-estimated when entering a new island. 

Similarly, we have not been precise about the size of these 
CSF’Q islands. In one extreme, we could take each router 
as an island and estimate rates at every router; this would 
allow us to avoid the use of complicated per-flow scheduling 
and dropping algorithms, but would require per-flow classi- 
fication. Another possibility is that ISP’s could extend their 
island of CSFQ routers to the very edge of their network, 
having their edge routers at the points where customer’s 
packets enter the ISP’s network. Building on the previous 
scenario, multiple ISP’s could combine their islands so that 
classification and estimation did not have to be performed 
at ISP-ISI’ boundaries. The key obstacle here is one of trust 
between ISl’s. 

3 Simulations 

In this section we evaluate our algorithm by simulation. To 
provide some context, we compare CSFQ’s performance to 
four additional algorithms. Two of these, FIFO and RED. 
represent baseline cases where routers do not attempt to 
achieve fair bandwidth allocations. The other two algo- 
rithms, FRED and DRR, represent different approaches to 
achieving fairness. 

l FIFO (First In First Out) - Packets are served in a 
first-in first-out order, and the buffers are managed 
using a simple drop-tail strategy; i.e., incoming pack- 
ets are dropped when the buffer is full. 

l RED (Random Early Detection) - Packets are served 
in a first-in first-out order, but the buffer manage- 
ment is significantly more sophisticated than drop-tail. 
RED [9] starts to probabilistically drop packets long 
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(a) VJ) 
Figure 3: Simulat,ion results for a IO Mbps link shared by N flows. (a) The average throughput over 10 set when N = 32, 
and all flows arr IrDPs. The: arrival rate for flow i is (i + 1) times larger than its fair share. The flows are indexed from 0. 
(b) The throughputs of ant: UDP flow (indexed 0) sending at 10 Mbps, and of 31 TCP fiows sharing a 10 Mbps link. 

before the buff’er is full, providing early congestion 
indication to flows which can then gracefully back- 
off before the buffer overflows. RED maintains two 
buffer thresholds. When the exponentially averaged 
buffer occupancy is smaller than the first threshold, no 
packet is dropped, and when the exponentially aver- 
aged buffer occupancy is larger than the second thresh- 
old all packets are dropped. When the exponentially 
averaged buffer occupancy is between the two thresh- 
olds, the packet dropping probability increases linearly 
with buffer occupancy. 

l FRED (Flow Random Early Drop) - This algorithm 
extends RED to provide some degree of fair band- 
width allocation [14]. To achieve fairness, FRED main- 
tains state for all flows that have at least one packet 
in the buffer. Unlike RED where the dropping deci- 
sion is based only on the buffer state, in FRED drop- 
ping decisions are based on this flow stat,e. Specif- 
ically, FRED preferentially drops a packet of a flow 
that has either (1) had many packets dropped in the 
past, or (2) a queue larger than the average queue size. 
FRED has two variants, which we will call FRED-l 
and FRED-2. The main difference between the two 
is that FRED-2 guarantees to each flow a minimum 
number of buffers. As a general rule, FRED-2 per- 
forms better than FRED-1 only when the number of 
flows is large. In the following data, when we do not 
distinguish between the two, we are quoting the results 
from the version of FRED which performed better. 

. DRR (Deficit Round Robin) - This algorithm [20] rep- 
resents an efficient implementation of the well-known 
weighted fair queueing (WFQ) discipline. The buffer 
management scheme assumes that when the buffer is 
full the packet from the longest queue is dropped. DRR 
is the only one of the four to use a sophisticated per- 
flow queueing algorithm, and thus achieves the highest 
degree of fairness. 

These for~r algorit,hms represent, four different levels of 
c.omplexity. DRR and FRED h ave to classify incoming flows, 
whertlas FIFO and RED do not,. DRR in addition has to 
implement its packet scheduling algorithm, whereas the rest 

all use first-in-first-out scheduling. CSFQ edge routers have 
complexity comparable to FRED, and CSFQ core routers 
have complexity comparable to RED. 

We have examined the behavior of CSFQ under a vari- 
ety of conditions. We use an assortment of traffic sources 
(mainly TCP sources and constant bit rate UDP sources,4 
but also some on-off sources) and topologies. Due to space 
limitations, we only report on a small sampling of the sim- 
ulations we have rum5 All simulations were performed in 
ns-2 [17], which provide accurate packet-level implementa- 
tion for various network protocols, such as TCP and RLM 
[15] (Receiver-driven Layered Multicast), and various buffer 
management and scheduling algorithms, such as RED and 
DRR. All algorithms used in the simulation, except CSFQ 
and FRED, were part of the standard ns-2 distribution. 

Unless otherwise specified, we use the following parame- 
ters for the simulations in this section. Each output link has 
a capacity of 10 Mbps, a latency of 1 ms, and a buffer of 64 
KB. In the RED and FRED cases the first threshold is set to 
16 KB, while the second one is set to 32 KB. The averaging 
constants I( (used in estimating the flow rate), It’, (used in 
estimating the fair rate), and Ii’, (used in making the deci- 
sion of whether a link is congested or not) are all set to 100 
ms unless specified otherwise. The general rule of thumb 
we follow in this paper is to choose these constants to be 
roughly two times larger than the maximum queueing delay 
(i.e., 64KB/lOMbps = 51.2 ms).6 Finally, in all topologies 
the first router on the path of each flow is always assumed 
to be an edge router; all other routers are assumed without 
exception to be core routers. 

We simulated the other four algorithms to give us bench- 
marks against which to assess these results. We use DRR as 
our model of fairness and use the baseline cases, FIFO and 

‘This source, referred to as UDP in the remainder of the paper, 
has fixed size packets and the packet interarrival times are umformly 
distributed between [0.5 x avg, 1.5 x avg), where aug is the average 
mterarrival time. 

5A fuller set of tests, and the scripts used to run them, IS avaIlable 
at http:lluuu.cs.cmu.edu/-i=t~lca/csfq 

61t can be shown that by using this rule an Idle lmk that becomes 
suddenly congested by a set of Identical UDP sources ~111 not ex- 
perxnce buffer overflow before the algorithm detects the congestlon, 
as long as the aggregate arrival rate IS less than 10 times the link 
capacity (see [22]) 
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Figure 4: The normalized bandwidth of a TCP flow that 
competes with N - 1 UDP flows sending at t,wice their al- 
located rates, as a function of N. 

RED, as representing the (unfair) status quo. The goal of 
these experiments is to determine where CSFQ sits between 
these two ext,remes. FRED is a more ambiguous bench- 
mark, being somewhat more complex than CSFQ but not 
as complex as DRR. 

In general, we find that CSFQ achieves a reasonable de- 
gree of fairness, significantly closer to DRR t,han to FIFO 
or RED. CSFQ’s performance is typically comparable to 
FRED’s, although there are several situations where CSFQ 
significantly outperforms FRED. There are a large number 
of experiments and each experiment involves rather complex 
dynamics. Due to space limitations, in the sections that fol- 
low we will merely highlight a few important points and omit 
detailed explanations of the dynamics. 

3.1 A Single Congested Link 

We first consider a single 10 Mbps congested link shared by 
N flows. The propagation delay along the link is 1 ms. We 
performed three related experiments. 

In the first, experiment, we have 32 UDP flows, indexed 
from 0, where flow i sends i + 1 times more than its fair 
share of 0.31.25 Mbps. Thus flow 0 sends 0.3125 Mbps, flow 
1 sends 0.625 Mbps, and so on. Figure 3(a) shows the av- 
erage throughput of each flow over a 10 set interval; FIFO, 
RED, and FRED-1 fail to ensure fairness, with each flow get- 
t,ing a share proportional to its incoming rate, while DRR 
is extremely effective in achieving a fair bandwidth distri- 
bution. CSFQ and FRED-2 achieve a less precise degree of 
fairness; for CSFQ the throughputs of all flows are between 
-11% and +5% of the ideal value. 

In the second experiment we consider the impact of an 
ill-behaved IJDP flow on a set of TCP flows. More precisely, 
the traffic of flow 0 comes from a UDP source that sends at 
10 Mbps, while all the other flows (from 1 to 31) are TCPs. 
Figure 3(b) shows the throughput of each flow averaged over 
a 10 set interval. The only two algorithms that can most 
effectively contain the UDP flow are DRR and CSFQ. Un- 
der FRED the UDP flow gets almost 1.8 Mbps - close to 
six times more than its fair share - while the LJDP only gets 
0.396 Mbps and 0.361 Mbps under DRR and CSFQ, respec- 
tively. As expected FIFO and RED perform poorly, with 
the UDP flow getting over 8 Mbps in both cases. 

In the final experiment, we measure how well the al- 
gorit hms can protect a single TCP flow against multiple 

Figure 5: Topology for analyzing the effects of multiple con- 
gested links on the throughput of a flow. Each link has 
ten cross flows (all UDPs). All links have 10 Mbps capaci- 
ties. The sending rates of all UDPs, excepting UDP-0, are 
2 Mbps, which leads to all links between routers being con- 
gested. 

ill-behaved flows. We perform 31 simulations, each for a 
different value of N, N = 2.. .32. In each simulation we 
take one TCP flow and N - 1 UDP flows; each UDP sends 
at twice its fair share rate of $-bps. Figure 4 plots the 
ratio between the average throughput of the TCP flow over 
10 seconds and the fair share bandwidth it should receive 
as a function of the total number of flows in the system N. 
There are three points of interest. First, DRR performs very 
well when there are less than 22 flows, but its performances 
decreases afterwards. This is because the TCP flow’s buffer 
share is less than three buffers, which significantly affects 
its throughput. Second, CSFQ performs better than DRR 
when the number of flows is large. This is because CSFQ is 
able to cope better with the TCP burstiness by allowing the 
TCP flow to have several packets buffered for short time 
intervals. Finally, across the entire range, CSFQ provides 
similar or better performance as compared to FRED. 

3.2 Multiple Congested Links 

We now analyze how the throughput of a well-behaved flow 
is affected when the flow traverses more than one congested 
link. We performed two experiments based on the topology 
shown in Figure 5. All UDPs, except UDP-0, send at 2 
Mbps. Since each link in the system has 10 Mbps capacity, 
this will result in all links between routers being congested. 

In the first experiment, we have a UDP flow (denoted 
UDP-0) sending at its fair share rate of 0.909 Mbps. Fig- 
ure 6(a) shows the fraction of UDP-O’s traffic that is for- 
warded versus the number of congested links. CSFQ and 
FRED perform reasonably well, although not quite as well 
as DRR. 

In the second experiment we replace UDP-0 with a TCP 
flow. Similarly, Figure 6(b) plots the normalized TCP through- 
put against the number of congested links. Again, DRR and 
CSFQ prove to be effective. In comparison, FRED performs 
significantly worse though still much better than RED and 
FIFO. The reason is that while DRR and CSFQ try to allo- 
cate bandwidth fairly among competing flows during conges- 
tion, FRED tries to allocate buffers fairly. Flows with dif- 
ferent end-to-end congestion control algorithms will achieve 
different throughputs even if routers try to fairly allocate 
buffer. 
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Figure 6: (a) The normalized throughput of TJDP-0 as a function of the number of congested links. (b) The same plot when 
UDP-0 is replaced by a TCP flow. 

Algorithm delivered dropped 
DRR I 601 1 6157 

t CSFQ: I 1680 I 5078 1 

Table 1: Statistics for an ON-OFF flow with 19 competing 
TCPs flows (all numbers are in packets). 

FIFO 840 1 1695 

Table 2: The mean transfer times (in ms) and the corre- 
sponding standard deviations for 60 short TCPs in the pres- 
ence of a UDP flow that sends at the link capacity, i.e., 10 
Mbps. 

3.3 Coexistence of Different Adaptation Schemes 

In this experiment we investigate the extent to which CSFQ 
can deal with flows that employ different adaptation schemes. 
Receiver-driven Layered Multicast (RLM) [15] is an adaptive 
scheme in which the source sends the information encoded 
into a number of layers (each to its own multicast group) and 
the receiver joins or leaves the groups associated with the 
layers based on how many packet drops it is experiencing 
We consider a 4 Mbps link traversed by one TCP and three 
RLM flows. Each source uses a seven layer encoding, where 
layer i sends 21t4 Kbps; each layer is modeled by a UDP 
traffic source. The fair share of each flow is 1Mbps. In the 
RLM case this will correspond to each receiver subscribing 
to the first five layers’. 

The receiving rates averaged over 1 second interval for 
each algorithm are plotted in Figure 7. Since in this experi- 
ment the link bandwidth is 4 Mbps and the router buffer size 

‘More precisely, we have c:=, 2’t4 Kbps = 0.992 Mbps. 

Algorithm 1 mean std. dev 
DRR I 6080 I 64 
CSFQ 5761 220 
FRED 4974 190 
RED 628 80 
FIFO 378 69 

Table 3: The mean throughputs (in packets) and standard 
deviations for 19 TCPs in the presence of a UDP flow along 
a link with propagation delay of 100 ms. The UDP sends at 
the link capacity of 10 Mbps. 

is 64 KB, we set constants I(, li,, and h’, to be 250 ms, 
i.e., about two times larger than the maximum queue de- 
lay. An interesting point to notice is that, unlike DRR and 
CSFQ, FRED does not provide fair bandwidth allocation 
in this scenario. Again, as discussed in Section 3.2, this is 
due to the fact that RLM and TCP use different end-to-end 
congestion control algorithms. 

3.4 Different Traffic Models 

So far we have only considered UDP, TCP and layered mul- 
ticast traffic sources. We now look at two additional source 
models with greater degrees of burstiness. We again con- 

sider a single 10 Mbps congested link. In the first exper- 
iment, this link is shared by one ON-OFF source and 19 
TCPs. The ON and OFF periods of the ON-OFF source 
are both drawn from exponential distributions with means 
of 100 ms and 1900 ms respectively. During the ON period 
the ON-OFF source sends at 10 Mbps. Note that the ON- 
time is on the same order as the averaging intervals K, K,, 
and I(, which are all 100 ms, so this experiment is designed 
to test to what extent CSFQ can react over short timescales. 

The ON-OFF source sent 6758 packets over the course of 
the experiment. Table 1 shows the number of packets from 
the ON-OFF source dropped at the congested link. The 
DRR results show what happens when the ON-OFF source 
is restricted to its fair share at all times. FRED and CSFQ 
also are able to achieve a high degree of fairness. 

Our next experiment simulates Web traffic. There are 
60 TCP transfers whose inter-arrival times are exponentially 
distributed with the mean of 0.05 ms, and the length of each 
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(a) DRR 

transfer is drawn from a Pareto distribution with a mean of 
20 packets (1 packet = 1 KB) and a shaping parameter of 
1.06. These values are consistent with those presented in 
t,he [5]. In addition, there is a single 10 Mbps UDP flow. 

‘Table 2 presents the mean transfer time and the corre- 
sponding standard deviations. Here, CSFQ performs worse 
than FRED, mainly because it has a larger average queue 
size, but still almost one order of magnitude better than 
FIFO and RED. 

3.5 Large Latency 

All of our experiments so far have had small link delays (1 
ms). In this experiment we again consider a single 10 Mbps 
congested link, but now with a propagation delay of 100 ms. 
‘lhc, load is comprised of one UDP flow that sends at the 
link speed and 19 TCP fiows. Due to the large propagation 
delay, in this experiment we set the buffer size Lo be 256 KB, 

Figure 7: The throughput of three RLM flows and one TCP flow along a 4 Mbps link . 

and Ii’, K,, and I(, to be 400 ms. Table 3 shows the aver- 
age number of packets of a TCP flow during a 100 seconds 
interval. Both CSFQ and FRED perform reasonably well. 

3.6 Packet Relabeling 

Recall that when the dropping probability of a packet is 
non-zero we relabel it with the fair rate cy so that the label 
of the packet will reflect the new rate of the flow. To test 
how well this works in practice, we consider the topology in 
Figure 8, where each link is 10 Mbps. Note that as long as 
all three flows attempt to use their full fair share, the fair 
shares of flows 1 and 2 are less on link 2 (3.33 Mbps) than 
on link 1 (5 Mbps), so there will be dropping on both links. 
This will test the relabelling function to make sure that the 
incoming rates are accurately reflected on the second link. 
We perform two experiments (only looking at CSFQ’s per- 
formance). In the first, there are three UDPs sending data 
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Sources 
Flow 2 I 
(IO Mbps) 

Flow I2 
(IO Mbps) 

(Lmk 2) 

Gateway 
IO Mbps 

k-0 Sink 

Flow 3 
(10 Mbps) 0’ 

Figure 8: Simulation scenario for the packet relabeling ex- 
periment. Each link has 10 Mbps capacity, and a propaga- 
tion delay of 1 ms. 

Td?iC Flow 1 Flow 2 Flow 3 
UDP 3.36 3.32 3.28 
TCP 3.43 3.13 3.43 

Table 4: The throughputs resulting from CSFQ averaged 
over 10 seconds for the three flows in Figure 8 along link 2. 

at 10 Mbps each. Table 4 shows the average throughputs 
over 10 set of the three UDP flows. As expected these rates 
are closed to 3.33 Mbps. In the second experiment, we re- 
place the three UDPs by three TCPs. Again, despite the 
TCP burstiness which may negatively affect the rate esti- 
mation and relabeling accuracy, each TCP gets close to its 
fair share. 

3.7 Discussion of Simulation Results 

We have tested CSFQ under a wide range of conditions, 
conditions purposely designed to stress its ability to achieve 
fair allocations. These tests, and the others we have run 
but cannot show here because of space limitrations, sug- 
gest that CSFQ achieves a reasonable approximation of fair 
bandwidth allocations in most conditions. Certainly CSFQ 
is far superior in this regard to the status quo (FIFO or 
RED). Moreover, in all situations CSFQ is roughly compa- 
rable with FRED, and in some cases it achieves significantly 
fairer allocations. Recall that FRED requires per-packet 
flow classification while CSFQ does not, so we are achieving 
these levels of fairness in a more scalable manner. However, 
there is clearly room for improvement in CSFQ, as there are 
cases where its performance is significantly below that of its 
benchmark, DRR. We do not yet know if these are due to 
our particular choices for the estimation algorithms, or are 
inherent properties of the CSFQ architecture. 

4 Why Are Fair Allocations Important? 

In the Introduction we stated that one of the underlying as- 
sumptions of this work is that fairly allocating bandwidth 
was beneficial, and perhaps even crucial, for congestion con- 
trol. In this section we motivate the role of fair allocations in 
congestion control by discussing the problem of unfriendly 
flows, and then presenting two approaches to this problem; 
we end this section with a discussion of the role of punish- 
ment. In what follows we borrow heavily from [7], [3], and 

[8], and have benefited greatly from conversations with Steve 
Deering and Sally Floyd. We should note that, the matters 
addressed in this section are rather controversial and this 
overview unavoidably reflects our prejudices. This section. 
however, is merely intended to provide some perspective on 
our motivation for this work, and any biases in this overview 
should not undercut the technical aspects of the CSFQ pro- 
posal that are the main focus of the previous sections. 

4.1 The Unfriendly Flow Problem 

Data networks such as the Internet, because of their reliance 
on statistical multiplexing, must provide some mechanism to 
control congestion. The current, Internet, which has mostly 
FIFO queueing and drop-tail mechanisms in its routers, I‘(-‘- 
lies on end-to-end congestion control in which hosts curt,ail 
their transmission rates when they detect that. the network 
is congested. The most widely utilized form of end-to-end 
congestion control is that embodied in TCP [ll], which has 
been tremendously successful in preventing congestion col- 
lapse. 

The efficacy of this approach depends on two fundamen- 
tal assumptions: (1) all (or almost all) flows are cooperative 
in that they implement congestion control algorithms, and 
(2) these algorithms are homogeneous -~ or roughly equiv- 
alent - in that they produce similar bandwidth allocations 
if used in similar circumstances. In particular, assumption 
(2) requires, in the language of [8], that all flows arc TCf’- 
friendly.8 

The assumption of universal cooperation can be violated 
in three general ways. First, some applications are urhre- 
sponsa’ve in that they don’t implement any congestion con- 
trol algorithms at all. Most of the early multimedia and 
multicast applications, like vat, nv, vie, wb and RealAudio 
fall into this category. Second, some applications use con- 
gestion control algorithms that, while responsive, are not 
TCP-friendly. RLM is such an algorithm.g Third, some 
users will cheat and use a non-TCP congestion control al- 
gorithm to get more bandwidth. An example of this would 
be using a modified form of TCP with, for instance, a larger 
initial window and window opening constants. 

Each of these forms of noncooperation can have a sig- 
nificant negative impact on the performance obtained by 
cooperating flows. At present, we do not, yet know how 
widespread noncooperation will be, and thus cannot assess 
the level of harm it will cause. However, in lieu of more 
solid evidence that noncooperation will not be a problem, 
it seems unsound to base the Internet’s congestion control 
paradigm on the assumption of universal cooperation. We 
therefore started this paper with the fundament,al assump- 
tion that one needs to deal with the problem of unfriendly 
flows. 

‘Actually, the term TCP-friendly in [8] means that “thew arrival 
rate does not exceed that of any TCP connection in the same cu- 
cumsta”ces.” Here we use it to mean that the arrival rates are 
roughly comparable, a property that should be more precisely called 
TCP-eqozdent. We blur the dlstmctlon betweeu ‘I’CP-friendly and 
TCP-equivalent to avoid an overly unwieldy set of terms III this short 
overview. However, we think the distinction may be rendered moot 
since it is unlikely that congestion control algorithms that arc not 
TCP-equivalent but are TCP-friendly - z.e., they get much less than 

their fare share - will be widely deployed. 
‘Although our data in Sectmn 3.3 showed RLM recavlng less than 

its fair share, when we change the simulation scenario so that the TCP 
flow starts after all the RLM flows then It receives less than half of 
its fair share This hysteresis in the RLM versus TCP behavior was 
first pointed out to us by Steve McCanne [15]. 
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4.2 Two Approaches 

There are, in the literature, two general approaches to ad- 
dressing the problem of unfriendly flows. The first is the 
allocation approach. Here, the router itself ensures that 
bandwidth is allocated fairly, isolating flows from each other 
so (#hat unfriendly flows can only have a very limited impact 
on other flows. Thus, the allocation approach need not de- 
mand that all flows adopt some universally standard end- 
to-end congestion control algorithm; flows can choose to re- 
spond to the congestion in whatever manner best suits them 
without unduly harming other flows. Assuming that flows 
prefer to not have significant levels of packet drops, these 
allocation approaches give an incentive for flows to use end- 
to-cmd congestion control, because being unresponsive hurts 
Oheir own performance. Note that the allocation approach 
does not provide an incentive for flows to be TCP-friendly 
(an example of an alternative end-to-end congestion control 
algorithm is described in [13]), but does provide strong in- 
centives for drop-intolerant applications to use some form 
of cand-to-end congestion control.” Of course, the canoni- 
cal implementations of the allocation approach, such as Fair 
Queueing, all require significant complexity in routers. Our 
goal in this paper was to present a more scalable realization 
of the allocation approach. 

The problem of unfriendly flows can be addressed in an- 
other manner. In the identification approach, as best exem- 
plified by [8], routers use a lightweight detection algorithm 
to identify unfriendly flows, and then explicitly manage the 
bandwidth of these unfriendly flows. This bandwidth man- 
agement can range from merely restricting unfriendly flows 
to no more than the currently highest friendly flow’s share” 
to the extreme of severely punishing unfriendly flows by 
dropping all of their packets. 

This approach relies on the ability to accurately identify 
unfriendly flows with relatively lightweight router mecha- 
nisms. This is a daunting task. Below we discuss the process 
of identifying unfriendly flows, and then present simulation 
results of the identification algorithm in [8]; we are not aware 
of other realizations of the identification approach. 

One can think of the process of identifying unfriendly 
flows as occurring in two logically distinct stages. The first, 
and relatively easy, step is to estimate the arrival rate of 
a flow. The second, and harder, step is to use this arrival 
rate information (along with the dropping rate and other 
aggregate measurements) to decide if the flow is unfriendly. 
Assuming that friendly flows use a TCP-like adjustment 
method of increase-by-one and decrease-by-half, one can de- 
rive an expression (see [8] for details) for the bandwidth 
share S as a function of the drop 

!z 
ing rate p, round-trip 

time R, and packet size B: S z efi for some constant y. 

Routers do not know the round trip time R of flows, so must 
use the lower bound of double the propagation delay of the 
attached link; this allows flows further away from the link to 
behave more aggressively without being identified as being 
unfriendly. l2 

‘“As we discuss later, of flows can tolerate significant levels of loss, 
the sltuatlon changes somewhat. 

“If ldentlticatmn were perfect, and this management goal achieved, 
all flows would get their max-min fair allocations. However, we are 
not aware of any algorithm that can achieve this management goal. 

“We are not, delving into some of the details of the approach layed 
out in [8] where flows can also be classified as very-high-bandwidth 
but not necessarily unfriendly, and as unresponsive (and therefore 
unfriendly). 

Algorithm Simulation 1 Simulation 2 
UDP TCP-1 TCP-2 TCP-I TCP-2 

RED1 0.906 0.280 0.278 0.565 0.891 

CSFQ 0.554 0.468 0.478 0.729 0.747 

Table 5: (Simulation 1) The throughputs in Mbps of one 
UDP and two TCP flows along a 1.5 Mbps link under 
REDI [8], and CSFQ, respectively. (Simulation 2) The 
throughputs of two TCPs (where TCP-2 opens its conges- 
tion window three times faster than TCP-l), under REDI, 
and CSFQ, respectively. 

To see how this occurs in practice, consider the following 
two experiments using the identification algorithm described 
in [8], which we call RED with Identification (REDI).‘” In 
each case there are multiple flows traversing a 1.5 Mbps link 
with a latency of 3 ms; the output buffer size is 32 KB and 
all constants K, K,, and li,, respectively, are set to 400 
ms. Table 5 shows the bandwidth allocations under RED1 
and CSFQ averaged over 100 sec. In the first experiment 
(Simulation I), we consider a 1 Mbps UDP flow and two 
TCP flows; in the second experiment (Simulation 2) we have 
a standard TCP (TO-l) and a modified TCP (TCP-2) that 
opens the congestion window three times faster. In both 
cases RED1 fails to identify the unfriendly flow, allowing it to 
obtain almost two-thirds of the bandwidth. As we increase 
the latency of the congested link, RED1 starts to identify 
unfriendly flows. However, for some values as high as 18 ms, 
it still fails to identify such flows. Thus, the identification 
approach still awaits a viable realization and, as of now, 
t,he allocation approach is the only demonstrated method to 
deal with the problem of unfriendly flows. 

4.3 Punishment 

Earlier in this section we argued that the allocation ap- 
proach gave drop-int,olerant flows an incentive to adopt end- 
to-end congestion control. What about drop-tolerant flows? 

We consider, for illustration, fire-hose applications that 
have complete drop-tolerance: they send at some high rate 
p and get as much value out of the fraction of arriving pack- 
ets, call it x, as if they originally just sent a stream of rate 
xp. That is, these fire-hose applications care only about the 
ultimate throughput rate, not the dropping rate.14 In a com- 
pletely static world where bandwidth shares were constant 
such “fire-hose” protocols would not provide any advantage 
over just sending at the fair share rate. However, if the fair 
shares along the path were fluctuating significantly, then 
fire-hose protocols might better utilize instantaneous fluctu- 
ations in the available bandwidth. Moreover, fire-hose pro- 
tocols relieve applications of the burden of trying to adapt 
to their fair share. Thus, even when restrained to their fair 
share there is some incentive for flows to send at signifi- 
cantly more than the current fair share.15 In addition, such 

13We are grateful to Sally Floyd who provided us her script em- 
plementing the RED1 algorithm. We used a similar script m our 
simulatmn, wth the understanding that this 1s a prehmmary design 
of the identification algorithm. Our contention is that the design of 
such an ldentlfication algorithm is fundamentally difficult due to the 
uncertamty of RTT. 

“Approximations to complete drop-tolerance can be reached in 
wdeo transport using certain codmg schemes or file transport usmg 
selective acknowledgements 

“These fire-hose coding and file transfer methods also have some 
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fire-hoses decrease the bandwidth available to other flows 
because packets destined to be dropped at a congested link 
represent an unnecessary load on upstream links. With uni- 
versal deployment of the allocation approach, every other 
flow would still obtain their fair share at each link, but that 
share may be smaller than it would have been if the fire-hose 
had been using responsive end-to-end congestion control. It 
is impossible to know now whether this will become a seri- 
ous problem. Certainly, though, the problem of fire-hoses 
in a world with fair bandwidth allocation is far less dire 
than the problem of unfriendly flows in our current FIFO 
Internet, since the incentive to be unfriendly and the harm- 
ful impact on others are considerably greater in the latter 
case. As a consequence, our paper emphasizes the prob- 
lem of unfriendly flows in our current FIFO Internet, and is 
less concerned with me-hose fiows in an Internet with fair 
bandwidth allocation. 

Nonetheless, the fire-hose problem should not be ignored; 
flows should be given an incentive to adopt responsive end- 
to-end congestion. One possible method is to explicitly pun- 
ish unresponsive flows by denying them their fair share.16 
Punishment is discussed as one possible bandwidth man- 
agement approach in [8] (the approach described there is 
informally referred to as RED-with-a-penalty-box). Accu- 
rately identifying flows as unresponsive may be far easier 
than identifying them as unfriendly. However. as we saw 
in our simulations, doing so in the context of the identifi- 
cation approach is far from a solved problem; the challenge 
is to determine if a flow has decreased usage in response to 
increases in overall packet drop rates [8]. 

Identifying unresponsive flows is more straightforward 
in the allocation approach, since here one need only deter- 
mine if a flow has had significantly high drop rates over a 
long period of time. As a proof of concept we have imple- 
ment,ed a simple identification and punishment mechanism. 
l:irst, we examine off-line the last n dropped packets and 
t.hen monitor the flows with the most dropped packets. Sec- 
ond, we estimate the rate of each of these monitored flows; 
when a flow’s rate is larger than a x cy (n > l), we start 
droppmg all of its packets. Third, we continue to monitor 
penalized flows, continuing punishment until their arrival 
rate decreases below b x cy (b < 1). Using the parameters 
a = 1.2, b = 0.6, and n = 100, we applied this algorithm to 
Simulation 1 in Table 5; the UDP flow was identified and 
penalized in less than 3 seconds. Our task was easy because 
the identification of unresponsive flows can be based on the 
result (packet, drops over long periods of time) rather than 
on trying to examine the algorithm (detecting whether it 
actually decreased its rate in response to an increase in the 
drop rate). Note also that the allocation approach need only 
distinguish between responsive and unresponsive in the pun- 
ishment phase, an inherently easier task than distinguishing 
friendly from unfriendly. 

In summary, to provide incentives for drop-tolerant flows 
to use responsive end-to-end congestion control, it may be 
necessary to identify, and then punish, unresponsive flows. 

overhead assoaated with them, and it isn’t clear whether, m practice, 
the owrheads are greater or less than the advantages gained How- 
tvt’r, one can certamly not clam, as we did above for drop-Intolerant 

nppl~cat~ons, that the allocation approach gives drop-tolerant appli- 
cations a strong Incentive to use responsive end-to-end congestlon 
cont.rol algorlthrns 

‘“Anothrr possible method, used in ATM ABR, is to have network 
providt, exphcit per flow feedback to ingress nodes and have edge 
nodes police thp traffic on a per flow basis. We assume this IS a too 
heavyweight a mechanism for the Internet. 

CSFQ with this punishment extension may be seen as a 
marriage of the allocation and identification approaches; the 
difference between [8] and our approach is largely one of 
the relative importance of identification and allocation. We 
start with allocation as fundamental, and then do identifica- 
tion only when necessary; [8] starts with identification, and 
then considers allocation only in the context of managing 
the bandwidth of identified flows. 

5 Summary 

This paper presents an architecture for achieving reasonably 
fair bandwidth allocations while not requiring per-flow stat,c 
in core routers. Edge routers estimate flow rates and insert 
them into the packet labels. Core routers merely perform 
probabilistic dropping on input based on these labels and 
an estimate of the fair share rate, the computation of which 
requires only aggregate measurements. Packet labels are 
rewritten by the core routers to reflect output rates, so this 
approach can handle multihop situations. 

We tested CSFQ, and several other algorithms, on a wide 
variety of conditions. We find that CSFQ achieve a signih- 
cant degree of fairness in all of these circumstances. While 
not matching the fairness benchmark of DRR, it is compara- 
ble or superior to FRED, and vastly better than the baseline 
cases of RED and FIFO. We know of no other approach that 
can achieve comparable levels of fairness without any per- 
flow operations in the core routers. 

The main thrust of CSFQ is to use rate estimation at the 
edge routers and packet labels to carry rate estimates to core 
routers. The details of our proposal, such as the estimation 
algorithms, are still very much the subject of active research. 
However, the results of our initial experiments with a rather 
untuned algorithm are quite encouraging. 

One open question is the effect of large latencies. ‘I’he 
logical extreme of the CSFQ approach would be to do rate 
estimation at the entrance to the network (at the customer/ISP 
boundary), and then consider everything else the core. This 
introduces significant latencies between the point of esti- 
mation and the points of congestion; while our initial sim 
ulations with large latencies did not reveal any significant 
problems, we do not yet understand CSFQ well enough to 
be confident in the viability of this “all-core” design. How- 
ever, if viable, this “all-core” design would allow all int.erior 
routers to have only very simple forwarding and dropping 
mechanisms, without any need to classify packets into flows. 

In addition, we should note that it is possible to USC 
a CSFQ-like architecture to provide service guarantees. A 
possible approach would be to use the route pinning mech- 
anisms described in [23], and to shape the aggregate guar- 
anteed traffic at each output link of core routers [6]. 

One of the initial assumptions of this paper was that 
the more traditional mechanisms used to achieve fair allo- 
cations, such as Fair Queueing or FRED, were too complex 
to implement cost-effectively at sufficiently high speeds. If 
this is the case, then a more scalable approach like CSFQ 
is necessary to achieve fair allocations. The CSFQ islands 
would be comprised of high-speed backbones, and the edge 
routers would be at lower speeds where classification and 
other per-flow operations were not a problem. However, 
CSFQ may still play a role even if router technology ad- 
vances to the stage where the more traditional mechanisms 
can reach sufficiently high speeds. Because the core-version 
of CSFQ could presumably be retrofit on a sizable fraction 
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of the installed router base (since its complexity is roughly 
comparable to RED and can be implemented in software), 
it may be that CSFQ islands are not high-speed backbones 
but rather are comprised of legacy routers. 

Lastly, we should note that the CSFQ approach requires 
some configuration, with edge routers distinguished from 
core routers. Moreover, CSFQ must be adopted an island 
at a time rat,her than router-by-router. We do not know if 
this presents a serious impediment to CSFQ’s adoption. 
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