Measurement and Modelling I: End-to-End Bandwidth Measurements

6.829 Lecture 11

October 10, 2002

Jacob Strauss

End-to-End Measurements

Goal: Bandwidth-Aware Applications

- Is a path fast enough?
- Which path is faster?
- What is bandwidth?
- Link Capacity: physical link speed (e.g. 100 Mbps Ethernet)
 ▷ for link i, link capacity c_i.
- Path Capacity: minimum capacity link along a path
 - $\triangleright \ C = \min_{i=0...n}(c_i)$
- Link Utilization: fraction of link capacity used over some time interval

 $\triangleright 0 \leq u_i \leq 1$

• Available Bandwidth: minimum spare capacity along a path over some interval

 $\triangleright A = \min_{i=0...n} (1 - u_i) c_i$

Capacity from X to Y?

Capacity from X to Y? C = 10Mbps

Available bandwidth from X to Y?

Capacity from X to Y? C = 10Mbps

Available bandwidth from X to Y? A = 5Mbps

Problem: Capacity Estimation

How can we measure the path capacity between X and Y?

Packet Pair on an unloaded path

Send two packets, of P bits each, back-to-back Record the difference between arrival times, Δt . Path Capacity is $\frac{P}{\Delta t}$

Packet Pair Complications: Cross Traffic

$$\Delta t > \frac{P}{C}$$

Packet Pair Complications: Multiple Queues

7

Delay Measurements Block Diagram

New Problem: Path capacity and packet size distribution

Long train of packets with size P, sent every δ seconds

Record either one-way-delay or round-trip time for each packet

• RTT is easier to measure. Why?

Use phase plots:

• For each n, plot a point at $(rtt_n, rtt_n + 1)$

Delay Components & Model

Components

- Propagation delays
- Queuing delays
- Processing delay (lookup & scheduling)
- Transmission delay

Model assuming a single queue

- Fixed delay: D
- waiting time: w_n
- service time: $y_n = \frac{P}{\mu}$
- total delay: $rtt_n = D + w_n + \frac{P}{\mu}$

Explain the Plot: light load conditions

Assume that the tight link load is low:

• $w_{n+1} = w_n + \epsilon_n$ $\Rightarrow rtt_{n+1} = rtt_n + \epsilon_n$

Explain the Plot: light load conditions

Assume that the tight link load is low:

• $w_{n+1} = w_n + \epsilon_n$ $\Rightarrow rtt_{n+1} = rtt_n + \epsilon_n$

Points plotted near the line y = x above (x, y) = (D, D)

Assume B bits in between probe packets n and n+1

 $w_{n+1} = w_n + \frac{B}{\mu} - \delta$

Assume B bits in between probe packets n and n+1

$$w_{n+1} = w_n + \frac{B}{\mu} - \delta$$

Now assume $\frac{B}{\mu} \gg \delta$

- We have probe compression: k-1 packets arrive before B clears the queue
- These k packets depart every P/μ seconds

for the k packets: $w_{n+i} - w_{n+i-1} = P/\mu - \delta$

• why is $P/\mu - \delta < 0$?

Assume B bits in between probe packets n and n+1

$$w_{n+1} = w_n + \frac{B}{\mu} - \delta$$

Now assume $\frac{B}{\mu} \gg \delta$

- We have probe compression: k-1 packets arrive before B clears the queue
- These k packets depart every P/μ seconds

for the k packets: $w_{n+i} - w_{n+i-1} = P/\mu - \delta$

• why is $P/\mu - \delta < 0$?

result is $rtt_{n+1} = rtt_n + (P/\mu - \delta)$

Assume B bits in between probe packets n and n+1

$$w_{n+1} = w_n + \frac{B}{\mu} - \delta$$

Now assume $\frac{B}{\mu} \gg \delta$

- We have probe compression: k-1 packets arrive before B clears the queue
- These k packets depart every P/μ seconds

for the k packets: $w_{n+i} - w_{n+i-1} = P/\mu - \delta$

• why is $P/\mu - \delta < 0$?

result is $rtt_{n+1} = rtt_n + (P/\mu - \delta)$

We now know the bottleneck capacity μ from the plot.

Packet size distribution

Assume that between packets n and n+1, b_n bits from other flows join queue

• Use Lindley's recurrence:

 $w_{n+1} = (w_n + y_n - \delta_n)^+$, where x^+ means $\max(x, 0)$

Packet size distribution

Assume that between packets n and n+1, b_n bits from other flows join queue

• Use Lindley's recurrence: $w_{n+1} = (w_n + y_n - \delta_n)^+$, where x^+ means $\max(x, 0)$

Apply twice:

$$wb_{n} = (w_{n} + P/\mu - \delta_{b})^{+}$$

$$w_{n+1} = ((w_{n} + P/\mu - \delta_{b})^{+} + b_{n}/\mu - (\delta - \delta_{b}))^{+}$$

Packet size distribution

Assume that between packets n and n+1, b_n bits from other flows join queue

• Use Lindley's recurrence: $w_{n+1} = (w_n + y_n - \delta_n)^+$, where x^+ means $\max(x, 0)$

Apply twice:

$$wb_{n} = (w_{n} + P/\mu - \delta_{b})^{+}$$

$$w_{n+1} = ((w_{n} + P/\mu - \delta_{b})^{+} + b_{n}/\mu - (\delta - \delta_{b}))^{+}$$

$$w_{n+1} = w_{n} + (P + b_{n})/\mu - \delta$$

$$b_{n} = \mu(w_{n+1} - w_{n} + \delta) - P$$

Now we can find packet sizes from peaks in PDF of $w_{n+1} - w_n + \delta$

Example Distribution Plot

New Problem: Available Bandwidth Estimation

Can we use the same packet train to estimate A?

New Problem: Available Bandwidth Estimation

Can we use the same packet train to estimate A?

No, but we can determine whether $P/\delta > A$ or $P/\delta < A$

• Later we'll build on this test to estimate A

New Problem: Available Bandwidth Estimation

Can we use the same packet train to estimate A?

No, but we can determine whether $P/\delta > A$ or $P/\delta < A$

• Later we'll build on this test to estimate A

Basic idea: instead of just comparing w_{n+1} to w_n , compare w_n to $w_{n+1}, w_{n+2}, w_{n+3}, \ldots$

Method: Plot evolution of w_n versus n

Pathload Delay Model

The packet train consists of K packets of size L sent at a constant rate R.

Path consists of H links, each with capacity C_i , available bandwidth A_i , and queue length q_i^k when the kth probe packet arrives

Pathload Delay Model

The packet train consists of K packets of size L sent at a constant rate R.

Path consists of H links, each with capacity C_i , available bandwidth A_i , and queue length q_i^k when the kth probe packet arrives

The One-Way-Delay for probe k is:

$$D^k = \sum_{i=1}^{H} \left(\frac{L}{C_i} + \frac{q_i^k}{C_i} \right)$$

Pathload Delay Model

The packet train consists of K packets of size L sent at a constant rate R.

Path consists of H links, each with capacity C_i , available bandwidth A_i , and queue length q_i^k when the kth probe packet arrives

The One-Way-Delay for probe k is:

$$D^{k} = \sum_{i=1}^{H} \left(\frac{L}{C_{i}} + \frac{q_{i}^{k}}{C_{i}} \right)$$

$$\Delta D^{k} \equiv D^{k+1} - D^{k} = \sum_{i=1}^{H} \frac{\Delta q_{i}^{k}}{C_{i}}$$

Increasing Trends

If R > A, then $\Delta D^k > 0$ for $k \ge 1$ If $R \le A$, then $\Delta D^k = 0$ for $k \ge 1$

Increasing Trends

If R > A, then $\Delta D^k > 0$ for $k \ge 1$

If $R \leq A$, then $\Delta D^k = 0$ for $k \geq 1$

Intuition for a single link i with $A_i < R$:

• Queue grows longer with each probe packet that arrives

•
$$\Delta q_i^k = (L + u_i C_i T) - C_1 T = (R - A_i) T > 0$$

For a single link with $A_i \ge R$:

•
$$\Delta q_i^k = 0$$

By induction, show that $\Delta D^k > 0$ when R > A

Increasing Trends

If R > A, then $\Delta D^k > 0$ for $k \ge 1$

If $R \leq A$, then $\Delta D^k = 0$ for $k \geq 1$

Intuition for a single link i with $A_i < R$:

• Queue grows longer with each probe packet that arrives

•
$$\Delta q_i^k = (L + u_i C_i T) - C_1 T = (R - A_i) T > 0$$

For a single link with $A_i \ge R$:

•
$$\Delta q_i^k = 0$$

By induction, show that $\Delta D^k > 0$ when R > A

Plot D^k – if $\Delta D^k > 0$ then R > A

Complications

 A_i not a constant

• varies on both short and long time scales

Need to choose K and L carefully

- Too short can't tell if $\Delta D^k > 0$
- Too long flood link
- Compromise use multiple trains

How did we choose R initially?

Iterative Search for A

maintain two state variables: R^{max} and R^{min} . always have $R^{min} < A < R^{max}$. Pick a new R halfway between R^{max} and R^{min} Test whether $R \ll A$, update either R^{max} or R^{min} Stop when R^{max} and R^{min} are close enough. In practice the search is more complicated because the outcome of testing R <> A is sometimes unsure

19

Pathload Block Diagram

Available Bandwidth isn't the full story

BTC vs Pathload: 15 RON hosts -- one test per path

Conclusion

There's a lot you can learn with simple probes

- packet pair
- packet trains regular interval, constant packet size

Just by looking at packet delay variations you can determine

- Path Capacity
- Common Packet Sizes
- Available Bandwidth