
450 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

reduce the rate at which they are sending packets. Your mechanism then

happily consumes all the bandwidth. This strategy is fast but hardly fair.

Experimenting directly on the Internet, even when done carefully, will

not work when your congestion-control mechanism involves changes to

the routers. It is simply not practical to change the software running on

thousands of routers for the sake of evaluating a new congestion-control

algorithm. In this case, network designers are forced to test their systems

on simulated networks or private testbed networks. For example, the TCP

traces presented in this chapter were generated by an implementation of

TCP that was running on a network simulator. The challenge in either a

simulation or a testbed is coming up with a topology and a traffic workload

that are representative of the real Internet.

Finally, you will notice that TCP Vegas decreases the congestion window linearly,

seemingly in conflict with the rule that multiplicative decrease is needed to ensure

stability. The explanation is that TCP Vegas does use multiplicative decrease when a

timeout occurs; the linear decrease just described is an early decrease in the conges-

tion window that, hopefully, happens before congestion occurs and packets start being

dropped.

6.5 Quality of Service

For many years, packet-switched networks have offered the promise of supportingmul-

timedia applications, that is, those that combine audio, video, and data. After all, once

digitized, audio and video information become like any other form of data—a stream

of bits to be transmitted. One obstacle to the fulfillment of this promise has been the

need for higher-bandwidth links. Recently, however, improvements in coding have re-

duced the bandwidth needs of audio and video applications, while at the same time link

speeds have increased.

There is more to transmitting audio and video over a network than just providing

sufficient bandwidth, however. Participants in a telephone conversation, for example,

expect to be able to converse in such a way that one person can respond to something

said by the other and be heard almost immediately. Thus, the timeliness of delivery

can be very important. We refer to applications that are sensitive to the timeliness of

data as real-time applications. Voice and video applications tend to be the canonical

examples, but there are others such as industrial control—you would like a command

sent to a robot arm to reach it before the arm crashes into something. Even file trans-

fer applications can have timeliness constraints, such as a requirement that a database

update complete overnight before the business that needs the data resumes on the next

day.

The distinguishing characteristic of real-time applications is that they need some

sort of assurance from the network that data is likely to arrive on time (for some defini-

tion of “on time”). Whereas a non-real-time application can use an end-to-end retrans-

mission strategy to make sure that data arrives correctly, such a strategy cannot provide

timeliness: Retransmission only adds to total latency if data arrives late. Timely arrival

6.5. QUALITY OF SERVICE 451

Microphone

Speaker

Sampler,�
A D �

converter�
�

Buffer,�
D A

Figure 6.20: An audio application.

must be provided by the network itself (the routers), not just at the network edges

(the hosts). We therefore conclude that the best-effort model, in which the network

tries to deliver your data but makes no promises and leaves the cleanup operation to

the edges, is not sufficient for real-time applications. What we need is a new service

model, in which applications that need higher assurances can ask the network for them.

The network may then respond by providing an assurance that it will do better or per-

haps by saying that it cannot promise anything better at the moment. Note that such

a service model is a superset of the current model: Applications that are happy with

best-effort service should be able to use the new service model; their requirements are

just less stringent. This implies that the network will treat some packets differently

from others—something that is not done in the best-effort model. A network that can

provide these different levels of service is often said to support quality of service (QoS).

6.5.1 Application Requirements

Before looking at the various protocols and mechanisms that may be used to provide

quality of service to applications, we should try to understand what the needs of those

applications are. To begin, we can divide applications into two types: real-time and non-

real-time. The latter are sometimes called “traditional data” applications, since they

have traditionally been the major applications found on data networks. They include

most popular applications like Telnet, FTP, email, Web browsing, and so on. All of

these applications can work without guarantees of timely delivery of data. Another

term for this non-real-time class of applications is elastic, since they are able to stretch

gracefully in the face of increased delay. Note that these applications can benefit from

shorter-length delays, but they do not become unusable as delays increase. Also note

that their delay requirements vary from the interactive applications like Telnet to more

asynchronous ones like email, with interactive bulk transfers like FTP in the middle.

Real-Time Audio Example

As a concrete example of a real-time application, consider an audio application similar

to the one illustrated in Figure 6.20. Data is generated by collecting samples from

a microphone and digitizing them using an analog-to-digital (A→D) converter. The
digital samples are placed in packets, which are transmitted across the network and

received at the other end. At the receiving host, the data must be played back at some

appropriate rate. For example, if the voice samples were collected at a rate of one per

125 µs, they should be played back at the same rate. Thus, we can think of each sample

452 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

as having a particular playback time: the point in time at which it is needed in the

receiving host. In the voice example, each sample has a playback time that is 125 µs
later than the preceding sample. If data arrives after its appropriate playback time, either

because it was delayed in the network or because it was dropped and subsequently

retransmitted, it is essentially useless. It is the complete worthlessness of late data that

characterizes real-time applications. In elastic applications, it might be nice if data turns

up on time, but we can still use it when it does not.

One way to make our voice application work would be to make sure that all samples

take exactly the same amount of time to traverse the network. Then, since samples are

injected at a rate of one per 125 µs, they will appear at the receiver at the same rate,
ready to be played back. However, it is generally difficult to guarantee that all data

traversing a packet-switched network will experience exactly the same delay. Packets

encounter queues in switches or routers and the lengths of these queues vary with time,

meaning that the delays tend to vary with time, and as a consequence, are potentially

different for each packet in the audio stream. The way to deal with this at the receiver

end is to buffer up some amount of data in reserve, thereby always providing a store

of packets waiting to be played back at the right time. If a packet is delayed a short

time, it goes in the buffer until its playback time arrives. If it gets delayed a long time,

then it will not need to be stored for very long in the receiver’s buffer before being

played back. Thus, we have effectively added a constant offset to the playback time of

all packets as a form of insurance. We call this offset the playback point. The only time

we run into trouble is if packets get delayed in the network for such a long time that

they arrive after their playback time, causing the playback buffer to be drained.

The operation of a playback buffer is illustrated in Figure 6.21. The left-hand di-

agonal line shows packets being generated at a steady rate. The wavy line shows when

the packets arrive, some variable amount of time after they were sent, depending on

what they encountered in the network. The right-hand diagonal line shows the packets

being played back at a steady rate, after sitting in the playback buffer for some period

of time. As long as the playback line is far enough to the right in time, the variation in

network delay is never noticed by the application. However, if we move the playback

line a little to the left, then some packets will begin to arrive too late to be useful.

For our audio application, there are limits to how far we can delay playing back

data. It is hard to carry on a conversation if the time between when you speak and when

your listener hears you is more than 300 ms. Thus, what we want from the network in

this case is a guarantee that all our data will arrive within 300 ms. If data arrives early,

we buffer it until its correct playback time. If it arrives late, we have no use for it and

must discard it.

To get a better appreciation of how variable network delay can be, Figure 6.22

shows the one-way delay measured over a certain path across the Internet over the

course of one particular day. While the exact numbers would vary depending on the

path and the date, the key factor here is the variability of the delay, which is consistently

found on almost any path at any time. As denoted by the cumulative percentages given

across the top of the graph, 97% of the packets in this case had a latency of 100 ms or

less. This means that if our example audio application were to set the playback point at

100 ms, then on average, 3 out of every 100 packets would arrive too late to be of any

use. One important thing to notice about this graph is that the tail of the curve—how

6.5. QUALITY OF SERVICE 453

S
eq

u
en

ce
 n

u
m

b
er

Packet�
generation

Network�
delay

Buffer

Playback

Time

Packet�
arrival

Figure 6.21: A playback buffer.

1

2

3

P
ac

k
et

s
(%

)

90% 97% 98% 99%

150 20010050

Delay (milliseconds)

Figure 6.22: Example distribution of delays for an Internet connection.

454 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

Applications

Elastic

Intolerant

Real−time

Tolerant

Non−Adaptive Adaptive

Delay AdaptiveRate Adaptive

Figure 6.23: Taxonomy of applications.

far it extends to the right—is very long. We would have to set the playback point at

over 200 ms to ensure that all packets arrived in time.

Taxonomy of Real-Time Applications

Now that we have a concrete idea of how real-time applications work, we can look at

some different classes of applications, which serve to motivate our service model. The

following taxonomy owes much to the work of Clark, Braden, Shenker, and Zhang,

whose papers on this subject can be found in the Further Reading section for this chap-

ter. The taxonomy of applications is summarized in Figure 6.23.

The first characteristic by which we can categorize applications is their tolerance

of loss of data, where “loss” might occur because a packet arrived too late to be played

back as well as arising from the usual causes in the network. On the one hand, one lost

audio sample can be interpolated from the surrounding samples with relatively little

effect on the perceived audio quality. It is only as more and more samples are lost that

quality declines to the point that the speech becomes incomprehensible. On the other

hand, a robot control program is likely to be an example of a real-time application

that cannot tolerate loss—losing the packet that contains the command instructing the

robot arm to stop is unacceptable. Thus, we can categorize real-time applications as

tolerant or intolerant depending on whether they can tolerate occasional loss. (As an

aside, note that many real-time applications are more tolerant of occasional loss than

non-real-time applications. For example, compare our audio application to FTP, where

the uncorrected loss of one bit might render a file completely useless.)

A second way to characterize real-time applications is by their adaptability. For ex-

6.5. QUALITY OF SERVICE 455

ample, an audio application might be able to adapt to the amount of delay that packets

experience as they traverse the network. If we notice that packets are almost always

arriving within 300 ms of being sent, then we can set our playback point accordingly,

buffering any packets that arrive in less than 300 ms. Suppose that we subsequently

observe that all packets are arriving within 100 ms of being sent. If we moved up our

playback point to 100 ms, then the users of the application would probably perceive an

improvement. The process of shifting the playback point would actually require us to

play out samples at an increased rate for some period of time. With a voice application,

this can be done in a way that is barely perceptible, simply by shortening the silences

between words. Thus, playback point adjustment is fairly easy in this case, and it has

been effectively implemented for several voice applications such as the audio telecon-

ferencing program known as vat. Note that playback point adjustment can happen in

either direction, but that doing so actually involves distorting the played-back signal

during the period of adjustment, and that the effects of this distortion will very much

depend on how the end user uses the data.

Observe that if we set our playback point on the assumption that all packets will

arrive within 100 ms and then find that some packets are arriving slightly late, we

will have to drop them, whereas we would not have had to drop them if we had left

the playback point at 300 ms. Thus, we should advance the playback point only when

it provides a perceptible advantage and only when we have some evidence that the

number of late packets will be acceptably small. We may do this because of observed

recent history or because of some assurance from the network.

We call applications that can adjust their playback point delay-adaptive applica-

tions. Another class of adaptive applications are rate adaptive. For example, many

video coding algorithms can trade off bit rate versus quality. Thus, if we find that the

network can support a certain bandwidth, we can set our coding parameters accord-

ingly. If more bandwidth becomes available later, we can change parameters to increase

the quality.

Approaches to QoS Support

Considering this rich space of application requirements, what we need is a richer ser-

vice model that meets the needs of any application. This leads us to a service model

with not just one class (best effort), but with several classes, each available to meet the

needs of some set of applications. Towards this end, we are now ready to look at some

of the approaches that have been developed to provide a range of qualities of service.

These can be divided into two broad categories:

• fine-grained approaches, which provide QoS to individual applications or flows

• coarse-grained approaches, which provide QoS to large classes of data or aggre-

gated traffic

In the first category we find “Integrated Services,” a QoS architecture developed

in the IETF and often associated with RSVP (Resource Reservation Protocol). ATM’s

approach to QoS was also in this category. In the second category lies “Differentiated

456 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

Services,” which is probably the most widely deployed QoS mechanism at the time of

writing. We discuss these in turn in the next two subsections.

Finally, adding QoS support to the network isn’t necessarily the entire story about

supporting real-time applications. We conclude our discussion by revisiting what the

end-host might do to better support real-time streams, independent of how widely de-

ployed QoS mechanisms like Integrated or Differentiated Services become.

6.5.2 Integrated Services (RSVP)

The term “Integrated Services” (often called IntServ for short) refers to a body of work

that was produced by the IETF around 1995–97. The IntServ working group developed

specifications of a number of service classes designed to meet the needs of some of the

application types described above. It also defined how RSVP could be used to make

reservations using these service classes. The following paragraphs provide an overview

of these specifications and the mechanisms that are used to implement them.

Service Classes

One of the service classes is designed for intolerant applications. These applications

require that a packet never arrive late. The network should guarantee that the maximum

delay that any packet will experience has some specified value; the application can

then set its playback point so that no packet will ever arrive after its playback time. We

assume that early arrival of packets can always be handled by buffering. This service

is referred to as the guaranteed service.

In addition to the guaranteed service, the IETF considered several other services,

but eventually settled on one to meet the needs of tolerant, adaptive applications. The

service is known as controlled load and was motivated by the observation that existing

applications of this type run quite well on networks that are not heavily loaded. The

audio application vat, for example, adjusts its playback point as network delay varies,

and produces reasonable audio quality as long as loss rates remain on the order of 10%

or less.

The aim of the controlled load service is to emulate a lightly loaded network for

those applications that request the service, even though the network as a whole may in

fact be heavily loaded. The trick to this is to use a queuing mechanism such as WFQ

(see Section 6.2) to isolate the controlled load traffic from the other traffic, and some

form of admission control to limit the total amount of controlled load traffic on a link

such that the load is kept reasonably low. We discuss admission control in more detail

below.

Clearly, these two service classes are a subset of all the classes that might be pro-

vided. It remains to be seen as Integrated Services are deployed whether these two are

adequate to meet the needs of all the application types described above.

Overview of Mechanisms

Now that we have augmented our best-effort service model with some new service

classes, the next question is how we implement a network that provides these services

6.5. QUALITY OF SERVICE 457

to applications. This section outlines the key mechanisms. Keep in mind while read-

ing this section that the mechanisms being described are still being hammered out by

the Internet design community. The main thing to take away from the discussion is a

general understanding of the pieces involved in supporting the service model outlined

above.

First, whereas with a best-effort service we can just tell the network where we want

our packets to go and leave it at that, a real-time service involves telling the network

something more about the type of service we require. We may give it qualitative in-

formation such as “use a controlled load service” or quantitative information such as

“I need a maximum delay of 100 ms.” In addition to describing what we want, we

need to tell the network something about what we are going to inject into it, since

a low-bandwidth application is going to require fewer network resources than a high-

bandwidth application. The set of information that we provide to the network is referred

to as a flowspec. This name comes from the idea that a set of packets associated with a

single application and that share common requirements is called a flow, consistent with

our use of the term “flow” in Section 6.1.

Second, when we ask the network to provide us with a particular service, the net-

work needs to decide if it can in fact provide that service. For example, if 10 users ask

for a service in which each will consistently use 2 Mbps of link capacity, and they all

share a link with 10-Mbps capacity, the network will have to say no to some of them.

The process of deciding when to say no is called admission control.

Third, we need a mechanism by which the users of the network and the components

of the network itself exchange information such as requests for service, flowspecs, and

admission control decisions. This is sometimes called signalling, but since that word

has several meanings, we refer to this process as resource reservation, and it is achieved

using a resource reservation protocol.

Finally, when flows and their requirements have been described, and admission

control decisions have been made, the network switches and routers need to meet the

requirements of the flows. A key part of meeting these requirements is managing the

way packets are queued and scheduled for transmission in the switches and routers.

This last mechanism is packet scheduling.

Flowspecs

There are two separable parts to the flowspec: the part that describes the flow’s traffic

characteristics (called the TSpec) and the part that describes the service requested from

the network (the RSpec). The RSpec is very service specific and relatively easy to de-

scribe. For example, with a controlled load service, the RSpec is trivial: The application

just requests controlled load service with no additional parameters. With a guaranteed

service, you could specify a delay target or bound. (In the IETF’s guaranteed service

specification, you specify not a delay but another quantity from which delay can be

calculated.)

The TSpec is a little more complicated. As our example above showed, we need to

give the network enough information about the bandwidth used by the flow to allow

intelligent admission control decisions to be made. For most applications, however,

the bandwidth is not a single number; it is something that varies constantly. A video

458 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

1 2 3 4

1�

2�

3�

Flow B

Flow A

Time (seconds)

B
an

d
w

id
th

 (
M

B
p
s)

Figure 6.24: Two flows with equal average rates but different token bucket descriptions.

application, for example, will generally generate more bits per second when the scene

is changing rapidly than when it is still. Just knowing the long-term average bandwidth

is not enough, as the following example illustrates. Suppose that we have 10 flows that

arrive at a switch on separate input ports and that all leave on the same 10-Mbps link.

Assume that over some suitably long interval each flow can be expected to send no

more than 1 Mbps. You might think that this presents no problem. However, if these

are variable bit rate applications, such as compressed video, then they will occasionally

send more than their average rates. If enough sources send at above their average rates,

then the total rate at which data arrives at the switch will be greater than 10 Mbps. This

excess data will be queued before it can be sent on the link. The longer this condition

persists, the longer the queue will get. Packets might have to be dropped, and even if it

doesn’t come to that, data sitting in the queue is being delayed. If packets are delayed

long enough, the service that was requested will not be provided.

Exactly how we manage our queues to control delay and avoid dropping packets is

somethingwe discuss below. However, note here that we need to know something about

how the bandwidth of our sources varies with time. One way to describe the bandwidth

characteristics of sources is called a token bucket filter. Such a filter is described by two

parameters: a token rate r, and a bucket depthB. It works as follows. To be able to send
a byte, I must have a token. To send a packet of length n, I need n tokens. I start with
no tokens and I accumulate them at a rate of r per second. I can accumulate no more
thanB tokens. What this means is that I can send a burst of as many asB bytes into the

network as fast as I want, but over a sufficiently long interval, I can’t send more than

r bytes per second. It turns out that this information is very helpful to the admission
control algorithm when it tries to figure out whether it can accommodate a new request

for service.

Figure 6.24 illustrates how a token bucket can be used to characterize a flow’s band-

width requirements. For simplicity, assume that each flow can send data as individual

bytes, rather than as packets. Flow A generates data at a steady rate of 1 MBps, so it

can be described by a token bucket filter with a rate r = 1 MBps and a bucket depth
of 1 byte. This means that it receives tokens at a rate of 1 MBps but that it cannot

6.5. QUALITY OF SERVICE 459

store more than 1 token—it spends them immediately. Flow B also sends at a rate that

averages out to 1 MBps over the long term, but does so by sending at 0.5 MBps for

2 seconds and then at 2 MBps for 1 second. Since the token bucket rate r is, in a sense,
a long-term average rate, flow B can be described by a token bucket with a rate of

1 MBps. Unlike flow A, however, flow B needs a bucket depth B of at least 1 MB, so

that it can store up tokens while it sends at less than 1 MBps to be used when it sends at

2 MBps. For the first 2 seconds in this example, it receives tokens at a rate of 1 MBps

but spends them at only 0.5 MBps, so it can save up 2 × 0.5 = 1MB of tokens, which
it then spends in the third second (along with the new tokens that continue to accrue in

that second) to send data at 2 MBps. At the end of the third second, having spent the

excess tokens, it starts to save them up again by sending at 0.5 MBps again.

It is interesting to note that a single flow can be described by many different token

buckets. As a trivial example, flow A could be described by the same token bucket

as flow B, with a rate of 1 MBps and a bucket depth of 1 MB. The fact that it never

actually needs to accumulate tokens does not make that an inaccurate description, but

it does mean that we have failed to convey some useful information to the network—

the fact that flow A is actually very consistent in its bandwidth needs. In general, it is

good to be as explicit about the bandwidth needs of an application as possible, to avoid

over-allocation of resources in the network.

Admission Control

The idea behind admission control is simple: When some new flow wants to receive

a particular level of service, admission control looks at the TSpec and RSpec of the

flow and tries to decide if the desired service can be provided to that amount of traffic,

given the currently available resources, without causing any previously admitted flow

to receive worse service than it had requested. If it can provide the service, the flow

is admitted; if not, then it is denied. The hard part is figuring out when to say yes and

when to say no.

Admission control is very dependent on the type of requested service and on the

queuing discipline employed in the routers; we discuss the latter topic later in this sec-

tion. For a guaranteed service, you need to have a good algorithm to make a definitive

yes/no decision. The decision is fairly straightforward if weighted fair queuing, as dis-

cussed in Section 6.2, is used at each router. For a controlled load service, the decision

may be based on heuristics, such as “The last time I allowed a flow with this TSpec

into this class, the delays for the class exceeded the acceptable bound, so I’d better say

no” or “My current delays are so far inside the bounds that I should be able to admit

another flow without difficulty.”

Admission control should not be confused with policing. The former is a per-flow

decision to admit a new flow or not. The latter is a function applied on a per-packet basis

to make sure that a flow conforms to the TSpec that was used to make the reservation.

If a flow does not conform to its TSpec—for example, because it is sending twice as

many bytes per second as it said it would—then it is likely to interfere with the service

provided to other flows, and some corrective action must be taken. There are several

options, the obvious one being to drop offending packets. However, another option

would be to check if the packets really are interfering with the service of other flows.

460 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

If they are not interfering, the packets could be sent on after being marked with a tag

that says, in effect, “This is a non-conforming packet. Drop it first if you need to drop

any packets.”

Admission control is closely related to the important issue of policy. For example,

a network administrator might wish to allow reservations made by his company’s CEO

to be admitted while rejecting reservations made by more lowly employees. Of course,

the CEO’s reservation request might still fail if the requested resources aren’t available,

so we see that issues of policy and resource availability may both be addressed when

admission control decisions are made. The application of policy to networking is an

area receiving much attention at the time of writing.

Reservation Protocol

While connection-oriented networks have always needed some sort of setup protocol

to establish the necessary virtual circuit state in the switches, connectionless networks

like the Internet have had no such protocols. As this section has indicated, however,

we need to provide a lot more information to our network when we want a real-time

service from it. While there have been a number of setup protocols proposed for the

Internet, the one on which most current attention is focused is called Resource Reser-

vation Protocol (RSVP). It is particularly interesting because it differs so substantially

from conventional signalling protocols for connection-oriented networks.

One of the key assumptions underlying RSVP is that it should not detract from the

robustness that we find in today’s connectionless networks. Because connectionless

networks rely on little or no state being stored in the network itself, it is possible for

routers to crash and reboot and for links to go up and down while end-to-end connec-

tivity is still maintained. RSVP tries to maintain this robustness by using the idea of

soft state in the routers. Soft state—in contrast to the hard state found in connection-

oriented networks—does not need to be explicitly deleted when it is no longer needed.

Instead, it times out after some fairly short period (say, a minute) if it is not periodically

refreshed. We will see later how this helps robustness.

Another important characteristic of RSVP is that it aims to support multicast flows

just as effectively as unicast flows. This is not surprising, since many of the first ap-

plications that could benefit from improved quality of service were also multicast

applications—vat and vic, for example. One of the insights of RSVP’s designers is

that most multicast applications have many more receivers than senders, as typified

by the large audience and one speaker for a lecture. Also, receivers may have differ-

ent requirements. For example, one receiver might want to receive data from only one

sender, while others might wish to receive data from all senders. Rather than having

the senders keep track of a potentially large number of receivers, it makes more sense

to let the receivers keep track of their own needs. This suggests the receiver-oriented

approach adopted by RSVP. In contrast, connection-oriented networks usually leave

resource reservation to the sender, just as it is normally the originator of a phone call

who causes resources to be allocated in the phone network.

The soft state and receiver-oriented nature of RSVP give it a number of nice proper-

ties. One nice property is that it is very straightforward to increase or decrease the level

of resource allocation provided to a receiver. Since each receiver periodically sends

6.5. QUALITY OF SERVICE 461

refresh messages to keep the soft state in place, it is easy to send a new reservation that

asks for a new level of resources. In the event of a host crash, resources allocated by

that host to a flow will naturally time out and be released. To see what happens in the

event of a router or link failure, we need to look a little more closely at the mechanics

of making a reservation.

Initially, consider the case of one sender and one receiver trying to get a reservation

for traffic flowing between them. There are two things that need to happen before a

receiver can make the reservation. First, the receiver needs to know what traffic the

sender is likely to send so that it can make an appropriate reservation. That is, it needs

to know the sender’s TSpec. Second, it needs to knowwhat path the packets will follow

from sender to receiver, so that it can establish a resource reservation at each router on

the path. Both of these requirements can be met by sending a message from the sender

to the receiver that contains the TSpec. Obviously, this gets the TSpec to the receiver.

The other thing that happens is that each router looks at this message (called a PATH

message) as it goes past, and it figures out the reverse path that will be used to send

reservations from the receiver back to the sender in an effort to get the reservation

to each router on the path. Building the multicast tree in the first place is done by

mechanisms such as those described in Section 4.4.

Having received a PATH message, the receiver sends a reservation back “up” the

multicast tree in a RESV message. This message contains the sender’s TSpec and an

RSpec describing the requirements of this receiver. Each router on the path looks at

the reservation request and tries to allocate the necessary resources to satisfy it. If the

reservation can be made, the RESV request is passed on to the next router. If not, an

error message is returned to the receiver who made the request. If all goes well, the

correct reservation is installed at every router between the sender and the receiver. As

long as the receiver wants to retain the reservation, it sends the same RESV message

about once every 30 seconds.

Now we can see what happens when a router or link fails. Routing protocols will

adapt to the failure and create a new path from sender to receiver. PATH messages are

sent about every 30 seconds, and may be sent sooner if a router detects a change in its

forwarding table, so the first one after the new route stabilizes will reach the receiver

over the new path. The receiver’s next RESV message will follow the new path and

(hopefully) establish a new reservation on the new path. Meanwhile, the routers that

are no longer on the path will stop getting RESV messages, and these reservations will

time out and be released. Thus RSVP deals quite well with changes in topology, as

long as routing changes are not excessively frequent.

The next thing we need to consider is how to cope with multicast, where there may

be multiple senders to a group and multiple receivers. This situation is illustrated in

Figure 6.25. First, let’s deal with multiple receivers for a single sender. As a RESV

message travels up the multicast tree, it is likely to hit a piece of the tree where some

other receiver’s reservation has already been established. It may be the case that the

resources reserved upstream of this point are adequate to serve both receivers. For

example, if receiver A has already made a reservation that provides for a guaranteed

delay of less than 100 ms, and the new request from receiver B is for a delay of less

than 200 ms, then no new reservation is required. On the other hand, if the new request

were for a delay of less than 50 ms, then the router would first need to see if it could

462 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

R

R

R

R

R

Sender 1

Sender 2

PATH

PATH

RESV
(merged)

RESV

RESV

Receiver B

Receiver A

Figure 6.25: Making reservations on a multicast tree.

accept the request, and if so, it would send the request on upstream. The next time

receiver A asked for a minimum of a 100-ms delay, the router would not need to pass

this request on. In general, reservations can be merged in this way to meet the needs of

all receivers downstream of the merge point.

If there are also multiple senders in the tree, receivers need to collect the TSpecs

from all senders and make a reservation that is large enough to accommodate the traffic

from all senders. However, this may not mean that the TSpecs need to be added up. For

example, in an audioconference with 10 speakers, there is not much point in allocating

enough resources to carry 10 audio streams, since the result of 10 people speaking at

once would be incomprehensible. Thus, we could imagine a reservation that is large

enough to accommodate two speakers and no more. Calculating the correct overall

TSpec from all the sender TSpecs is clearly application specific. Also, we may only

be interested in hearing from a subset of all possible speakers; RSVP has different

reservation “styles” to deal with such options as “Reserve resources for all speakers,”

“Reserve resources for any n speakers,” and “Reserve resources for speakers A and B
only.”

Sidebar: RSVP and Integrated Services Deployment5

RSVP and the Integrated Services architecture have, at the time of

writing, not been very widely deployed, in large part because of scala-

bility concerns described at the end of this section. In fact, it is common to

assert that they are “dead” as technologies. However, it may be premature

to write the obituaries for RSVP and integrated services just yet.

Separated from IntServ, RSVP has been quite widely deployed as a

protocol for establishing MPLS paths for the purposes of traffic engineer-

ing, as described in Section 4.5. For this reason alone, most routers in the

5New design element

6.5. QUALITY OF SERVICE 463

Internet have some sort of RSVP implementation. However, that is prob-

ably the full extent of RSVP deployment in the Internet at the time of

writing. This usage of RSVP is largely independent of IntServ, but it does

at least demonstrate that the protocol itself is deployable.

There is some evidence that RSVP and IntServ may get a second

chance more than 10 years after they were first proposed. For example, the

IETF is standardizing extensions to RSVP to support aggregate reservations—

extensions that directly address the scalability concerns that have been

raised about RSVP and int-serv in the past. And there is increasing support

for RSVP as a resource reservation protocol in commercial products.

Various factors can be identified that may lead to greater adoption of

RSVP and IntServ in the near future. First, applications that actually re-

quire QoS, such as voice-over-IP and real-time video conferencing, are

much more widespread than they were 10 years ago, creating a greater

demand for sophisticated QoS mechanisms. Second, admission control—

which enables the network to say “no” to an application when resources

are scarce—is a good match to applications that cannot work well unless

sufficient resources are available. Most users of IP telephones, for exam-

ple, would prefer to get a busy signal from the network than to have a call

proceed at unacceptably bad quality. And a network operator would prefer

to send a busy signal to one user than to provide bad quality to a large

number of users. A third factor is the large resource requirements of new

applications such as high definition video delivery: because they need so

much bandwidth to work well, it may be more cost-effective to build net-

works that can say “no” occasionally than to provide enough bandwidth to

meet all possible application demands. However this is a complex tradeoff

and the debate over the value of admission control, and RSVP and IntServ

as tools to provide it, is likely to continue for some time.

Packet Classifying and Scheduling

Once we have described our traffic and our desired network service and have installed

a suitable reservation at all the routers on the path, the only thing that remains is for

the routers to actually deliver the requested service to the data packets. There are two

things that need to be done:

• Associate each packet with the appropriate reservation so that it can be handled
correctly, a process known as classifying packets.

• Manage the packets in the queues so that they receive the service that has been
requested, a process known as packet scheduling.

The first part is done by examining up to five fields in the packet: the source ad-

dress, destination address, protocol number, source port, and destination port. (In IPv6,

it is possible that the FlowLabel field in the header could be used to enable the lookup

to be done based on a single, shorter key.) Based on this information, the packet can

be placed in the appropriate class. For example, it may be classified into the controlled

464 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

load classes, or it may be part of a guaranteed flow that needs to be handled separately

from all other guaranteed flows. In short, there is a mapping from the flow-specific

information in the packet header to a single class identifier that determines how the

packet is handled in the queue. For guaranteed flows, this might be a one-to-one map-

ping, while for other services, it might be many to one. The details of classification are

closely related to the details of queue management.

It should be clear that something as simple as a FIFO queue in a router will be

inadequate to provide many different services and to provide different levels of delay

within each service. Several more sophisticated queue management disciplines were

discussed in Section 6.2, and some combination of these is likely to be used in a router.

The details of packet scheduling ideally should not be specified in the service

model. Instead, this is an area where implementors can try to do creative things to

realize the service model efficiently. In the case of guaranteed service, it has been

established that a weighted fair queuing discipline, in which each flow gets its own

individual queue with a certain share of the link, will provide a guaranteed end-to-end

delay bound that can readily be calculated. For controlled load, simpler schemes may

be used. One possibility includes treating all the controlled load traffic as a single, ag-

gregated flow (as far as the scheduling mechanism is concerned), with the weight for

that flow being set based on the total amount of traffic admitted in the controlled load

class. The problem is made harder when you consider that in a single router, many

different services are likely to be provided concurrently, and that each of these services

may require a different scheduling algorithm. Thus, some overall queue management

algorithm is needed to manage the resources between the different services.

Scalability Issues

While the Integrated Services architecture and RSVP represented a significant enhance-

ment of the best-effort service model of IP, many Internet service providers felt that it

was not the right model for them to deploy. The reason for this reticence relates to

one of the fundamental design goals of IP: scalability. In the best-effort service model,

routers in the Internet store little or no state about the individual flows passing through

them. Thus, as the Internet grows, the only thing routers have to do to keep up with

that growth is to move more bits per second and to deal with larger routing tables. But

RSVP raises the possibility that every flow passing through a router might have a cor-

responding reservation. To understand the severity of this problem, suppose that every

flow on an OC-48 (2.5-Gbps) link represents a 64-Kbps audio stream. The number of

such flows is

2.5 × 109/64 × 103 = 39,000

Each of those reservations needs some amount of state that needs to be stored in

memory and refreshed periodically. The router needs to classify, police, and queue each

of those flows. Admission control decisions need to be made every time such a flow

requests a reservation. And some mechanisms are needed to “push back” on users so

that they don’t make arbitrarily large reservations for long periods of time.6

6Charging per reservation would be one way to push back, consistent with the telephony model of billing

for each phone call. This is not the only way to push back, and per-call billing is believed to be one of the

6.5. QUALITY OF SERVICE 465

These scalability concerns have, at the time of writing, prevented the widespread

deployment of IntServ. Because of these concerns, other approaches that do not require

so much “per-flow” state have been developed. The next section discusses a number of

such approaches.

6.5.3 Differentiated Services (EF, AF)

Whereas the Integrated Services architecture allocates resources to individual flows,

the Differentiated Services model (often called DiffServ for short) allocates resources

to a small number of classes of traffic. In fact, some proposed approaches to DiffServ

simply divide traffic into two classes. This is an eminently sensible approach to take: If

you consider the difficulty that network operators experience just trying to keep a best-

effort internet running smoothly, it makes sense to add to the service model in small

increments.

Suppose that we have decided to enhance the best-effort service model by adding

just one new class, which we’ll call “premium.” Clearly we will need some way to

figure out which packets are premium and which are regular old best effort. Rather than

using a protocol like RSVP to tell all the routers that some flow is sending premium

packets, it would be much easier if the packets could just identify themselves to the

router when they arrive. This could obviously be done by using a bit in the packet

header—if that bit is a 1, the packet is a premium packet; if it’s a 0, the packet is best

effort. With this in mind, there are two questions we need to address:

• Who sets the premium bit, and under what circumstances?

• What does a router do differently when it sees a packet with the bit set?

There are many possible answers to the first question, but a common approach is

to set the bit at an administrative boundary. For example, the router at the edge of an

Internet service provider’s network might set the bit for packets arriving on an interface

that connects to a particular company’s network. The Internet service provider might

do this because that company has paid for a higher level of service than best effort. It is

also possible that not all packets would be marked as premium; for example, the router

might be configured to mark packets as premium up to some maximum rate, and to

leave all excess packets as best effort.

Assuming that packets have been marked in some way, what do the routers that en-

counter marked packets do with them? Here again there are many answers. In fact, the

IETF standardized a set of router behaviors to be applied to marked packets. These are

called “per-hop behaviors” (PHBs), a term that indicates that they define the behavior

of individual routers rather than end-to-end services. Because there is more than one

new behavior, there is also a need for more than 1 bit in the packet header to tell the

routers which behavior to apply. The IETF decided to take the old TOS byte from the

IP header, which had not been widely used, and redefine it. Six bits of this byte have

been allocated for DiffServ code points (DSCP), where each DSCP is a 6-bit value that

identifies a particular PHB to be applied to a packet.

major costs of operating the phone network.

466 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

The Expedited Forwarding (EF) PHB

One of the simplest PHBs to explain is known as “expedited forwarding” (EF). Packets

marked for EF treatment should be forwarded by the router with minimal delay and

loss. The only way that a router can guarantee this to all EF packets is if the arrival

rate of EF packets at the router is strictly limited to be less than the rate at which the

router can forward EF packets. For example, a router with a 100-Mbps interface needs

to be sure that the arrival rate of EF packets destined for that interface never exceeds

100Mbps. It might also want to be sure that the rate will be somewhat below 100Mbps,

so that it occasionally has time to send other packets such as routing updates.

The rate limiting of EF packets is achieved by configuring the routers at the edge

of an administrative domain to allow a certain maximum rate of EF packet arrivals into

the domain. A simple, albeit conservative, approach would be to ensure that the sum of

the rates of all EF packets entering the domain is less than the bandwidth of the slowest

link in the domain. This would ensure that, even in the worst case where all EF packets

converge on the slowest link, it is not overloaded and can provide the correct behavior.

There are several possible implementation strategies for the EF behavior. One is to

give EF packets strict priority over all other packets. Another is to perform weighted

fair queuing between EF packets and other packets, with the weight of EF set suffi-

ciently high that all EF packets can be delivered quickly. This has an advantage over

strict priority: The non-EF packets can be assured of getting some access to the link,

even if the amount of EF traffic is excessive. This might mean that the EF packets fail

to get exactly the specified behavior, but it could also prevent essential routing traffic

from being locked out of the network in the event of an excessive load of EF traffic.

The Assured Forwarding (AF) PHB

The “assured forwarding” (AF) PHB has its roots in an approach known as “RED with

In and Out” (RIO) or “Weighted RED,” both of which are enhancements to the basic

RED algorithm of Section 6.4.2. Figure 6.26 shows how RIO works; like Figure 6.17,

we see drop probability on the y-axis increasing as average queue length increases
along the x-axis. But now, for our two classes of traffic, we have two separate drop
probability curves. RIO calls the two classes “in” and “out” for reasons that will be-

come clear shortly. Because the “out” curve has a lower MinThreshold than the “in”
curve, it is clear that, under low levels of congestion, only packets marked “out” will

be discarded by the RED algorithm. If the congestion becomes more serious, a higher

percentage of “out” packets are dropped, and then if the average queue length exceeds

Minin, RED starts to drop “in” packets as well.

The reason for calling the two classes of packets “in” and “out” stems from the

way the packets are marked. We already noted that packet marking can be performed

by a router at the edge of an administrative domain. We can think of this router as

being at the boundary between a network service provider and some customer of that

network. The customer might be any other network, for example, the network of a

corporation or of another network service provider. The customer and the network

service provider agree on some sort of profile for the assured service (and perhaps

the customer pays the network service provider for this profile.) The profile might be

6.5. QUALITY OF SERVICE 467

P(drop)

1.0

MaxP

Minin MaxinMaxoutMinout

AvgLen

Figure 6.26: RED with In and Out drop probabilities.

something like “Customer X is allowed to send up to y Mbps of assured traffic,” or
it could be significantly more complex. Whatever the profile is, the edge router can

clearly mark the packets that arrive from this customer as being either in or out of

profile. In the example just mentioned, as long as the customer sends less than y Mbps,
all his packets will be marked “in,” but once he exceeds that rate, the excess packets

will be marked “out.”

The combination of a “profile meter” at the edge and RIO in all the routers of the

service provider’s network should provide the customer with a high assurance (but not a

guarantee) that packets within his profile can be delivered. In particular, if the majority

of packets, including those sent by customers who have not paid extra to establish a

profile, are “out” packets, then it should usually be the case that the RIO mechanism

will act to keep congestion low enough that “in” packets are rarely dropped. Clearly,

there must be enough bandwidth in the network so that the “in” packets alone are rarely

able to congest a link to the point where RIO starts dropping “in” packets.

Just like RED, the effectiveness of a mechanism like RIO depends to some extent

on correct parameter choices, and there are considerably more parameters to set for

RIO. Exactly how well the scheme will work in production networks is not known at

the time of writing.

One interesting property of RIO is that it does not change the order of “in” and

“out” packets. For example, if a TCP connection is sending packets through a profile

meter, and some packets are being marked “in” while others are marked “out,” those

packets will receive different drop probabilities in the router queues, but they will be

delivered to the receiver in the same order in which they were sent. This is important for

most TCP implementations, which perform much better when packets arrive in order,

even if they are designed to cope with misordering. Note also that mechanisms such as

fast retransmit can be falsely triggered when misordering happens.

The idea of RIO can be generalized to provide more than two drop probability

curves, and this is the idea behind the approach known as weighted RED (WRED). In

this case, the value of the DSCP field is used to pick one of several drop probability

curves, so that several different classes of service can be provided.

468 CHAPTER 6. CONGESTION CONTROL AND RESOURCE ALLOCATION

The Quiet Success of DiffServ7

As recently as 2003, many people were ready to declare that Diff-

Serv was dead. At that year’s ACM SIGCOMM conference, one of the

most prestigious networking research conferences, a workshop with the

provocative title “RIPQOS” was held—the official name of the workshop

was “Revisiting IP QoS” but the implication that QOS might be ready to

rest in peace was clear in the workshop announcement. However, just as

Mark Twain quipped that reports of his death were greatly exaggerated,

it seems that the demise of IP QoS, and DiffServ in particular, was also

overstated.

Much of the pessimism about DiffServ arose from the fact that is had

not been deployed to any significant extent by Internet Service Providers.

Not only that, but the fact that real-time applications such as IP telephony

and video streaming appear to be working so well over the Internet without

any QoS mechanisms in place makes one wonder if any QoS will every be

needed. In part this is the result of aggressive deployment of high band-

width links and routers by many ISPs, especially during the “boom” years

of the late 1990s.

To see where DiffServ has succeeded, you need to look outside the

ISP backbones. For example, corporations that have deployed IP telephony

solutions—and there are over ten million “enterprise class” IP phones in

use at the time of writing—routinely use “EF” behavior for the voice me-

dia packets to ensure that they are not delayed when sharing links with

other traffic. The same holds for many residential voice-over-IP solutions:

just to get priority on the upstream link out of the residence (e.g. the “slow”

direction of a DSL link), it is common for the voice endpoint to set the

DSCP to EF, and for a consumer’s router connected to the broadband link

to use DiffServ to give low latency and jitter to those packets. There are

even some large national telephone companies that have migrated their

traditional voice services onto IP networks, with DiffServ providing the

means to protect the QoS of the voice.

There are other applications beside voice that are benefiting from Diff-

Serv, notably business data services. And no doubt the maturing of IP-

based video in the coming years will provide another driver. In general,

two factors make DiffServ deployment worthwhile: a high demand for

QoS assurance from the application, and a lack of assurance that the link

bandwidth will be sufficient to deliver that QoS to all the traffic traversing

the link. It is important to realize that DiffServ, like any other QoS mecha-

nism, cannot create bandwidth—all it can do is ensure that what bandwidth

there is gets preferentially allocated to the applications that have more de-

manding QoS needs.

A third way to provide Differentiated Services is to use the DSCP value to deter-

mine which queue to put a packet into in a weighted fair queuing scheduler as described

7New Design Element

6.5. QUALITY OF SERVICE 469

in Section 6.2.2. As a very simple case, we might use one code point to indicate the

“best-effort” queue and a second code point to select the “premium” queue. We then

need to choose a weight for the premium queue that makes the premium packets get

better service than the best-effort packets. This depends on the offered load of premium

packets. For example, if we give the premium queue a weight of one and the best-effort

queue a weight of four, that ensures that the bandwidth available to premium packets is

Bpremium = Wpremium/(Wpremium + Wbest effort)

= 1/(1 + 4)

= 0.2

That is, we have effectively reserved 20% of the link for premium packets, so if the

offered load of premium traffic is only 10% of the link on average, then the premium

traffic will behave as if it is running on a very underloaded network and the service will

be very good. In particular, the delay experienced by the premium class can be kept low,

since WFQ will try to transmit premium packets as soon as they arrive in this scenario.

On the other hand, if the premium traffic load were 30%, it would behave like a highly

loaded network, and delay could be very high for the “premium” packets—even worse

than the so-called best-effort packets. Thus, knowledge of the offered load and careful

setting of weights is important for this type of service. However, note that the safe

approach is to be very conservative in setting the weight for the premium queue. If this

weight is made very high relative to the expected load, it provides a margin of error

and yet does not prevent the best-effort traffic from using any bandwidth that has been

reserved for premium but is not used by premium packets.

Just as in WRED, we can generalize this WFQ-based approach to allow more than

two classes represented by different code points. Furthermore, we can combine the idea

of a queue selector with a drop preference. For example, with 12 code points we can

have four queues with different weights, each of which has three drop preferences. This

is exactly what the IETF has done in the definition of “assured service.”

Sidebar: ATM Quality of Service

ATM is a rather less important technology today than it was 10 years

ago, but one of its real contributions was in the area of QoS. In some

respects, the fact that ATM was designed with fairly rich QoS capabilities

was one of the things that spurred interest in QoS for IP. It also helped the

early adoption of ATM.

In many respects, the QoS capabilities that are provided in ATM net-

works are similar to those provided in an IP network using Integrated Ser-

vices. However, the ATM standards bodies came up with a total of five ser-

vice classes compared to the IETF’s three.8 The five ATM service classes

are

• constant bit rate (CBR)
• variable bit rate—real-time (VBR-rt)

8We count best effort as a service class along with controlled load and guaranteed service.

