
6.2. QUEUING DISCIPLINES 421

Note that the denominator exceeds the numerator by (n− 1)∆2. Thus whether the odd

flow out was getting more or less than all the other flows (positive or negative∆), the
fairness index has now dropped below one. Another simple case to consider is where

only k of the n flows receive equal throughput, and the remaining n − k users receive
zero throughput, in which case the fairness index drops to k/n.

6.2 Queuing Disciplines

Regardless of how simple or how sophisticated the rest of the resource allocation

mechanism is, each router must implement some queuing discipline that governs how

packets are buffered while waiting to be transmitted. The queuing algorithm can be

thought of as allocating both bandwidth (which packets get transmitted) and buffer

space (which packets get discarded). It also directly affects the latency experienced by

a packet, by determining how long a packet waits to be transmitted. This section in-

troduces two common queuing algorithms—first-in-first-out (FIFO) and fair queuing

(FQ)—and identifies several variations that have been proposed.

6.2.1 FIFO

The idea of FIFO queuing, also called first-come-first-served (FCFS) queuing, is sim-

ple: The first packet that arrives at a router is the first packet to be transmitted. This is

illustrated in Figure 6.5(a), which shows a FIFO with “slots” to hold up to eight pack-

ets. Given that the amount of buffer space at each router is finite, if a packet arrives

and the queue (buffer space) is full, then the router discards that packet, as shown in

Figure 6.5(b). This is done without regard to which flow the packet belongs to or how

important the packet is. This is sometimes called tail drop, since packets that arrive at

the tail end of the FIFO are dropped.

Note that tail drop and FIFO are two separable ideas. FIFO is a scheduling dis-

cipline—it determines the order in which packets are transmitted. Tail drop is a drop

policy—it determines which packets get dropped. Because FIFO and tail drop are the

simplest instances of scheduling discipline and drop policy, respectively, they are some-

times viewed as a bundle—the vanilla queuing implementation. Unfortunately, the bun-

dle is often referred to simply as “FIFO queuing,” when it should more precisely be

called “FIFO with tail drop.” Section 6.4 provides an example of another drop policy,

which uses a more complex algorithm than “Is there a free buffer?” to decide when

to drop packets. Such a drop policy may be used with FIFO, or with more complex

scheduling disciplines.

FIFO with tail drop, as the simplest of all queuing algorithms, is the most widely

used in Internet routers at the time of writing. This simple approach to queuing pushes

all responsibility for congestion control and resource allocation out to the edges of the

network. Thus, the prevalent form of congestion control in the Internet currently as-

sumes no help from the routers: TCP takes responsibility for detecting and responding

to congestion. We will see how this works in Section 6.3.

A simple variation on basic FIFO queuing is priority queuing. The idea is to mark

each packet with a priority; the mark could be carried, for example, in the IP Type of



422 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

Arriving�
packet

Next free�
buffer

Free buffers Queued packets

Next to�
transmit

(a)

Arriving�
packet

Next to�
transmit

(b) Drop

Figure 6.5: (a) FIFO queuing; (b) tail drop at a FIFO queue.

Service (TOS) field. The routers then implement multiple FIFO queues, one for each

priority class. The router always transmits packets out of the highest-priority queue

if that queue is nonempty before moving on to the next priority queue. Within each

priority, packets are still managed in a FIFO manner. This idea is a small departure

from the best-effort delivery model, but it does not go so far as to make guarantees to

any particular priority class. It just allows high-priority packets to cut to the front of the

line.

The problem with priority queuing, of course, is that the high-priority queue can

starve out all the other queues. That is, as long as there is at least one high-priority

packet in the high-priority queue, lower-priority queues do not get served. For this to be

viable, there need to be hard limits on how much high-priority traffic is inserted in the

queue. It should be immediately clear that we can’t allow users to set their own packets

to high priority in an uncontrolled way; we must either prevent them from doing this

altogether, or provide some form of “pushback” on users. One obvious way to do this

is to use economics—the network could charge more to deliver high-priority packets

than low-priority packets. However, there are significant challenges to implementing

such a scheme in a decentralized environment such as the Internet.

One situation in which priority queuing is used in the Internet is to protect the

most important packets—typically the routing updates that are necessary to stabilize

the routing tables after a topology change. Often there is a special queue for such

packets, which can be identified by the TOS field in the IP header. This is in fact a
simple case of the idea of “Differentiated Services,” the subject of Section 6.5.3.



6.2. QUEUING DISCIPLINES 423

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin�
service

Figure 6.6: Round-robin service of four flows at a router.

6.2.2 Fair Queuing

The main problem with FIFO queuing is that it does not discriminate between different

traffic sources, or in the language introduced in the previous section, it does not separate

packets according to the flow to which they belong. This is a problem at two different

levels. At one level, it is not clear that any congestion-control algorithm implemented

entirely at the source will be able to adequately control congestion with so little help

from the routers. We will suspend judgment on this point until the next section when

we discuss TCP congestion control. At another level, because the entire congestion-

control mechanism is implemented at the sources and FIFO queuing does not provide

a means to police how well the sources adhere to this mechanism, it is possible for an

ill-behaved source (flow) to capture an arbitrarily large fraction of the network capacity.

Considering the Internet again, it is certainly possible for a given application not to use

TCP, and as a consequence, to bypass its end-to-end congestion-control mechanism.

(Applications such as Internet telephony do this today.) Such an application is able to

flood the Internet’s routers with its own packets, thereby causing other applications’

packets to be discarded.

Fair queuing (FQ) is an algorithm that has been proposed to address this problem.

The idea of FQ is to maintain a separate queue for each flow currently being handled by

the router. The router then services these queues in a sort of round-robin, as illustrated

in Figure 6.6. When a flow sends packets too quickly, then its queue fills up. When

a queue reaches a particular length, additional packets belonging to that flow’s queue

are discarded. In this way, a given source cannot arbitrarily increase its share of the

network’s capacity at the expense of other flows.

Note that FQ does not involve the router telling the traffic sources anything about

the state of the router or in any way limiting how quickly a given source sends pack-

ets. In other words, FQ is still designed to be used in conjunction with an end-to-end

congestion-control mechanism. It simply segregates traffic so that ill-behaved traffic

sources do not interfere with those that are faithfully implementing the end-to-end al-

gorithm. FQ also enforces fairness among a collection of flows managed by a well-

behaved congestion-control algorithm.



424 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

As simple as the basic idea is, there are still a modest number of details that you

have to get right. The main complication is that the packets being processed at a router

are not necessarily the same length. To truly allocate the bandwidth of the outgoing link

in a fair manner, it is necessary to take packet length into consideration. For example, if

a router is managing two flows, one with 1000-byte packets and the other with 500-byte

packets (perhaps because of fragmentation upstream from this router), then a simple

round-robin servicing of packets from each flow’s queue will give the first flow two-

thirds of the link’s bandwidth and the second flow only one-third of its bandwidth.

What we really want is bit-by-bit round-robin; that is, the router transmits a bit from

flow 1, then a bit from flow 2, and so on. Clearly, it is not feasible to interleave the bits

from different packets. The FQ mechanism therefore simulates this behavior by first

determining when a given packet would finish being transmitted if it were being sent

using bit-by-bit round-robin, and then using this finishing time to sequence the packets

for transmission.

To understand the algorithm for approximating bit-by-bit round-robin, consider the

behavior of a single flow and imagine a clock that ticks once each time one bit is

transmitted from all of the active flows. (A flow is active when it has data in the queue.)

For this flow, let Pi denote the length of packet i, let Si denote the time when the

router starts to transmit packet i, and let Fi denote the time when the router finishes

transmitting packet i. If Pi is expressed in terms of how many clock ticks it takes to

transmit packet i (keeping in mind that time advances 1 tick each time this flow gets 1
bit’s worth of service), then it is easy to see that Fi = Si + Pi.

When do we start transmitting packet i? The answer to this question depends on
whether packet i arrived before or after the router finished transmitting packet i − 1
from this flow. If it was before, then logically the first bit of packet i is transmitted
immediately after the last bit of packet i − 1. On the other hand, it is possible that the
router finished transmitting packet i − 1 long before i arrived, meaning that there was
a period of time during which the queue for this flow was empty, so the round-robin

mechanism could not transmit any packets from this flow. If we let Ai denote the time

that packet i arrives at the router, then Si = max(Fi−1, Ai). Thus, we can compute

Fi = max(Fi−1, Ai) + Pi

Now we move on to the situation in which there is more than one flow, and we find

that there is a catch to determining Ai. We can’t just read the wall clock when the

packet arrives. As noted above, we want time to advance by one tick each time all the

active flows get one bit of service under bit-by-bit round-robin, so we need a clock that

advances more slowly when there are more flows. Specifically, the clock must advance

by one tick when n bits are transmitted if there are n active flows. This clock will be
used to calculate Ai.

Now, for every flow, we calculate Fi for each packet that arrives using the above

formula. We then treat all the Fi as timestamps, and the next packet to transmit is

always the packet that has the lowest timestamp—the packet that, based on the above

reasoning, should finish transmission before all others.

Note that this means that a packet can arrive on a flow, and because it is shorter than

a packet from some other flow that is already in the queue waiting to be transmitted,



6.2. QUEUING DISCIPLINES 425

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10

F = 5

F = 10

F = 2

Flow 1�
(arriving)

Flow 2�
(transmitting)

Figure 6.7: Example of fair queuing in action: (a) packets with earlier finishing times

are sent first; (b) sending of a packet already in progress is completed.

it can be inserted into the queue in front of that longer packet. However, this does not

mean that a newly arriving packet can preempt a packet that is currently being trans-

mitted. It is this lack of preemption that keeps the implementation of FQ just described

from exactly simulating the bit-by-bit round-robin scheme that we are attempting to

approximate.

To better see how this implementation of fair queuing works, consider the example

given in Figure 6.7. Part (a) shows the queues for two flows; the algorithm selects both

packets from flow 1 to be transmitted before the packet in the flow 2 queue, because

of their earlier finishing times. In (b), the router has already begun to send a packet

from flow 2 when the packet from flow 1 arrives. Though the packet arriving on flow 1

would have finished before flow 2 if we had been using perfect bit-by-bit fair queuing,

the implementation does not preempt the flow 2 packet.

There are two things to notice about fair queuing. First, the link is never left idle

as long as there is at least one packet in the queue. Any queuing scheme with this

characteristic is said to be work-conserving. One effect of being work-conserving is

that if I am sharing a link with a lot of flows that are not sending any data, I can use the

full link capacity for my flow. As soon as the other flows start sending, however, they

will start to use their share and the capacity available to my flow will drop.

The second thing to notice is that if the link is fully loaded and there are n flows
sending data, I cannot use more than 1/nth of the link bandwidth. If I try to send more
than that, my packets will be assigned increasingly large timestamps, causing them to

sit in the queue longer awaiting transmission. Eventually the queue will overflow—

although whether it is my packets or someone else’s that are dropped is a decision that

is not determined by the fact that we are using fair queuing. This is determined by the

drop policy; FQ is a scheduling algorithm, which, like FIFO, may be combined with

various drop policies.

Because FQ is work-conserving, any bandwidth that is not used by one flow is auto-

matically available to other flows. For example, if we have four flows passing through

a router, and all of them are sending packets, then each one will receive one-quarter

of the bandwidth. But if one of them is idle long enough that all its packets drain out

of the router’s queue, then the available bandwidth will be shared among the remain-

ing three flows, which will each now receive one-third of the bandwidth. Thus we can

think of FQ as providing a guaranteed minimum share of bandwidth to each flow, with

the possibility that it can get more than its guarantee if other flows are not using their



426 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

shares.

It is possible to implement a variation of FQ, called weighted fair queuing (WFQ),

that allows a weight to be assigned to each flow (queue). This weight logically specifies

how many bits to transmit each time the router services that queue, which effectively

controls the percentage of the link’s bandwidth that that flow will get. Simple FQ gives

each queue a weight of 1, which means that logically only 1 bit is transmitted from

each queue each time around. This results in each flow getting 1/nth of the bandwidth
when there are n flows. With WFQ, however, one queue might have a weight of 2, a
second queue might have a weight of 1, and a third queue might have a weight of 3.

Assuming that each queue always contains a packet waiting to be transmitted, the first

flow will get one-third of the available bandwidth, the second will get one-sixth of the

available bandwidth, and the third will get one-half of the available bandwidth.

While we have describedWFQ in terms of flows, note that it could be implemented

on “classes” of traffic, where classes are defined in some other way than the simple

flows introduced at the start of this chapter. For example, we could use the Type of

Service (TOS) bits in the IP header to identify classes, and allocate a queue and a

weight to each class. This is exactly what is proposed as part of the Differentiated

Services architecture described in Section 6.5.3.

Note that a router performingWFQmust learn what weights to assign to each queue

from somewhere, either by manual configuration or by some sort of signalling from

the sources. In the latter case, we are moving toward a reservation-based model. Just

assigning a weight to a queue provides a rather weak form of reservation because these

weights are only indirectly related to the bandwidth the flow receives. (The bandwidth

available to a flow also depends, for example, on how many other flows are sharing

the link.) We will see in Section 6.5.2 how WFQ can be used as a component of a

reservation-based resource allocation mechanism.

Finally, we observe that this whole discussion of queue management il-

lustrates an important system design principle known as separating policy

and mechanism. The idea is to view each mechanism as a black box that

provides a multifaceted service that can be controlled by a set of knobs.

A policy specifies a particular setting of those knobs, but does not know

(or care) about how the black box is implemented. In this case, the mech-

anism in question is the queuing discipline, and the policy is a particular

setting of which flow gets what level of service (e.g., priority or weight).

We discuss some policies that can be used with the WFQ mechanism in

Section 6.5.

6.3 TCP Congestion Control

This section describes the predominant example of end-to-end congestion control in

use today, that implemented by TCP. The essential strategy of TCP is to send packets

into the network without a reservation and then to react to observable events that occur.

TCP assumes only FIFO queuing in the network’s routers, but also works with fair

queuing.


