
1

Intra-Domain Routing

6.829

Jacob Strauss

 September 14, 2006

2

Review: Learning Bridges (Switches)

Bridge builds a forwarding table

Destination -> Output port

Learned from incoming packets

Forwarding:

For every packet, we need to look
up the output port toward its
destination

If address not found or broadcast
flood to all but input port

Update forwarding table

Loop Avoidance

Elect a root Bridge

Construct Spanning Tree to root

B

C

D

F

A

Destination

2

1

2

3

1

Port

G 3

S2

Switch

G

C

A

S1
1

3

2

B

D

F

3

Learning Bridge Scaling Problems

Forwarding entry per destination

Large tables

Floods for unknown destinations

Cannot mix physical network types

Inefficient Routes

Concentrates traffic at a few switches

Not shortest path

Okay for short paths, not for long

Cannot use redundancy
B

C

D

F

A

Destination

2

1

2

3

1

Port

G 3

S2

Switch

G

C

A

S1
1

3

2

B

D

F

4

Bridge Scaling Problems

Chicago

Connect buildings in different cities with direct links:

San Francisco

Atlanta

Seattle

Boston

Suppose Chicago is the Root Switch: Which links are used?

5

Bridge Scaling Problems

Chicago

San Francisco

Atlanta

Seattle

Boston

All packets go through Chicago switch -- not shortest path

6

Add a layer over Ethernet: IP & Routing

Add a new protocol over physical layer
No longer tied to Ethernet

Hierarchal Addressing
All addresses in Boston start with 18.1.x.x
 Chicago start with 18.2.x.x

Forwarding tables stay small with fewer updates

Separate Routing from Forwarding
Routing is finding the path

Forwarding is action of sending the packet to the next-hop toward its
destination

Each router has a forwarding table
Forwarding tables are created by a routing protocol

D

G

C
B

A

E

R2

R3

R1

Router
D

E
G

A -- C

Destination

R2
R3

R3

R1

Next-hop
Input ports

7

Picture of the Internet

Internet: A collection of Autonomous Systems (AS)
Defined by control, not geography

Routing:

Intra-Domain Routing (this lecture)

Inter-Domain Routing (BGP: next lecture)

AS-1

AS-2

AS-3

Interior router

 Border router

8

Factors Affecting Routing

Routing algorithms view
the network as a graph

Intra-domain routing:
nodes are routers

Inter-domain routing:
nodes are ASes

Problem: find lowest cost
path between two nodes
(Shortest Path)

Factors
Semi-dynamic topology
(deal with link failures)
Dynamic load
Policy

4

3

6

2
1

9

1

1

D

A

F
E

B

C

Examples of link cost:
Distance, load, price,
congestion/delay, …

9

Problem: Shortest Path Routing

Objective: Determine the route from each router
(R1, …, R7) to R8 that minimizes the cost.

R5

R3

R7

R6R4R2
R1

1 1 4

2

4

2 2 3

2
3

R8

10

Solution is simple by inspection... (in
this case)

R3

R1

R5

R4

R8

R6

The shortest paths from all sources to a destination (e.g., R8)
is the spanning tree routed at that destination.

R2

R7

1 1 4

2

4

2 2
3

2 3

11

Two Main Approaches

Distance Vector Protocols
E.g., RIP (Routing Information Protocol)

Based on Distributed Bellman-Ford Algorithm

Link State Protocols
E.g., OSPF (Open Shortest Path First)

Based on Dijkstra Algorithm

12

Technique1: Distributed Bellman-Ford Algorithm

R5

R3

R7

R8

R6R4R2
R1

Example

1 1 4

2

4

2 2 3

2
3

Initial State: All routers except R8 set their route cost to .
R8 sets its route cost to 0.

0

Each router keeps track of next hop to destination, cost to
destination

13

Technique1: Distributed Bellman-Ford Algorithm
Example

R5

R3

R7

R8

R6R4R2
R1

1 1 4

2

4

2 2 3

2
3

3, R8R7

2, R8R6

2, R8R5

InfR4

4, R8R3

InfR2

InfR1

4
2 3

2

Every T seconds, each Router tells its neighbors its route cost to R8

Each router updates its cost as min(current cost, received cost + link
cost)

Set next hop to the source of the lowest cost message

Routing tables have both the next-hop and the cost

14

Technique1: Distributed Bellman-Ford Algorithm
Example

R5

R3

R7

R8

R6R4R2
R1

1 1 4

2

4

2 2 3

2
3

3, R8R7

2, R8R6

2, R8R5

6, R7R4

4, R8R3

4, R5R2

6, R3R1

4
2 3

2

Repeat until no costs change

6 4 6

15

Technique1: Distributed Bellman-Ford Algorithm
Example

R5

R3

R7

R8

R6R4R2
R1

1 1 4

2

4

2 2 3

2
3

3, R8R7

2, R8R6

2, R8R5

6, R7R4

4, R8R3

4, R5R2

6, R3R1

4
2 3

26 4 6

R5

R3

R7

R8

R6R4R2
R1

1

2

4

2

2
3

3, R8R7

2, R8R6

2, R8R5

5, R2R4

4, R8R3

4, R5R2

5, R2R1

4
2 3

26 4 5

Solution

1

16

Distributed Bellman-Ford Algorithm

Questions:

1. How long will the algorithm take to stabilize?

2. How do we know that the algorithm always
converges?

3. What happens when link costs change, or when
routers/links fail?

17

A Problem with Bellman-Ford

R4R3R2R1

1 1 1

“Bad news travels slowly”

Consider the calculation of distances to R4:

3

2

1

1, R42,R33,R20

R3R2R1Time

X

3,R22,R33,R2

R3 -- R4 fails

4

18

A Problem with Bellman-Ford

R4R3R2R1

1 1

“Bad news travels slowly”

Consider the calculation of distances to R4:

……

5,R24,R35,R23

2

1

1, R42,R33,R20

R3R2R1Time

…… “Counting to infinity”

3,R22,R33,R2

R3-R4 fails

3,R24,R33,R2

5,R26,R35,R24

19

How are These Loops Caused?

Observation 1:
R3’s metric increases

Observation 2:
R2 picks R3 as next hop to R4

But, the implicit path from R2 to R4 includes itself

R4R3R2R1

1 1

20

Solutions to Counting to Infinity

Set infinity = “some small integer” (e.g. 16). Stop
when count = 16.

Split Horizon: Because R2 received lowest cost
path from R3, it does not advertise cost to R3

Split-horizon with poison reverse: R2 advertises
infinity to R3

R4R3R2R1

1 1

21

Comments on Bellman-Ford

Asynchronous

Works when some costs (i.e., weights) are
negative, as long as there is no negative cost cycle.

Why?

The graph may be directed (not in the distributed
case)

Small messages, small state at each router
 No router has a complete image of the graph

22

Two Main Approaches

Distance Vector Protocols
E.g., RIP (Routing Information Protocol)

Based on Distributed Bellman-Ford Algorithm

Link State Protocols
E.g., OSPF (Open Shortest Path First)

Based on Dijkstra Algorithm

23

Link State Routing

Start condition

Each node assumed to know state of links to its neighbors

Phase 1

Each node broadcasts its state to all other nodes

Reliable flooding mechanism

Phase 2

Each node locally computes shortest paths to all other nodes
from global state

Dijkstra’s shortest path tree (SPT) algorithm

24

Phase 1: Link State Packets (LSPs)

Periodically, each node creates a link state packet
containing:

Node ID

List of neighbors and link cost

Sequence number

Time to live (TTL)

Node outputs LSP on all its links

When a router receives a LSP from node
Keep most recent packet from each source

Forward to other routers

All routers learn complete graph

25

Phase 2:
Dijkstra’s Shortest Path First Algorithm

Assumptions:
Costs are positive

Each router has the complete graph. Is it scalable?

For each source, finds spanning tree routed on
source router.

26

Dijkstra’s Key Idea:
At each step, consider nodes with edges
to nodes in set S; Pick the next closest
node to destination and move it to S;
update distances from destination

R8

R5

R5
R3

R7

R6R4R2
R1

1 1 4

2

4

2 2 3

2 3

R8

Set S: nodes where shortest path to destination is already known

Set C: all nodes with direct edges to any node in S

Step 1: S = {R8}, C = {R3,R5,R7,R6}

Step 2: S = {R8 ,R5}, C = {R3, R7, R6, R2}

R8

27

Dijkstra’s Key Idea:
At each step, consider nodes with edges
to nodes in set S; Pick the next closest
node to destination and move it to S;
update distances from destination

R6

R8

R5

R8

R5

R5
R3

R7

R6R4R2
R1

1 1 4

2

4

2 2 3

2 3

R8

Step 1: S = {R8}, C = {R3,R5,R7,R6}

Step 2: S = {R8 ,R5}, C = {R3, R7, R6, R2}

R8

Step 3: S = {R8 ,R5 ,R6}, C = {R3, R7, R2 , R4}

28

Dijkstra’s Key Idea:
At each step, consider nodes with edges
to nodes in set S; Pick the next closest
node to destination and move it to S;
update distances from destination

R6

R8

R6

R8

R5

R8

R5

R5

R7

R5
R3

R7

R6R4R2
R1

1 1 4

2

4

2 2 3

2 3

R8

Step 1: S = {R8}, C = {R3,R5,R7,R6}

Step 2: S = {R8 ,R5}, C = {R3, R7, R6, R2}

R8

Step 3: S = {R8 ,R5 ,R6}, C = {R3, R7, R2 , R4}

Step 4: S = {R8, R5, R6, R7}, C = {R3, R2 , R4}

And so on…

29

Dijkstra’s SPF Algorithm

R5

R7

R3

R4R2

R8

R6R1

1 1

4
2

3

2

{}.

},,,,,,,{ 4127658

=

=

C

RRRRRRRS :8 Step

2

30

OSPF optimizations

Don’t send updates to all other routers
Elect a root router, send updates there

Root broadcasts link database to all routers

Areas
Run routing algorithm separately in each area

Graph not propagated to other areas

Reduce state needed on each router
• Operator needs to assign routers to areas

31

Summary: LS vs. DV

Message size

Small in Link State (only state to neighbors)

Large in Distance Vector (costs to all destinations)

Convergence speed

LS: faster – done once topology disseminated

Space requirements

LS maintains entire topology

DV maintains only neighbor state

Robustness:

Can be made robust since sources are aware of alternate paths

Incorrect calculation can spread to entire network

32

Summary: LS vs. DV

Bottom line: no clear winner,

Link State more prevalent in intra-domain routing
Protocol details

 (inter-domain uses BGP which is based on DV)

