Intra-Domain Routing

6.829

Jacob Strauss

September 14, 2006

Review: Learning Bridges (Switches)

< Bridge builds a forwarding table
> Destination -> Output port
> Learned from incoming packets
< Forwarding:

> For every packet, we need to look
up the output port toward its
destination

» If address not found or broadcast Destination| Port
flood to all but input port

> Update forwarding table

< Loop Avoidance

> Elect a root Bridge

Q™0 |R |>
Wlw|n = o=

> Construct Spanning Tree to root

Learning Bridge Scaling Problems

+ Forwarding entry per destination

]
> Large tables °
> Floods for unknown destinations J/ 1
. : C
+ Cannot mix physical network types @
3

< Inefficient Routes

» Concentrates traffic at a few switches G
» Not shortest path
> Okay for short paths, not for long

Destination| Port

» Cannot use redundancy

Q™0 |R |>
Wlw|n = o=

Bridge Scaling Problems

Connect buildings in different cities with direct links:

(¢
(Cncosof |

Suppose Chicago is the Root Switch: Which links are used? '

San Francisco

Bridge Scaling Problems

All packets go through Chicago switch -- not shortest path

.»'

San Francisco

Add a layer over Ethernet: IP & Routing

Add a new protocol over physical layer
> No longer tied to Ethernet
Hierarchal Addressing

> All addresses in Boston start with 18.1.x.x
Chicago start with 18.2.x.x

» Forwarding tables stay small with fewer updates
Separate Routing from Forwarding
> Routing is finding the path

» Forwarding is action of sending the packet to the next-hop toward its
destination

Each router has a forwarding table
> Forwarding tables are created by a routing protocol

/ A
B Destination | Next-hop

Input ports C — =
D D R2

—
/ \‘_ E R3
(R3)E G R3

G

/

Picture of the Internet

Interior router

Border router

» Internet: A collection of Autonomous Systems (AS)
> Defined by control, not geography

*» Routing:
» Intra-Domain Routing (this lecture)
> Inter-Domain Routing (BGP: next lecture)

Factors Affecting Routing

<+ Routing algorithms view

the network as a graph Examples of link cost:

_ . Distance, load, price,

» Intra-domain routing: - congestion/delay, ...
nodes are routers

» Inter-domain routing:
nodes are ASes

<+ Problem: find lowest cost
path between two nodes

(Shortest Path)

< Factors

> Semi-dynamic topolo
(deal W>i/’[h link faﬁureg)y

» Dynamic load
> Policy

Problem: Shortest Path Routing

Objective: Determine the route from each router

(R, ..., R)) to Ry that minimizes the cost.

Solution is simple by inspection... (in
this case)

The shortest paths from all sources to a destination (e.g., Ry)
is the spanning tree routed at that destination.

10

Two Main Approaches

% Distance Vector Protocols

» E.g., RIP (Routing Information Protocol)

» Based on Distributed Bellman-Ford Algorithm
< Link State Protocols

» E.g., OSPF (Open Shortest Path First)
» Based on Dijkstra Algorithm

1

Techniquel: Distributed Bellman-Ford Algorithm

Example
o0

o0 o0 o0
7 7 4
2
5 2 3
o0 N .
R
e e S L
: R
8

Each router keeps track of next hop to destination, cost to
destination

Initial State: All routers except R8 set their route cost to oo.
R8 sets its route cost to O.

12

Techniquel: Distributed Bellman-Ford Algorithm

Example

o0 o0 o0 9
7 7 4
2
2 3
2 5 3

R, Inf
R, Inf
R, |4R,
R, Inf
R. |2, R,
R, |2R,
R, |3,R,

2
R 3
N ORNC
Rg

» Every T seconds, each Router tells its neighbors its route cost to R8

- Each router updates its cost as min(current cost, received cost + link

cost)

» Set next hop to the source of the lowest cost message

Routing tables have both the next-hop and the cost

13

Techniquel: Distributed Bellman-Ford Algorithm

Example

Repeat until no costs change

14

Techniquel: Distributed Bellman-Ford Algorithm

Exampl
R1 , R3 d p e
RZ / RS
R, |4 R, R,
R4 ’ R7
R. |2 R, 3
R6 / R8
R7 / R8 R8
R1 / RZ
RZ / RS
R, |4 Ry R,
R, R,
R, R, 3
R R

15

Distributed Bellman-Ford Algorithm

Questions:

1. How long will the algorithm take to stabilize?

2. How do we know that the algorithm always
converges?

3. What happens when link costs change, or when
routers/links fail?

16

A Problem with Bellman-Ford

“Bad news travels slowly”

OO O O

Time R, R, R,
0 3,R, 2,R, 1, R,
3,R, 2,R; 3,R,

1
2
3
4

Consider the calculation of distances to R;:

53 -- R, fails

17

A Problem with Bellman-Ford

“Bad news travels slowly”

O OO

Consider the calculation of distances to R;:

Time R, R, R,

0 3,R, 2,R, 1, R,
1 3,R, 2,R, 3,R,
2 3,R, 4,R, 3,R,
3 5,R, 4,R, 5,R,
4 5,R, 6,R, 5,R,

“Counting to infinity” ...

JQB—R4 fails

18

How are These Loops Caused?

< Observation 1:
> R3’s metric increases

% Observation 2:
» R2 picks R3 as next hop to R4
> But, the implicit path from R2 to R4 includes itself

19

Solutions to Counting to Infinity

Set infinity = “some small integer” (e.g. 16). Stop
when count = 16.

Split Horizon: Because R, received lowest cost
path from R;, it does not advertise cost to R;

Split-horizon with poison reverse: R, advertises
infinity to R

20

Comments on Bellman-Ford

% Asynchronous
% Works when some costs (i.e., weights) are

negative, as long as there is no negative cost cycle.

> Why?
% The graph may be directed (not in the distributed
case)

+ Small messages, small state at each router
» No router has a complete image of the graph

21

Two Main Approaches

% Distance Vector Protocols
» E.g., RIP (Routing Information Protocol)
» Based on Distributed Bellman-Ford Algorithm

B + Link State Protocols
» E.g., OSPF (Open Shortest Path First)
» Based on Dijkstra Algorithm

22

Link State Routing

« Start condition

» Each node assumed to know state of links to its neighbors
< Phase 1

» Each node broadcasts its state to all other nodes

> Reliable flooding mechanism
< Phase 2

» Each node locally computes shortest paths to all other nodes
from global state

> Dijkstra’s shortest path tree (SPT) algorithm

23

Phase 1: Link State Packets (LSPs)

+ Periodically, each node creates a link state packet
containing:
» Node ID
» List of neighbors and link cost
> Sequence number
> Time to live (TTL)
» Node outputs LSP on all its links

<+ When a router receives a LSP from node

» Keep most recent packet from each source
» Forward to other routers

+ All routers learn complete graph

24

Phase 2:
Dijkstra’s Shortest Path First Algorithm

% Assumptions:
% Costs are positive

+ Each router has the complete graph. Is it scalable?

% For each source, finds spanning tree routed on
source router.

25

Dijkstra’s Key Idea:

At each step, consider nodes with edges
to nodes in set S; Pick the next closest
node to destination and move itto S;
update distances from destination

Step 1: S — {Rg}, C — {R3lR5lR7/R6}

Step 2: S = {R4,R:}, C = {R,, R, R, R,}

Set S: nodes where shortest path to destination is already known
Set C: all nodes with direct edges to any node in S

26

Dijkstra’s Key Idea:

At each step, consider nodes with edges
to nodes in set S; Pick the next closest
node to destination and move itto S;
update distances from destination

Step 1: S = {Ry}, C = {Ry,R,R,, R}

Step 2: S = {Rg,R:}, C ={R;, R, R, R,} & *®)

Step 3: S ={Rg,R:,R¢}, C={R;, R, R,, R} ®) E

27

Dijkstra’s Key Idea:

At each step, consider nodes with edges
to nodes in set S; Pick the next closest
node to destination and move itto S;
update distances from destination

Step 1: S = {Ry}, C = {Ry,R,R,, R}

Step 2: S = {Rg,R:}, C ={R;, R, R, R,} & *®)

Step 3: S ={Rg,R:,R¢}, C={R;, R, R,, R} ®) E

@

And so on...

28

Dijkstra’s SPF Algorithm

Step8:5 ={R;,R:,R;, R, R, R, R, }
C={}.

1 |
—Cr—() ®

2

OWIO)
2
(D— &

29

OSPF optimizations

< Don’t send updates to all other routers
> Elect a root router, send updates there
» Root broadcasts link database to all routers

% Areas
» Run routing algorithm separately in each area

» Graph not propagated to other areas

> Reduce state needed on each router
e Operator needs to assign routers to areas

30

Summary: LS vs. DV

Message size

» Small in Link State (only state to neighbors)

» Large in Distance Vector (costs to all destinations)
Convergence speed

> LS: faster — done once topology disseminated
Space requirements

» LS maintains entire topology

» DV maintains only neighbor state
Robustness:

» Can be made robust since sources are aware of alternate paths

> Incorrect calculation can spread to entire network

31

Summary: LS vs. DV

% Bottom line: no clear winner,

< Link State more prevalent in intra-domain routing
» Protocol details

< (inter-domain uses BGP which is based on DV)

32

