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LECTURE 8
Scheduling for Fairness: Fair

Queueing and CSFQ

! 8.1 Introduction

I
nthe last lecture, we discussed two ways in which routers can help in congestion control:
by signaling congestion, using either packet drops or marks (e.g., ECN), and by cleverly

managing its buffers (e.g., using an active queue management scheme like RED). Today,
we turn to the third way in which routers can assist in congestion control: scheduling.

Specifically, we will first study a particular form of scheduling, called fair queueing (FQ)
that achieves (weighted) fair allocation of bandwidth between flows (or between whatever
traffic aggregates one chooses to distinguish between.1 While FQ achieves weighted-fair
bandwidth allocations, it requires per-flow queueing and per-flow state in each router in
the network. This is often prohibitively expensive. We will also study another scheme,
called core-stateless fair queueing (CSFQ), which displays an interesting design where “edge”
routers maintain per-flow state whereas “core” routers do not. They use their own non-
per-flow state complimented with some information reaching them in packet headers
(placed by the edge routers) to implement fair allocations. Strictly speaking, CSFQ is not a
scheduling mechanism, but a way to achieve fair bandwidth allocation using differential
packet dropping. But because it attempts to emulate fair queueing, it’s best to discuss the
scheme in conjuction with fair queueing.

The notes for this lecture are based on two papers:

1. A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair Queueing
Algorithm”, Internetworking: Research and Experience, Vol. 1, No. 1, pp. 3–26, 1990.
(Or read ACM SIGCOMM 1989 version.)

2. I. Stoica, S. Shenker, H. Zhang, “Core-Stateless Fair Queueing: Achieving Approxi-
mately Fair Bandwidth Allocations in High Speed Network,” in Proc. ACM Sigcomm,
September 1998, Vancouver, Canada.

1FQ is also known as Packet Generalized Processor Sharing (PGPS), a scheme developed at MIT at about the
same time as FQ was developed at PARC.
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! 8.2 Scheduling

The fundmental problem solved by a scheduling algorithm running at a router is to an-
swer the following question: “Which packet gets sent out next, and when?” The choice of
which flow (or flow aggregate; we use the term “flow” to mean one or the other in this lec-
ture, unless mentioned otherwise) is the next one to use an outbound link helps apportion
bandwidth between flows. At the same time, a scheduling algorithm can also decide when
to send any given packet (or flow’s packet), a choice that can help guarantee (or bound)
packet latencies through the router.

An important practical consideration, perhaps the most important consideration in the
design of router scheduling algorithms concers state management. The key concern here
is that schemes that maintain per-flow state are not scalable, at least in several router de-
signs. This is in stark contrast to buffer management schemes like RED, where the state
maintained by the router is independent of the number of flows. However, RED does not
achieve fair bandwidth allocations amongst flows, whereas good scheduling algorithms
can (precisely because they tend to directly control which flow’s packet gets to use the link
next).

It’s also worth appreciating that scheduling for weighted-fair bandwidth allocation and
scheduling to provide latency guarantees are actually orthogonal to each other and separa-
ble. For instance, one can imagine a hypothetical router that starves a flow for 6 days each
week and gives extremely high bandwidth for one whole day, so the flow receives some
pre-determined share of bandwidth, but does not receive any latency guarantees. Schedul-
ing schemes have been developed that provide both bandwidth and latency guarantees to
flows, although they tend to be rather complex and require care in how these requirements
are specified.

Broadly speaking, all schedulers can be divided into two categories: work-conserving
and non-work-conserving. The former, of which fair queueing is an example, never keep an
outbound link idle if there is even one packet in the system waiting to use that link. In
contrast, the latter might, for instance to provide delay bounds. Another example of the
latter kind is a strict time-division multiplexing system like the one we saw in Problem 1
of Problem Set 1.

! 8.2.1 Digression: What happens to a packet in a router?

To understand how scheduling fits into the grand scheme of things that happen in a router,
it’s worth understanding (for now, at a high level) all the different things that go on in a
router. For concreteness, we look at an IP router. The following steps occur on the data
path, which is the term given to the processing that occurs for each packet in the router. We
only consider unicast packets for now (i.e., no multicast).

1. Validation. When a packet arrives, it is validated to check that the IP version number
is correct and that the header checksum is correct.

2. Destination lookup. A longest-prefix-match (LPM) lookup is done on the forwarding
table using the destination IP address as lookup key, to determine which output port
to forward the packet on. Optionally, an IP source check may also be done to see
if the port in which this packet is a valid, expected one. This is often used to help
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protect against certain denial-of-service (DoS) attacks.

3. Classification. Many routers classify a packet using information in the IP header fields
(e.g., the “type-of-service” or TOS field, now also called the “differentiated services
code point” or DSCP) and information in higher layers (e.g., transport protocol type,
TCP/UDP port number, etc.). This is also called “layer-4 classification.” The result
of a classification is typically a queue that the packet is enqueued on. In theory, one
can classify packets so each connection (or flow) gets its own queue, specified by
a unique combination of source and destination addresses, source and destination
transport-layer ports, and TOS field, but this turns out to be prohibitively expensive
because of the large number of dynamically varying queues the router needs to keep
track of. In practice, routers are usually set up with a fixed number of queues, and
a network operator can set up classification rules that assign packets to queues. A
classified queue can be fine-grained, comprising packets from only a small number
of transport-layer flows, or it could be coarse-grained comprising packets from many
flows (e.g., a large traffic aggregate of all packets from 18.0.0.0/8 to 128.32.0.0/16).

We’ll study classification techniques and router architectures in more detail in later
lectures.

4. Buffer management. Once the router has decided which queue, it needs to append
the packet to it. At this time, it should decide whether to accept this packet or drop
it (or mark ECN), or in general to drop some other packet to accept this one. It might
run a simple strategy like drop-tail, or it might run something more sophisticated
like RED or one of its many variants.

5. Scheduling. Asynchronous to specific packet arrivals, and triggered only by queue
occupancy, the router’s link scheduler (conceptually one per link) decides which of
several queues with packets for the link to allow next on the link. The simplest
scheduling strategy is FIFO, first-in, first-out.

! 8.2.2 Back to fairness

In this lecture we will consider bandwidth scheduling algorithms that achieve max-min
fairness. With max-min fairness, no other allocation of bandwidth has a larger minimum,
and this property recursively holds. Recall from an earlier lecture what max-min fairness
provides:

1. No flow receives more than its request, ri.

2. No other allocations satisfying (1) has a higher minimum allocation.

3. Condition (2) recursively holds as we remove the minimal user and reduce the total
resource accordingly.

This is by no means the only definition of fairness, but it’s a useful one to shoot for. One
consequence of max-min fairness is that all allocations converge to some value α such that
all offered loads ri < α are given a rate ri, while all inputs ri > α are given a rate equal to
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α. Of course, the total rate available C (the output link’s rate) is doled out amongst the n
input flows such that

n

∑
i=1

min(ri, α) = C. (8.1)

Fair queueing (FQ) is a scheme that achieves allocations according to Equation 8.1.
CSFQ is a distributed approximation to FQ that generally comes close, without the as-
sociated per-flow complexity in all routers.

! 8.3 Fair queueing

Fair queueing is conceptually simple to understand: it is like round-robin scheduling
amongst queues, except it takes special care to handle variable packet sizes. The primary
practical concern about it is its requirement of per-flow state. The good thing, though, is
that weighted variants of fair queueing add little additional complexity.

We emphasize that we’re going to use the term “flow” without a precise definition of
it, on purpose. Think of a “flow” as simply the result of the classification step from Sec-
tion 8.2.1, where there are a set of queues all vying for the output link. We wish to appor-
tion the bandwidth of this link in a weighted fashion amongst these queues (“flows”).

Pure versions of fair queueing have proved to be hard to deploy in practice because
the number of flows (and therefore queues) a router would have to have is in the tens of
thousands and a priori unknown. However, bandwidth apportioning schemes among a
fixed set of queues in a router are gaining in popularity.

! 8.3.1 Bit-by-bit fair queueing

The problem with simple round-robin amongst all backlogged queues (i.e., queues with
packets in them) is that variable packet sizes cause bandwidth shares to be uneven. Flows
with small packets get penalized.

To understand how to fix this problem, let’s consider an idealized bit-level model of
the queues vying for the link. In this world, if we could forward one bit per flow at a
time through the link, we would implement a round-robin scheme and bandwidth would
be apportioned fairly. Unfortunately, in real life, packets are not preemptible, i.e., once you
start sending a packet, you need to send the whole thing out; you cannot temporarily
suspend in the middle of a packet and start sending a different one on the same link (this
would make demultiplexing at the other end a pain, and would in fact require additional
per-bit information!).

Sticking with the idealized bit-based model, let’s define a few terms.
Definition: Round. One complete cycle through all the queues of sending one bit per

flow.
Note that the time duration of a round depends on the number of backlogged queues.
Let R(t) be the round number at time t. If the router can send µ bits per second, and

there are N active flows, the number round number increases at rate

dR

dt
=

µ
N

. (8.2)
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The greater the number of active flows, the slower the rate of increase of the round
number. However, the key point is that the number of rounds for a complete packet to finish
being transmitted over the link is independent of the number of backlogged queues. This
insight allows us to develop a scheduling strategy for fair queueing.

Suppose a packet arrives and is classified into queue α, and it is the i-th packet on the
queue for flow α. Let the length of the packet be pα

i bits.
In what round number Sα

i does the packet reach the head of the queue? (“S” for “start.”)
There are two cases to consider while answering this question.

1. If the queue is empty, then the packet reaches the head of the queue in the current
round R(t).

2. If the queue is already backlogged, then the packet reaches the head of the queue in
the round right after the packet in front of it finishes, Fα

i−1. (“F” for “finish.”) 2

Combining the two cases, we have in general

Sα
i = max(R(t), Fα

i−1). (8.3)

Now, in what round does this packet finish? This depends only on the length of the
packet, since in each round exactly one of its bits is sent out. Therefore

Fα
i = Sα

i + pα
i , (8.4)

where pα
i is the size of the ith packet of flow α.

Using Equations 8.3 and 8.4, we can determine the finish round of every packet in every
queue. We can do this as soon as the packet is enqueued, but it requires much less state to
do it when each packet reaches the head of a queue.

We emphasize, again, that these formulae are independent of the number of backlogged
queues. Using round numbers “normalizes” out the number of flows and is an important
point.

This bit-by-bit round robin scheme (also called generalized processor sharing (GPS) is what
the packet-level fair queueing scheme will emulate, as we describe next.

! 8.3.2 Packet-level fair queueing

The packet-level emulation of bit-by-bit round robin is conceptually simple:

Send the packet which has the smallest finishing round number.

This scheme approximates bit-by-bit fair queueing by “catching up” to the what it would
have done on a discrete packet-by-packet basis. The packet sent out next is the packet which
had been starved the most while sending out the previous packet (from some other queue
in general). The algorithm is illustrated in Figure 8-1.

This emulation is not the only possible one, but it is the most intuitive one. Some other
ones don’t work; for instance, what if we had sent out packets by the largest finishing
round number? This won’t work because a flow sending very large packets would al-
ways be chosen. A different emulation might choose the smallest starting round number.

2We are dropping a few tiny +1 and −1 terms here.
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Thinking about whether this approach can be made to work is left as an exercise to the
reader.

! 8.3.3 Some implementation details

Some implementation details are worth nailing down.

Buffer management

Each queue in the fair queueing system needs to manage its buffers. First off, preallocating
a fixed amount of memory for each queue and drop whenever a queue becomes full is a
bad idea, since we don’t know how traffic is going to be distributed across queues.

A better idea is to have a global buffer pool, and the queues grow as necessary into the
pool.

A common strategy for dropping packets in fair queueing is to drop from the longest
queue or from the queue with largest finish number (they aren’t always the same and they
have different fairness properties). Presumably one can run RED on these queues if one
likes, too, or a drop-from-front strategy.

State maintenance

Do we need to maintain the finishing round Fα
i for every packet? In other words, do we

need to maintain per-packet state?.
No, since the finishing round can be calculated on the fly. The router maintains the

finish round Fα
i for the packets on the front of the queue, and when a packet gets sent out,

it uses the length of the packet after it to calculate the Fα
i+1 of the new head of the queue.

The trick is figuring out what finish round number we should give to a packet that
arrives into an empty queue. One approach that works well is to give it a start round
number equal to the finish number (or start round number) of the packet currently in
service.

Difficulties

In practice, fair queueing is challenging because classification may be slow; the more prob-
lematic issue is the need to maintain metadata pointers to memory not on the central chip
of the router if one wants to implement “pure” flow-level fair queueing. A “core” router
may have to maintain 50,000–100,000 flows, and have to process each packet in under
500ns (for 1 Gbps links) and 50ns (for 10 Gpbs links). It seems practical today to build
routers with a large number of queues, provided there’s some fixed number of them. A
large, variable number of queues is particularly challenging and difficult to implement in
high-speed routers.

! 8.3.4 Deficit Round Robin

Many different ways to implement fair queuing have been developed over the past several
years, stemming from the implementation complexity of the scheme described above. One
popular method is called Deficit Round Robin (DRR). The idea is simple: each queue has a
deficit counter (aka credit) associated with it. The counter increments at a rate equal to the
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Figure 8-1: Fair queueing in action. (Thanks to abhi shelat for figure.)
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fair rate of that queue (e.g., if the fair rate is X bits/s, it increments at that rate). Whenever
the counter’s value exceeds the size of the packet at the head of the queue, that packet may
be sent out on the link by the scheduler. When a packet is sent out, the queue’s counter
decrements by the size of the packet.

This scheme, as described, is not work-conserving, because no packet may be sent out
even when some queue has packets in it. That’s because every queue may have a counter
smaller than the size of the packet at its head. If the designer wants to make this scheme
work-conserving, then she might modify the scheme to allow the counter to decrement in
value to a small negative value (say, the negative of the maximum packet size). The DRR
scheme outlined above also allows arbitrary “overdraft”—an empty queue may continu-
ally increment its counter even when there’s no data in the queue, causing a large burst
of access when packets eventually arrive. This approach, in general, may also cause long
delays to some queues. A simple solution is to limit the extent to which the counter can
grow when the corresponding queue is empty.

! 8.4 CSFQ: Core-Stateless Fair Queueing

! 8.4.1 Overview

In the first half of this lecture, we discussed a fair queuing scheme that divides the available
bandwidth according to max-min fairness. The drawback of the FQ approach was that
costly per-flow statistics needed to be maintained. In a typical backbone router, there may
be 50,000-100,000 flows at a given time. At gigabit speeds, there may not be enough time
or memory to manage per-flow meta-data.

We now turn to an approximation to FQ that refines it in a way that circumvents the
problem of maintaining per-flow statistics. The Core-Stateless FQ scheme, CSFQ, distin-
guishes core routers, the higher-speed and busier routers at the “core” of an Internet AS
backbone from edge routers. In typical deployment, edge routers might handle thousands
of flows, while core routers might handle 50k-100k flows. CSFQ exploits this gap by dele-
gating the management of per-flow statistics to the edge routers. Edge routers then share
this information with core routers by labeling each packet that they forward. Core routers,
in turn, can use the labels to allocate bandwidth fairly among all incoming flows. It is
important to realize that in the case of CSFQ, edge routers run essentially the same algo-
rithm as core routers (including probabilistically dropping incoming packets); however,
edge routers have the added responsibility of maintaining per-flow state. In general, of
course, edge and core routers in such an approach could run very different algorithms.

Here are the key points of CSFQ:

1. Dynamic Packet State: Edge routers label each packet with an estimate of the arrival
rate for each flow. Per-flow statistics are maintained here.

2. Core routers use (1) estimated arrival rates provided on packet labels, and (2) an
internal measure of fair-share, to compute the probability of dropping each incoming
packet. Every packet that is accepted is processed and relabeled with new arrival rate
information.

3. The estimation procedure for the “fair-share” value convergences rapidly to the op-
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Figure 8-2: The core and the edges of an Internet backbone network. CR = core router; ER = edge router.

timal value. Cheaters cannot win too much extra bandwidth.

There are two goals for a CSFQ router:

1. Maintain max-min fairness for bandwidth allocation.

2. Avoid having to keep per-flow statistics in high-speed core routers.

Note that goal (2) prevents a core router from maintaining per-flow queues. Therefore,
once a packet has been accepted by a core router, it sits in one of a small number of queues
until it is eventually processed. Hence, the only action the core router can take in order to
achieve (1) is to drop packets from greedy flows. Notably absent is the ability to schedule
when a packet is to be sent. In order to avoid patterns of synchronization, packet dropping
is done probabilistically using both information accumulated and added to the packet by
an edge router, and a global parameter estimated by the core router.

! 8.4.2 Dynamic packet state

In order to achieve max-min fairness, a router needs to know the arrival rate, ri(t) for
each flow. Under CSFQ, edge routers are assigned the task of estimating these rates. This
estimation is computed by taking an exponentially weighted average of samples. In this
paper, the weighting is slightly more complicated than previous exponentially weighted
schemes that we have discussed. That is: if tk

i , lk
i are the arrival time and length of the kth

packet in flow i, then ri(t) is computed according to the equation

rnew
i = (1 − e−Tk

i /K)
lk
i

Tk
i

+ e−Tk
i /Krold

i , (8.5)
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where Tk
i = tk

i − tk−1
i and K is some constant. The Tk

i is the ith interarrival time, tk
i − tk−1

i .

Instead of using a fixed constant as their weighting factor, the authors argue that the e−Tk
i /K

weight converges faster under a broader set of situations and isn’t as sensitive to the spe-
cific packet-length distribution. As each incoming packet arrives, the new ri is computed
for this flow, a decision about whether to drop the packet is made, and if the router decides
to forward the packet, the packet is labeled with ri and forwarded. This idea of setting some
information in the header of the packet is called dynamic packet state and is an architectural
concept that generalizes beyond CSFQ.

! 8.4.3 Fair-share rate

Given a set of flows with arrival rates, r1(t), r2(t), ..., rn(t), each edge and core router must
determine the fair-share bandwidth according to max-min by assigning each flow the min-
imum of their requested bandwidth and the fair-share bandwidth left: i.e.it needs to com-
pute the fair-share rate according to Equation 8.1. Suppose there’s some way of calculating
α (this is easy for an edge to do, but we’ll see in a bit how a core router might estimate it).

Given α, then enforcing a fair rate to incoming traffic isn’t too hard. This can be done
using random packet drops, according to the following equation.

P(drop packet from stream i) = max(1 − α
ri(t)

, 0) (8.6)

If we have three flows that transmit at rates r1 = 8, r2 = 6, and r3 = 2 Mbps and these
flows are sharing a 10 Mbps link, then α = 4 Mbps. Then, if packets were dropped with
probabilities 0.5, 0.33, and 0 respectively, a max-min-fair allocation can be achieved.

Hence, a router needs only two pieces of information in order achieve max-min fairness:
α, which is one number per outgoing link at a router, and ri(t), the arrival rate for each flow.
Fortunately, the edge routers calculate ri(t) using Equation 8.5 and provide it to the core
routers using dynamic packet state, so what remains is the estimation of α. In addition to
the architectural concept of dynamic packet state, a noteworthy intellectual contribution
of this paper is how α may be estimated at the core routers.

The α fair-share parameter determines the rate at which the router accepts (and there-
fore processes) packets. So let us define F(α) as the core router’s acceptance rate in bits/s.
If max-min fairness according to Equation 8.1 is made to hold, then

F(α) =∑
i

min(ri(t), α) (8.7)

That is, the aggregate acceptance rate for the router is the sum of the rates for each of the
router’s flows. If a flow is below its fair-share, then it will contribute ri(t), and otherwise,
it will be capped at its fair-share limit.

The big picture of our strategy is as follows. Each router estimates F(α), the total (aggre-
gate) rate at which packets are accepted into (forwarded by) the router. At the same time,
each core router estimates the aggregate input rate (A) into each of its egress links; this is
independent of the number of flows and can be done using an equation similar to Equa-
tion 8.5. Together, these two pieces of information, together with knowledge of whether
the link (of capacity C) is “congested” or not, allow the router to estimate α̃, an estimate for
α. This estimation relies on the behavior of the function F(α̃) as a function of α̃.
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Figure 8-3: F(α̃) vs α̃.

So consider the graph shown in Figure 8-3 of F(·) as a function of α̃, and assume that
the flow arrival rates are in non-decreasing order such that r1 ≤ r2 ≤ . . . ≤ rn.

When α̃ is less than r1, the aggregate acceptance rate is n× α̃ and the slope of the curve
is n. However, as soon as α > r1, then the first stream wil be capped at r1, and the aggregate
max-min acceptance rate will now be (n − 1)α̃ + r1. That is, the function now has slope
n − 1, so it is flatter. Continuing thus, it is easy to see that F(α̃) is continuous, piecewise
linear, with n pieces, with the slope of each piecewise linear portion (as α̃ increases) smaller
than the previous one (ending in a line parallel to the horizontal axis when α̃ exceeds the
largest input rate, rn). It is therefore a concave function.

Hence, in order to determine α̃ so as to use exactly the capacity in the outbound link,
the core router needs to solve the equation F(α̃) = C. Whereas an edge router can store
n pieces of information that encode the curve F(·) (this information is simply the arriving
per-flow rates), a core router cannot. Instead, the core router simply approximates F(·)
with a straight line. If the current acceptance rate (forwarding rate) is F̃ and we already
have an estimate α̃ for α, then we can approximate

F(α) ≈ F̃

α̃
α. (8.8)

During the processing of packets, the core router simply:

1. Observes the system over a given time period.

2. If the system is “uncongested” then the acceptance parameter, α is increased to
maxi(ri). With this value, the probability of dropping a packet is 0 for all flows.

3. If the system is “congested” then α is too large, and we need to re-estimate it. The
new α is calculated by setting to the solution to the equation F(α) = C, where F(α) is
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approximated using Equation 8.8.

Because F() is concave, the core router will eventually converge on the correct α value.
The only remaining issue is how a router decides if one of its links is “congested” or not.
A router performs this assessment by looking at the estimate of the aggregate arrival rate
A and seeing if it is smaller than C for a period of K ms (“uncongested”) or larger (“con-
gested”). If neither is true, then α is left unchanged.

In summary, CSFQ is a hybrid scheme that asymptotically converges to max-min fair-
ness. It incorporates two neat ideas: a decomposition of edge and core routers with dy-
namic packet state transferring information to the core routers, and a simple technique to
estimate the fair rate in a core router. The technique generalizes to weighted fair queueing
too, although the case of different weights in each router in a CSFQ island is ill-defined
and not supported. The paper reports performance results under various conditions, al-
though most of the evaluated conditions don’t dramatically vary the number of flows or
cause bandwidth oscillations.

Of course, CSFQ suffers from some drawbacks too. All routers in an island need to be
simultaneously upgraded; dynamic packet state needs to be implemented somehow, and
the proposal is to use the IP fragmentation header fields; and the consequences of buggy
or malicious routers needs to be explored.


