
3.4. IMPLEMENTATION AND PERFORMANCE 187

ATM LAN, you need only send it to the BUS, which then forwards it on
the multipoint VC.
It should be clear that ATM LAN Emulation is fairly complex, and the
BUS in particular presents a scalability bottleneck. Perhaps as a result of
these factors, plus the fact that ATMultimately offered few real advantages
over Ethernet, LANE is no longer widely used.

3.4 Implementation and Performance
So far, we have talked about what a switch must do without discussing how to do it.
There is a very simple way to build a switch: Buy a general-purpose workstation and
equip it with a number of network interfaces. Such a device, running suitable software,
can receive packets on one of its interfaces, perform any of the switching functions
described above, and send packets out another of its interfaces. This is, in fact, a pop-
ular way to build experimental switches when you want to be able to do things like
develop new routing protocols because it offers extreme flexibility and a familiar pro-
gramming environment. It is also not too far removed from the architecture of many
low-end routers (which, as we will see in the next chapter, have much in common with
switches).

Figure 3.24 shows a workstation with three network interfaces used as a switch.
The figure shows a path that a packet might take from the time it arrives on interface
1 until it is output on interface 2. We have assumed here that the workstation has a
mechanism to move data directly from an interface to its main memory without having
to be directly copied by the CPU, that is, direct memory access (DMA) as described in
Section 2.1.1. Once the packet is in memory, the CPU examines its header to determine
which interface the packet should be sent out on. It then uses DMA to move the packet
out to the appropriate interface. Note that Figure 3.24 does not show the packet going
to the CPU because the CPU inspects only the header of the packet; it does not have to
read every byte of data in the packet.

The main problem with using a workstation as a switch is that its performance
is limited by the fact that all packets must pass through a single point of contention:
In the example shown, each packet crosses the I/O bus twice and is written to and
read from main memory once. The upper bound on aggregate throughput of such a
device (the total sustainable data rate summed over all inputs) is, thus, either half the
main memory bandwidth or half the I/O bus bandwidth, whichever is less. (Usually,
it’s the I/O bus bandwidth.) For example, a workstation with a 133MHz, 64-bit wide
I/O bus can transmit data at a peak rate of a little over 8Gbps. Since forwarding a
packet involves crossing the bus twice, the actual limit is 4Gbps—enough to build a
switch with a fair number of 100Mbps Ethernet ports, for example, but hardly enough
for a high-end router in the core of the Internet. (We’ll return to the subject of router
implementation in Section 4.2.6.)

Moreover, this upper bound also assumes that moving data is the only problem—a
fair approximation for long packets but a bad one when packets are short. In the latter
case, the cost of processing each packet—parsing its header and deciding which output
link to transmit it on—is likely to dominate. Suppose, for example, that a workstation



188 CHAPTER 3. PACKET SWITCHING

CPU

Main memory

I/O bus

Interface 1

Interface 2

Interface 3

Figure 3.24: A workstation used as a packet switch.

can perform all the necessary processing to switch 1 million packets each second. This
is sometimes called the packet per second (pps) rate. (This number is representative
of what is achievable on today’s high-end PCs.) If the average packet is short, say,
64 bytes, this would imply

Throughput = pps × (BitsPerPacket)
= 1 × 106 × 64 × 8
= 512 × 106

that is, a throughput of 512 Mbps—substantially below the range that users are de-
manding from their networks today. Bear in mind that this 512 Mbps would be shared
by all users connected to the switch, just as the 10 Mbps of an Ethernet is shared
among all users connected to the shared medium. Thus, for example, a 10-port switch
with this aggregate throughput would only be able to cope with an average data rate of
51.2 Mbps on each port.

To address this problem, hardware designers have come up with a large array
of switch designs that reduce the amount of contention and provide high aggregate
throughput. Note that some contention is unavoidable: If every input has data to send
to a single output, then they cannot all send it at once. However, if data destined for
different outputs is arriving at different inputs, a well-designed switch will be able to
move data from inputs to outputs in parallel, thus increasing the aggregate throughput.

Sidebar: Defining Throughput It turns out to be difficult to define pre-
cisely the throughput of a switch. Intuitively, we might think that if a
switch has n inputs that each support a link speed of s i, then the through-
put would just be the sum of all the si. This is actually the best possible
throughput that such a switch could provide, but in practice almost no real
switch can guarantee that level of performance. One reason for this is sim-
ple to understand. Suppose that, for some period of time, all the traffic
arriving at the switch needed to be sent to the same output. As long as the



3.4. IMPLEMENTATION AND PERFORMANCE 189

bandwidth of that output is less than the sum of the input bandwidths, then
some of the traffic will need to be either buffered or dropped. With this
particular traffic pattern, the switch could not provide a sustained through-
put higher than the link speed of that one output. However, a switch might
be able to handle traffic arriving at the full link speed on all inputs if it is
distributed across all the outputs evenly; this would be considered optimal.

Another factor that affects the performance of switches is the size of
packets arriving on the inputs. For an ATM switch, this is normally not an
issue because all “packets” (cells) are the same length. But for Ethernet
switches or IP routers, packets of widely varying sizes are possible. Some
of the operations that a switch must perform have a constant overhead per
packet, so a switch is likely to perform differently depending on whether
all arriving packets are very short, very long, or mixed. For this reason,
routers or switches that forward variable-length packets are often charac-
terized by a packet per second (pps) rate as well as a throughput in bits per
second. The pps rate is usually measured with minimum-sized packets.

The first thing to notice about this discussion is that the throughput
of the switch is a function of the traffic to which it is subjected. One of
the things that switch designers spend a lot of their time doing is trying
to come up with traffic models that approximate the behavior of real data
traffic. It turns out that it is extremely difficult to achieve accurate models.
There are several elements to a traffic model. The main ones are (1) when
do packets arrive, (2) what outputs are they destined for, and (3) how big
are they.

Traffic modeling is a well-established science that has been extremely
successful in the world of telephony, enabling telephone companies to
engineer their networks to carry expected loads quite efficiently. This is
partly because the way people use the phone network does not change that
much over time: The frequency with which calls are placed, the amount
of time taken for a call, and the tendency of everyone to make calls on
Mother’s Day have stayed fairly constant for many years. 6 By contrast,
the rapid evolution of computer communications, where a new application
like Napster can change the traffic patterns almost overnight, has made ef-
fective modeling of computer networks much more difficult. Nevertheless,
there are some excellent books and articles on the subject that we list at
the end of the chapter.

To give you a sense of the range of throughputs that designers need to
be concerned about, a high-end router used in the Internet at the time of
writing might support 10 OC-768 links for a throughput of approximately
400 Gbps. A 400-Gbps switch, if called upon to handle a steady stream of
64-byte packets, would need a packet per second rate of

400 × 109 ÷ (64 × 8) = 781 × 106 pps

6The advent of dial-up connections to the Internet did however cause a significant change in the average
length of calls.



190 CHAPTER 3. PACKET SWITCHING

Switch
Fabric

Control
Processor

Output
Port

Input
Port

Figure 3.25: A 4 × 4 switch.

3.4.1 Ports

Most switches look conceptually similar to the one shown in Figure 3.25. They consist
of a number of input ports and output ports, and a fabric. There is usually at least
one control processor in charge of the whole switch that communicates with the ports
either directly or, as shown here, via the switch fabric. The ports communicate with
the outside world. They may contain fiber optic receivers and lasers, buffers to hold
packets that are waiting to be switched or transmitted, and often a significant amount
of other circuitry that enables the switch to function. The fabric has a very simple and
well-defined job: When presented with a packet, deliver it to the right output port.

One of the jobs of the ports, then, is to deal with the complexity of the real world
in such a way that the fabric can do its relatively simple job. For example, suppose
that this switch is supporting a virtual circuit model of communication. In general, the
virtual circuit mapping tables described in Section 3.1.2 are located in the ports. The
ports maintain lists of virtual circuit identifiers that are currently in use, with informa-
tion about what output a packet should be sent out on for each VCI and how the VCI
needs to be remapped to ensure uniqueness on the outgoing link. Similarly, the ports of
an Ethernet switch store tables that map between Ethernet addresses and output ports
(bridge forwarding tables as described in Section 3.2). In general, when a packet is
handed from an input port to the fabric, the port has figured out where the packet needs
to go, and either the port sets up the fabric accordingly by communicating some control
information to it, or it attaches enough information to the packet itself (e.g., an output
port number) to allow the fabric to do its job automatically. Fabrics that switch packets
by looking only at the information in the packet are referred to as “self-routing,” since
they require no external control to route packets. An example of a self-routing fabric is
discussed below.

The input port is the first place to look for performance bottlenecks. The input port
has to receive a steady stream of packets, analyze information in the header of each one
to determine which output port (or ports) the packet must be sent to, and pass the packet
on to the fabric. The type of header analysis that it performs can range from a simple



3.4. IMPLEMENTATION AND PERFORMANCE 191

Switch

2

21

Port 1

Port 2

Figure 3.26: Simple illustration of head-of-line blocking.

table lookup on a VCI to complex matching algorithms that examine many fields in
the header. This is the type of operation that sometimes becomes a problem when the
average packet size is very small. Consider, for example, 64-byte packets arriving on a
port connected to an OC-48 (2.48 Gbps) link. Such a port needs to process packets at a
rate of

2.48 × 109 ÷ (64 × 8) = 4.83 × 106 pps

In other words, when small packets are arriving as fast as possible on this link (the
worst-case scenario that most ports are engineered to handle), the input port has ap-
proximate 200 nanoseconds to process each packet.

Another key function of ports is buffering. Observe that buffering can happen in
either the input or the output port; it can also happenwithin the fabric (sometimes called
internal buffering). Simple input buffering has some serious limitations. Consider an
input buffer implemented as a FIFO. As packets arrive at the switch, they are placed in
the input buffer. The switch then tries to forward the packets at the front of each FIFO
to their appropriate output port. However, if the packets at the front of several different
input ports are destined for the same output port at the same time, then only one of
them can be forwarded;7 the rest must stay in their input buffers.

The drawback of this feature is that those packets left at the front of the input buffer
prevent other packets further back in the buffer from getting a chance to go to their
chosen outputs, even though there may be no contention for those outputs. This phe-
nomenon is called head-of-line blocking. A simple example of head-of-line blocking
is given in Figure 3.26, where we see a packet destined for port 1 blocked behind a
packet contending for port 2. It can be shown that when traffic is uniformly distributed
among outputs, head-of-line blocking limits the throughput of an input-buffered switch
to 59% of the theoretical maximum (which is the sum of the link bandwidths for the
switch). Thus, the majority of switches use either pure output buffering or a mixture
of internal and output buffering. Those that do rely on input buffers use sophisticated
buffer management schemes to avoid head-of-line blocking.

Buffers actually perform a more complex task than just holding onto packets that
are waiting to be transmitted. Buffers are the main source of delay in a switch, and also
the place where packets are most likely to get dropped due to lack of space to store
them. The buffers therefore are the main place where the quality of service character-
istics of a switch are determined. For example, if a certain packet has been sent along
a VC that has a guaranteed delay, it cannot afford to sit in a buffer for very long. This
means that the buffers, in general, must be managed using packet scheduling and dis-

7For a simple input-buffered switch, exactly one packet at a time can be sent to a given output port. It is
possible to design switches that can forward more than one packet to the same output at once, at a cost of
higher switch complexity, but there is always some upper limit on the number.



192 CHAPTER 3. PACKET SWITCHING

Figure 3.27: A 4 × 4 crossbar switch.

card algorithms that meet a wide range of QoS requirements. We talk more about these
issues in Chapter 6.

3.4.2 Fabrics
While there has been an abundance of impressive research conducted on the design of
efficient and scalable fabrics, it is sufficient for our purposes here to understand only
the high level properties of a switch fabric. A switch fabric should be able to move
packets from input ports to output ports with minimal delay and in a way that meets the
throughput goals of the switch. That usually means that fabrics display some degree of
parallelism. A high-performance fabric with n ports can often move one packet from
each of its n ports to one of the output ports at the same time. A sample of fabric types
includes the following:

• Shared Bus. This is the type of “fabric” found in a conventional workstation
used as a switch, as described above. Because the bus bandwidth determines
the throughput of the switch, high-performance switches usually have specially
designed busses rather than the standard busses found in PCs.

• Shared Memory. In a shared memory switch, packets are written into a mem-
ory location by an input port and then read from memory by the output ports.
Here it is the memory bandwidth that determines switch throughput, so wide and
fast memory is typically used in this sort of design. A shared memory switch is
similar in principle to the shared bus switch, except it usually uses a specially-
designed, high-speed memory bus rather than an I/O bus.

• Crossbar. A crossbar switch is a matrix of pathways that can be configured to
connect any input port to any output port. Figure 3.27 shows a 4 × 4 crossbar
switch. The main problem with crossbars is that, in their simplest form, they
require each output port to be able to accept packets from all inputs at once,



3.4. IMPLEMENTATION AND PERFORMANCE 193

implying that each port would have a memory bandwidth equal to the total switch
throughput. In reality, more complex designs are typically used to address this
issue (see, for example, the Knockout switch and McKeown’s virtual output-
buffered approach in the Further Reading section.)

• Self-routing. As noted above, self-routing fabrics rely on some information in
the packet header to direct each packet to its correct output. Usually a special
“self-routing header” is appended to the packet by the input port after it has
determined which output the packet needs to go to, as illustrated in Figure 3.28;
this extra header is removed before the packet leaves the switch. Self-routing
fabrics are often built from large numbers of very simple 2×2 switching elements
interconnected in regular patterns, such as the banyan switching fabric shown in
Figure 3.29. For some examples of self-routing fabric designs see the Further
Reading section at the end of this chapter.

Self-routing fabrics are among the most scalable approaches to fabric design, and
there has been a wealth of research on the topic, some of which is listed in the Further
Reading section. Many self-routing fabrics resemble the one shown in Figure 3.29,
consisting of regularly interconnected 2×2 switching elements. For example, the 2×2
switches in the banyan network perform a simple task: they look at 1 bit in each self-
routing header and route packets toward the upper output if it is zero or toward the
lower output if it is one. Obviously, if two packets arrive at a banyan element at the
same time and both have the bit set to the same value, then they want to be routed
to the same output and a collision will occur. Either preventing or dealing with these
collisions is a main challenge for self-routing switch design. The banyan network is a
clever arrangement of 2 × 2 switching elements that routes all packets to the correct
output without collisions if the packets are presented in ascending order.

We can see how this works in an example, as shown in Figure 3.29, where the self-
routing header contains the output port number encoded in binary. The switch elements
in the first column look at the most significant bit of the output port number and route
packets to the top if that bit is a 0 or the bottom if it is a 1. Switch elements in the second
column look at the second bit in the header, and those in the last column look at the least
significant bit. You can see from this example that the packets are routed to the correct
destination port without collisions. Notice how the top outputs from the first column of
switches all lead to the top half of the network, thus getting packets with port numbers
0–3 into the right half of the network. The next column gets packets to the right quarter
of the network, and the final column gets them to the right output port. The clever part
is the way switches are arranged to avoid collisions. Part of the arrangement includes
the “perfect shuffle” wiring pattern at the start of the network. To build a complete
switch fabric around a banyan network would require additional components to sort
packets before they are presented to the banyan. The Batcher-banyan switch design is
a notable example of such an approach. The Batcher network, which is also built from
a regular interconnection of 2 × 2 switching elements, sorts packets into descending
order. On leaving the Batcher network, the packets are then ready to be directed to the
correct output, with no risk of collisions, by the banyan network.

One of the interesting things about switch design is the wide range of different
types of switch that can be built using the same basic technology. For example, both



194 CHAPTER 3. PACKET SWITCHING

Switch
Fabric

Output
Port

Input
Port

Original Packet 
Header

(a) Packet arrives at input port

Switch
Fabric

Output
Port

Input
Port

Self-routing
Header

(b) Input port attaches self-routing header to direct packet to correct output

Switch
Fabric Output

Port
Input
Port

(c) Self-routing header is removed at output port before packet leaves switch

Figure 3.28: A self-routing header is applied to a packet at input to enable the fabric to
send the packet to the correct output, where it is removed.



3.5. SUMMARY 195

001

011

110

111

001

011

110

111

Figure 3.29: Routing packets through a banyan network. The 3-bit numbers represent
values in the self-routing headers of four arriving packets.

the Ethernet switches and ATM switches discussed in this chapter, as well as Internet
routers discussed in the next chapter, are all built using designs such as those outlined
in this section.

3.5 Summary
This chapter has started to look at some of the issues involved in building large scalable
networks by using switches, rather than just links, to interconnect hosts. There are
several different ways to decide how to switch packets; the two main ones are the
datagram (connectionless) model and the virtual circuit (connection-oriented) model.

An important application of switching is the interconnection of shared-media LANs.
LAN switches, or bridges, use techniques such as source address learning to improve
forwarding efficiency, and spanning tree algorithms to avoid looping. These switches
are extensively used in data centers, campuses and corporate networks.

The most widespread uses of virtual circuit switching are in Frame Relay and ATM
switches. ATM introduces some particular challenges through the use of cells—short,
fixed-length packets. The availability of relatively high-throughput ATM switches has
contributed to the acceptance of the technology, although it has certainly not swept all
other technologies aside as some predicted. One of the main uses of ATM today is as a
multiplexing technology in DSL access networks.

Independent of the specifics of the switching technology, switches need to forward
packets from inputs to outputs at a high rate, and in some circumstances, switches
need to grow to a large size to accommodate hundreds or thousands of ports. Building
switches that both scale and offer high performance at acceptable cost is complicated
by the problem of contention, and as a consequence, switches often employ special-
purpose hardware rather than being built from general-purpose workstations.

In addition to the issues of contention discussed here, we observe that the related
problem of congestion has come up throughout this chapter. We will postpone our dis-


