
Copyright Hari Balakrishnan, 1998-2005, all rights reserved. Please do not redistribute
without permission.

LECTURE 3
Coping with Best-Effort: Reliable

Transport

This lecture discusses how end systems in the Internet cope with the best-effort properties
of the Internet’s network layer. We study the key reliability techniques in TCP, includ-
ing TCP’s cumulative acknowledgment feedback, and two forms of retransmission upon
encountering a loss: timer-driven and data-driven retransmissions. The former relies on es-
timating the connection round-trip time (RTT) to set a timeout, whereas the latter relies
on the successful receipt of later packets to initiate a packet recovery without waiting for
a timeout. Examples of data-driven retransmissions include the fast retransmission mech-
anism and selective acknowledgment (SACK) mechanism. Because it is helpful to view the
various techniques used in TCP through the lens of history, we structure our discussion in
terms of various TCP variants.

We then discuss application-level framing (ALF) [3], an approach that helps achieve
selective reliability by being more integrated with the application than TCP is with applica-
tions.

! 3.1 The Problem: A Best-Effort Network

A best-effort network greatly simplifies the internal design of the network, but implies that
there may be times when a packet sent from a sender does not reach the receiver, or does
not reach the receiver in a timely manner, or is reordered behind packets sent later, or is
duplicated. A transport protocol must deal with these problems:

1. Losses, which typically because of congestion, packet corruption due to noise or in-
terference, routing anomalies, or link/path failures.

Congestion losses are a consequence of using a packet-switched network for statisti-
cal multiplexing, because a burst of packets arriving into a queue may exhaust buffer
space. It is usually a bad idea to maintain a really large queue buffer, because an ex-
cessively large buffer only causes packets to be delayed and doesn’t make them move
through the network any faster! We will discuss the factors governing queue buffer
space during our discussions on router design and congestion control.

1

2 LECTURE 3. COPING WITH BEST-EFFORT: RELIABLE TRANSPORT

2. Variable delays for packet delivery.

3. Packet reordering, which typically arises because of multiple paths between end-
points, or pathologies in router implementations.

4. Duplicate packets, which occasionally arrive at a receiver because of bugs in network
implementations or lower-layer data retransmissions.

Many applications, including file transfers, interactive terminal sessions, etc. require
reliable data delivery, with packets arriving in-order, in the same order in which the sender
sent them. These applications will benefit from a reliable transport protocol, which is imple-
mented in a layer below the application (typically in the kernel) and provides an in-order,
reliable, byte-stream abstraction to higher-layer applications via a well-defined “socket”
interface. TCP provides such semantics.

However, this layered in-order TCP model is not always the best way to transport ap-
plication data. First, many applications can process data that arrives out-of-order. For
example, consider the delivery of video or audio streams on the Internet. The loss of a
packet in a video or audio stream may not be important, because the receiver is capable
of “hiding” this loss by averaging neighboring samples, with only a small degradation in
quality to the end user. However, it might be the case that some video packets are impor-
tant, because they contain information useful both to the current frame and to subsequent
frames. These lost packets may need to be recovered. Hence, selective reliability is a useful
goal.

Second, if data is provided to the application only in-order as with TCP, a missing packet
causes a stall in data delivery until it is retransmitted by the sender, after which the receiver
application has to process a number of packets. If the receiver application cares about inter-
active response, or if receiver processing before the user looks at the presented information
is a bottleneck, a TCP-like approach is sub-optimal.

The above observations motivate a different (non-layered) approach to transport proto-
col design, called ALF, application-level framing.

This lecture discusses both approaches to transport protocol design. Our goal, as men-
tioned before, is to cope with the vagaries of a best-effort network.

! 3.2 Transmission Control Protocol (TCP)

The TCP service model is that of an in-order, reliable, duplex, byte-stream abstraction. It
doesn’t treat datagrams as atomic units, but instead treats bytes as the fundamental unit of
reliability. The TCP abstraction is for unicast transport, between two network attachment
points (IP addresses, not end hosts). “Duplex” refers to the fact that the same connection
handles reliable data delivery in both directions.

In general, reliable transmission protocols can use one or both of two kinds of tech-
niques to achieve reliability in the face of packet loss. The first, called Forward Error Correc-
tion (FEC), is to use redundancy in the packet stream to overcome the effects of some losses.
The second is called Automatic Repeat reQuest (ARQ), and uses packet retransmissions. The
idea is for the sender to infer the receiver’s state using acknowledgments (ACKs) it gets,
and determine that packets are lost if an ACK hasn’t arrived for a while, and retransmit if
necessary.

SECTION 3.2. TRANSMISSION CONTROL PROTOCOL (TCP) 3

In TCP, the receiver periodically1 informs the sender about what data it has received
via cumulative ACKs. For example, the sequence of bytes:

1:1000 1001:1700 2501:3000 3001:4000 4001:4576

received at the receiver will cause the ACKs

1001 1701 1701 1701 1701

to be sent by the receiver after each segment arrival. Each ACK acknowledges all the bytes
received in-sequence thus far, and tells the sender what the next expected in-sequence byte
is.

Each TCP ACK includes in it a receiver-advertised window that tells the sender how
much space is available in its socket buffer at any point in time. This window is used for
end-to-end flow control, and should not be confused with congestion control, which is how
resource contention for “inside-the-network” router resources (bandwidth, buffer space)
is dealt with. Flow control only deals with making sure that the sender doesn’t overrun
the receiver at any stage (it’s a lot easier than congestion control, as you can see). We will
study congestion control in more detail in later lectures.

TCP has two forms of retransmission upon encountering a loss: timer-driven retrans-
missions and data-driven retransmissions. The former relies on estimating the connection
round-trip time (RTT) to set a timeout value; if an ACK isn’t received within the timeout
duration of sending a segment, that segment is retransmitted. On the other hand, the latter
relies on the successful receipt of later packets to initiate a packet recovery without waiting
for a timeout.

Early versions of TCP used only timer-driven retransmissions. The sender would es-
timate the average round-trip time of the connection, and the absence of an ACK within
that timeout duration would cause the sender to retransmit the entire window of segments
starting from the last cumulative ACK. Such retransmissions are called go-back-N retrans-
missions, and are quite wasteful because they end up re-sending an entire window (but
they are simple to implement). Early TCPs did not have any mechanism to cope with con-
gestion, either, and ended up using fixed-size sliding windows throughout a data transfer.

The evolution of TCP went roughly along the following lines (what follows isn’t a time-
line, but a sequence of important events):

1. In the mid-1980s, portions of the Internet suffered various congestion-collapse
episodes. In response, Van Jacobson and Mike Karels developed a set of techniques
to mitigate congestion [10]. Among these were better round-trip time (RTT) estima-
tors, and the “slow start” and “congestion avoidance” congestion control schemes
(which we will study in detail in a later lecture).

2. Karn and Partridge’s solution to the “retransmission ambiguity” problem, in which a
TCP sender could not tell the difference between an ACK for an original transmission
and a retransmission [12].

1Every time it receives a segment; modern TCP receivers implement a delayed ACK policy where they
should ACK only on every other received segment as long as data arrives in sequence, and must acknowledge
at least once every 500 ms if there is any unacknowledged data. BSD-derived implementations use a 200 ms
“heartbeat” timer for delayed ACKs.

4 LECTURE 3. COPING WITH BEST-EFFORT: RELIABLE TRANSPORT

3. The TCP timestamp option, which provide more accurate RTT estimation for TCP
and eliminates the retransmission ambiguity problem.

4. Coarse-grained timers: After various attempts, researchers realized that developing
highly accurate timers for reliable transport protocols was a pipe-dream, and that
timeouts should be conservative.

5. TCP Tahoe, which combined the Jacobson/Karels techniques mentioned above with
the first data-driven retransmission scheme for TCP, called fast retransmission. The
idea is to use duplicate ACKs as a signal that a data segment has been lost.

6. TCP Reno, which extended fast retransmissions with fast recovery, correcting some
shortcomings in Tahoe. Reno also implemented a “header prediction” scheme for
more efficient high-speed implementation (this mechanism has no bearing on TCP’s
reliability functions).

7. TCP NewReno, developed by Janey Hoe, an improvement to the fast recovery
scheme, allowing multiple data losses in large-enough windows to be recovered
without a timeout in many cases.

8. TCP Selective Acknowledgments (SACK), standaradized in RFC 2018, which ex-
tends TCP’s cumulative ACKs to include information about segments received out-
of-order by a TCP receiver [13].

There have been other enhancements proposed to TCP over the past few years, such
as TCP Vegas (a congestion control method), various optimizations for wireless networks,
optimizations for small windows (e.g., RFC 3042), etc. We don’t discuss them here.

The result of all these proposals is that current TCPs rarely timeout if window sizes are
large enough (more than 6 or 7 segments), unless most of the window is lost, or most of the
returning ACKs are lost, or retransmissions for lost segments are also lost. Moreover, cur-
rent TCP retransmissions adhere to two important principles, both of which are important
for sound congestion control (which we will study in a later lecture):

P1 Don’t retransmit early; avoid spurious retransmissions. The events of the mid-1980s
showed that congestion collapse was caused by the retransmission of segments that
weren’t lost, but just delayed and stuck in queues. TCP attempts to avoid spurious
retransmissions.

P2 Conserve packets. TCP attempts to “conserve” packets in its data-driven retransmis-
sions. It uses returning duplicate ACKs as a cue signifying that some segments have
been received, and carefully determines what segments should be sent, if any, in re-
sponse to these duplicate ACKs. The idea is to avoid burdening the network with
excessive load during these loss periods.

The rest of this lecture discusses the techniques mentioned before, roughly in the order
given there. We start with TCP timers.

SECTION 3.2. TRANSMISSION CONTROL PROTOCOL (TCP) 5

! 3.2.1 TCP timers

To perform retransmissions, the sender needs to know when packets are lost. If it doesn’t
receive an ACK within a certain amount of time, it assumes that the packet was lost and
retransmits it. This is called a timeout or a timeout-triggered retransmission. The problem is
to determine how long the timeout period should be.

What factors should the timeout depend on? Clearly, it should depend on the connec-
tion’s round-trip time (RTT). To do this, the sender needs to estimate the RTT. It obtains
samples by monitoring the time difference between sending a segment and receiving a pos-
itive ACK for it. It needs to do some averaging across all these samples to maintain a (run-
ning) average. There are many ways of doing this; TCP picks a simple approach called the
Exponential Weighted Moving Average (EWMA), where srtt = α× r + (1 − α)srtt. Here,
r is the current sample and srtt the running estimate of the smoothed RTT. In practice, TCP
implementations use α = 1/8 (it turns out the precise value doesn’t matter too much).

We now know how to get a running average of the RTT. How do we use this to set
the retransmission timeout (RTO)? One option, an old one used in the original TCP spec-
ification (RFC 793), is to pick a multiple of the smoothed RTT and use it. For example,
we might pick RTO = β ∗ srtt, with β set to a constant like 2. Unfortunately, this simple
choice doesn’t work too well in preventing spurious retransmissions when slow start is
used on certain network paths, leading to bad congestion effects, because the principle of
“conservation of packets” will no longer hold true.

A nice and simple fix for this problem is to make the RTO a function of both the average
and the standard deviation. In general, the tail probability of a spurious retransmission
when the RTO is a few standard deviations away from the mean is rather small. So, TCP
uses an RTO set according to: RTO = srtt + 4 × rttdev, where rttdev is the mean linear
deviation of the RTT from its mean. I.e., rttdev is calculated as rttdev = γ × dev + (1− γ)×
rttdev, where dev = |r − srtt|. In practice, TCP uses γ = 1/4.

These calculations aren’t the end of the TCP-timer story. TCP also suffers from a signif-
icant retransmission ambiguity problem. When an ACK arrives for a segment the sender has
retransmitted, how does the sender know whether the RTT to use is for the original trans-
mission or for the retransmission? This question might seem like a trivial detail, but in fact
is rather vexing because the RTT estimate can easily become meaningless and throughput
can suffer. The solution to this problem is surprisingly simple—ignore samples that ar-
rive when a retransmission is pending or in progress. I.e., don’t consider samples for any
segments that have been retransmitted [11].

The modern way of avoiding the retransmission ambiguity problem is to use the TCP
timestamp option (RFC 1323), which most current (and good) TCP implementations adopt.
Here, the sender uses 8 bytes (4 for seconds, 4 for microseconds) and stamps its current
time on the segment. The receiver, in the cumulative ACK acknowledging the receipt of
a segment, simply echoes the sender’s stamped value. When the ACK arrives, the sender
can do the calculation trivially by subtracting the echoed time in the ACK from the current
time. Note that it now doesn’t matter if this was a retransmission or an original transmis-
sion; the timestamp effectively serves as a “nonce” for the segment.

The other important issue is deciding what happens when a retransmission times out.
Obviously, because TCP is a “fully reliable” end-host protocol, the sender must try again.
But rather than try at the same frequency, it takes a leaf out of the contention resolution

6 LECTURE 3. COPING WITH BEST-EFFORT: RELIABLE TRANSPORT

protocol literature (e.g., Ethernet CSMA) and performs exponential backoffs of the retrans-
mission timer.

A final point to note about timeouts is that they are extremely conservative in practice.
TCP retransmission timers are usually (but not always) coarse, with a granularity of 500
or 200 ms. This is a big reason why spurious retransmissions are rare in modern TCPs, but
also why timeouts during downloads are highly perceptible by human users.

! 3.2.2 Fast retransmissions

Because timeouts are expensive (in terms of killing throughput for a connection, although
they are a necessary evil from the standpoint of ensuring that senders back-off under ex-
treme congestion), it makes sense to explore other retransmission strategies that are more
responsive. Such strategies are also called data-driven (as opposed to timer-driven) retrans-
missions. Going back to the earlier example:

1:1000 1001:1700 2501:3000 3001:4000 4001:4576

with ACKs

1001 1701 1701 1701 1701

It’s clear that a sequence of repeated ACKs are a sign that something strange is hap-
pening, because in normal operation cumulative ACKs should monotonically increase.
Repeated ACKs in the middle of a TCP transfer can occur for three reasons:

1. Window updates. When the receiver finds more space in its socket buffer, because
the application has read some more bytes, it can send a window update even if no
new data has arrived.

2. Segment loss.

3. Segment reordering. This could have happened, for example, if datagram 1701-2500
had been reordered because of different routes for different segments.

Repeated ACKs that aren’t window updates are called duplicate ACKs or dupacks. TCP
uses a simple heuristic to distinguish losses from reordering: if the sender sees an ACK for
a segment more than three segments larger than a missing one, it assumes that the earlier
(unacknowledged) segment has been lost. Unfortunately, cumulative ACKs don’t tell the
sender which segments have reached; they only tell the sender what the last in-sequence
byte was. So, the sender simply counts the number of dupacks and infers that if it see three
or more dupacks, that the corresponding segment was lost. Various empirical studies have
shown that this heuristic works pretty well, at least on today’s Internet, where reordering
TCP segments is discouraged and there isn’t much “parallel” (“dispersity”) routing.

! 3.2.3 Fast Recovery

A TCP sender that performs a “fast retransmission” after receiving three duplicate ACKs
must reduce its congestion window, because the loss was most likely due to congestion
(we will study congestion control in depth in a later lecture). TCP Tahoe senders go into

SECTION 3.2. TRANSMISSION CONTROL PROTOCOL (TCP) 7

“slow start”, setting the window size to 1 segment, and sending segments from the next
new ACK. (If no new ACK arrives, then the sender times out.)

The problem with this approach is that the sender may send segments that are already
received at the other end.

A different approach, called fast recovery, cuts the congestion window by one-half on
a fast retransmission. As duplicate ACKs beyond the third one arrive for the window in
which the loss occurred, the sender waits until half the window has been ACKed, and then
sends one new segment per subsequent duplicate ACK. Fast recovery has the property that
at the end of the recovery, assuming that not too many segments are lost in the window,
the congestion window will be one-half what it was when the loss occurred, and that many
segments will be in flight.

TCP Reno uses this combination of fast retransmission and fast recovery. This TCP
variant, which was the dominant version in the 1990s, can recover from a small number
of losses in a large-enough window without a timeout (the exact details depend on the
pattern of losses; for details, see [6]).

In 1996, Hoe proposed an enhancement to TCP Reno, which subsequently became
known as NewReno. The main idea here is for a sender to remain in fast recovery until
all the losses in a window are recovered.

! 3.2.4 Selective acknowledgment (SACK)

When the bandwidth-delay product of a connection is large, e.g., on a high-bandwidth,
high-delay link like a satellite link, windows can get pretty large. When multiple segments
are lost in a single window, TCP usually times out. This causes abysmal performance for
such connections, which are colloquially called “LFNs” (for “Long Fat Networks” and pro-
nounced “elephants,” of course). Motivated in part by LFNs, selective ACKs (SACKs) were
proposed as an embellishment to standard cumulative ACKs. SACKs were standardized
a few years ago by RFC 2018, after years of debate.

Using the SACK option, a receiver can inform the sender of up to three maximally
contiguous blocks of data it has received. For example, for the data sequence:

1:1000 1001:1700 2501:3000 3001:4000 4577:5062 6000:7019

received, a receiver would send the following ACKs and SACKs (in brackets):

1001 1701 1701 1701 1701 1701
[2501-3000] [2501-4000] [4577-5062; [6000-7019;

2501-4000] 4577-5062;
2501-4000]

SACKs allow LFN connections to recover many losses in the same window with a much
smaller number of timeouts. While SACKs are in general a Good Thing, they don’t always
prevent timeouts, including some situations that are common in the Internet today. One
reason for this is that on many paths, the TCP window is rather small, and multiple losses
in these situations don’t give an opportunity for a TCP sender to use data-driven retrans-
missions.

8 LECTURE 3. COPING WITH BEST-EFFORT: RELIABLE TRANSPORT

! 3.2.5 Some other issues

There are a few other issues that are important for TCP reliabilty.

1. Connection setup/teardown. At the beginning of a connection, a 3-way handshake
synchronizes the two sides. At the end, a teardown occurs.

2. Segment size. How should TCP pick its segment size for datagrams? Each side picks
a “default” MSS (maximum segment size) and exchanges them in the SYN exchange
at connection startup; the smaller of the two is picked.

The recommended way of doing this, to avoid potential network fragmentation, is
via path MTU discovery. Here, the sender sends a segment of some (large) size that’s
smaller than or equal to its interface MTU (when the IP and link-layer headers are
added) with the “DON’T FRAGMENT (DF)” flag in the IP header. If the receiver
gets this segment, then clearly every link en route could support this datagram size
because there was no fragmentation. If not, and an ICMP error message was received
by the sender from a router saying that the packet was too big and would have been
fragmented, the sender tries a smaller segment size until one works.

3. Low-bandwidth links. Several TCP segments are small in size and are mostly com-
prised of headers; examples include telnet packets and TCP ACKs2. To work well
over low-bandwidth links, TCP header compression can be done (RFC 1144). This
takes advantage of the fact that most of the fields in a TCP header are either the same
or are predictably different from the previous one. This allows a 40-byte TCP+IP
header to be reduced to as little as 3-6 bytes.

! 3.3 ALF

A good way to understand the ALF idea is by example. Consider the problem of designing
a protocol to stream video on the Internet. In most (but not all) video compression formats
including the MPEG variants, there are two kinds of compressed frames—reference frames
and difference frames. A reference frame is compressed by itself, whereas a difference frame
is compressed in terms of its difference from previous frames (in practice, some frames
may be compressed as a difference not just from a previous frame but also a succeeding
frame). Because video scenes typically don’t change dramatically from frame to frame,
a difference frame usually compresses a lot better than a reference frame. However, if
packets are lost in the stream and not recovered, a stream that uses only one reference
frame followed by only difference frames suffers from the propagation of errors problem,
because the subsequent frames after a lost packet end up cascading the errors associated
with missing data.

One approach to transporting streaming video is over TCP, but this has two problems.
First, depending on the nature of the loss, recovery may take between one round-trip time
and several seconds (if a long timeout occurs). Because not all lost packets need to be re-
covered, the receiver application might choose interactive presentation of whatever frames

2TCP does allow data to be piggybacked with ACKs and most data segments have valid ACK fields ac-
knowledging data in the opposite direction of the duplex connection.

SECTION 3.3. ALF 9

are available, over waiting for missing data that has only marginal value. However, some
packets (e.g., in reference frames) may need to be selectively recovered. Second, when using
TCP, a lost packet would cause all of the later packets in the stream to wait in the receiver’s
kernel buffers without being delivered to the application for processing. If receiver appli-
cation processing is a bottleneck, a lost packet causes the application’s interactive perfor-
mance to degrade.

The above discussion suggests that what is needed is:

1. Out-of-order data delivery from the transport protocol to the receiver application,
and

2. The ability for the receiver application to request the selective retransmission of spe-
cific data items.

One solution to this problem is to ask each application designer to design an
application-specific transport protocol anew for each new application. Punting the prob-
lem like this doesn’t seem like a good idea, because most such efforts will probably end up
using very similar ideas.

It is hard to simply hack TCP to make the TCP receiver push out-of-order packets to the
receiver application. The reason is that there is no shared vocabulary between the appli-
cation and TCP to name data items! The application may have it’s own naming method
for data items (e.g., this packet is frame 93 and has to be displayed at coordinate (x, y) of
the video screen), but the TCP knows nothing of this. TCP’s name for the corresponding
packet would be a sequence number and length. Unfortunately, the receiver application
has no idea what the TCP name for the data item corresponds to in the application’s vo-
cabulary.

What is required is a common vocabulary between the application and the transport to
name data items. A convenient way to do this is to use the application’s own name in the
transport protocol, which means that an application data unit (what the application thinks
of as independenly processible data items) and the protocol data unit (what the transport
thinks of as indepedently transmittable and receivable data items) are one and the same
thing. By making these two data units equivalent, when an out-of-order data unit arrives
at the receiver transport protocol, it can deliver it to the receiver application and have
it be understood because the delivered data is named in a manner that the application
understands.

Selective reliability is obtained easily with ALF, because a missing application data unit
that is deemed important by the receiver can be requested by the receiver application to
the receiver transport library. In turn, the transport library sends a retransmission request
to the sender library, and the required data is re-sent to the receiver either from the sender
library’s buffer (if it has one) or more likely via a callback to the sender application it-
self. Again, our common naming between transport and applications of the data items is
instrumental in making this approach work.

It is hard to design an ALF mechanism in a strictly layered fashion where the ALF
transport is in the kernel and the application is across a strict protection boundary. Instead,
the best way to realize ALF is to design the transport as a library that sender and receiver
applications link to, and use the library to send and receive data items.

10 REFERENCES

Several ALF applications have been implemented in practice, including for video trans-
port, image transport, shared whiteboards and collaborative tools, and multicast confer-
encing. ALF is a clever and useful way achieving out-of-order data delivery to applica-
tions, and providing a way for applications to achieve selective reliability.

! 3.4 Summary

TCP provides an in-order, reliable, duplex, byte-stream abstraction. It uses timer-driven
and data-driven retransmissions; the latter provides better performance under many con-
ditions, while the former ensures correctness.

References

[1] T. Bates, R. Chandra, and E. Chen. BGP Route Reflection - An Alternative to Full Mesh
IBGP. Internet Engineering Task Force, Apr. 2000. RFC 2796. (Cited on page 11.)

[2] I. V. Beijnum. BGP. O’Reilly and Associates, Sept. 2002. (Cited on page 8.)

[3] D. Clark and D. Tennenhouse. Architectural Consideration for a New Generation of
Protocols. In Proc. ACM SIGCOMM, pages 200–208, Philadelphia, PA, Sept. 1990.
(Cited on page 1.)

[4] R. Dube. A Comparison of Scaling Techniques for BGP. ACM Computer
Communications Review, 29(3):44–46, July 1999. (Cited on page 9.)

[5] Cisco IOS IP Command Reference, ebgp-multihop.
http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products
command reference chapter09186a00800ca79d.html, 2005. (Cited on
page 12.)

[6] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno, and Sack TCP.
ACM Computer Communications Review, 26(3):5–21, July 1996. (Cited on page 7.)

[7] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with Static
Analysis. In Proc. 2nd Symposium on Networked Systems Design and Implementation
(NSDI), pages 43–56, Boston, MA, May 2005. (Cited on page 12.)

[8] T. Griffin and G. Wilfong. On the Correctness of IBGP Configuration. In Proc. ACM
SIGCOMM, pages 17–29, Pittsburgh, PA, Aug. 2002. (Cited on pages 9 and 12.)

[9] C. Hedrick. Routing Information Protocol. Internet Engineering Task Force, June 1988.
RFC 1058. (Cited on page 2.)

[10] V. Jacobson. Congestion Avoidance and Control. In Proc. ACM SIGCOMM, pages
314–329, Stanford, CA, Aug. 1988. (Cited on pages 3 and 19.)

[11] P. Karn. MACA – A New Channel Access Method for Packet Radio. In Proc. 9th
ARRL Computer Networking Conference, 1990. (Cited on page 5.)

11

12 REFERENCES

[12] P. Karn and C. Partridge. Improving Round-Trip Time Estimates in Reliable
Transport Protocols. ACM Transactions on Computer Systems, 9(4):364–373, Nov. 1991.
(Cited on page 3.)

[13] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment
Options. Internet Engineering Task Force, 1996. RFC 2018. (Cited on page 4.)

[14] J. Moy. OSPF Version 2, Mar. 1994. RFC 1583. (Cited on page 2.)

[15] D. Oran. OSI IS-IS intra-domain routing protocol. Internet Engineering Task Force, Feb.
1990. RFC 1142. (Cited on page 2.)

[16] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). Internet Engineering Task
Force, Mar. 1995. RFC 1771. (Cited on pages 2 and 8.)

[17] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). Internet
Engineering Task Force, Oct. 2004.
http://www.ietf.org/internet-drafts/draft-ietf-idr-bgp4-26.txt
Work in progress, expired April 2005. (Cited on page 2.)

[18] P. Traina, D. McPherson, and J. Scudder. Autonomous System Confederations for BGP.
Internet Engineering Task Force, Feb. 2001. RFC 3065. (Cited on page 11.)

