Measurement and Modelling I: End-to-End Bandwidth Measurements

6.829 Lecture 11

October 10, 2002

Jacob Strauss

End-to-End Measurements

Goal: Bandwidth-Aware Applications

- Is a path fast enough?
- Which path is faster?

What is bandwidth?

- Link Capacity: physical link speed (e.g. 100 Mbps Ethernet)
\triangleright for link i, link capacity c_{i}.
- Path Capacity: minimum capacity link along a path
$\triangleright C=\min _{i=0 \ldots n}\left(c_{i}\right)$
- Link Utilization: fraction of link capacity used over some time interval
$\triangleright 0 \leq u_{i} \leq 1$
- Available Bandwidth: minimum spare capacity along a path over some interval
$\triangleright A=\min _{i=0 \ldots n}\left(1-u_{i}\right) c_{i}$

Example Topology

Capacity from X to Y ?

Example Topology

Capacity from X to Y? $\quad C=10 \mathrm{Mbps}$
Available bandwidth from X to Y ?

Example Topology

Capacity from X to Y? $\quad C=10 \mathrm{Mbps}$
Available bandwidth from X to Y ? $\quad A=5 \mathrm{Mbps}$

Problem: Capacity Estimation

How can we measure the path capacity between X and Y ?

Packet Pair on an unloaded path

Send two packets, of P bits each, back-to-back Record the difference between arrival times, Δt.

Path Capacity is $\frac{P}{\Delta t}$

Packet Pair Complications: Cross Traffic

\square probe packet
other packet

$$
\Delta t>\frac{P}{C}
$$

Packet Pair Complications: Multiple Queues

$$
\Delta t<\frac{P}{C}
$$

Delay Measurements Block Diagram

New Problem: Path capacity and packet size distribution

Long train of packets with size P, sent every δ seconds
Record either one-way-delay or round-trip time for each packet

- RTT is easier to measure. Why?

Use phase plots:

- For each n, plot a point at $\left(r t t_{n}, r t t_{n}+1\right)$

Delay Components \& Model

Components

- Propagation delays
- Queuing delays
- Processing delay (lookup \& scheduling)
- Transmission delay

Model assuming a single queue

- Fixed delay: D
- waiting time: w_{n}
- service time: $y_{n}=\frac{P}{\mu}$
- total delay: $r t t_{n}=D+w_{n}+\frac{P}{\mu}$

Explain the Plot: light load conditions

Assume that the tight link load is low:

- $w_{n+1}=w_{n}+\epsilon_{n}$
$\Rightarrow r t t_{n+1}=r t t_{n}+\epsilon_{n}$

Explain the Plot: light load conditions

Assume that the tight link load is low:

- $w_{n+1}=w_{n}+\epsilon_{n}$
$\Rightarrow r t t_{n+1}=r t t_{n}+\epsilon_{n}$

Points plotted near the line $y=x$ above $(x, y)=(D, D)$

Explain the Plot: heavy load conditions

Assume B bits in between probe packets n and $n+1$

$$
w_{n+1}=w_{n}+\frac{B}{\mu}-\delta
$$

Explain the Plot: heavy load conditions

Assume B bits in between probe packets n and $n+1$
$w_{n+1}=w_{n}+\frac{B}{\mu}-\delta$
Now assume $\frac{B}{\mu} \gg \delta$

- We have probe compression: $k-1$ packets arrive before B clears the queue
- These k packets depart every P / μ seconds
for the k packets: $w_{n+i}-w_{n+i-1}=P / \mu-\delta$
- why is $P / \mu-\delta<0$?

Explain the Plot: heavy load conditions

Assume B bits in between probe packets n and $n+1$
$w_{n+1}=w_{n}+\frac{B}{\mu}-\delta$
Now assume $\frac{B}{\mu} \gg \delta$

- We have probe compression: $k-1$ packets arrive before B clears the queue
- These k packets depart every P / μ seconds
for the k packets: $w_{n+i}-w_{n+i-1}=P / \mu-\delta$
- why is $P / \mu-\delta<0$?
result is $r t t_{n+1}=r t t_{n}+(P / \mu-\delta)$

Explain the Plot: heavy load conditions

Assume B bits in between probe packets n and $n+1$
$w_{n+1}=w_{n}+\frac{B}{\mu}-\delta$
Now assume $\frac{B}{\mu} \gg \delta$

- We have probe compression: $k-1$ packets arrive before B clears the queue
- These k packets depart every P / μ seconds
for the k packets: $w_{n+i}-w_{n+i-1}=P / \mu-\delta$
- why is $P / \mu-\delta<0$?
result is $r t t_{n+1}=r t t_{n}+(P / \mu-\delta)$
We now know the bottleneck capacity μ from the plot.

Packet size distribution

Assume that between packets n and $n+1, b_{n}$ bits from other flows join queue

- Use Lindley's recurrence:
$w_{n+1}=\left(w_{n}+y_{n}-\delta_{n}\right)^{+}$, where x^{+}means max $(x, 0)$

Packet size distribution

Assume that between packets n and $n+1, b_{n}$ bits from other flows join queue

- Use Lindley's recurrence:

$$
w_{n+1}=\left(w_{n}+y_{n}-\delta_{n}\right)^{+}, \text {where } x^{+} \text {means } \max (x, 0)
$$

Apply twice:

$$
\begin{aligned}
w b_{n} & =\left(w_{n}+P / \mu-\delta_{b}\right)^{+} \\
w_{n+1} & =\left(\left(w_{n}+P / \mu-\delta_{b}\right)^{+}+b_{n} / \mu-\left(\delta-\delta_{b}\right)\right)^{+}
\end{aligned}
$$

Packet size distribution

Assume that between packets n and $n+1, b_{n}$ bits from other flows join queue

- Use Lindley's recurrence:

$$
w_{n+1}=\left(w_{n}+y_{n}-\delta_{n}\right)^{+}, \text {where } x^{+} \text {means } \max (x, 0)
$$

Apply twice:

$$
\begin{aligned}
w b_{n} & =\left(w_{n}+P / \mu-\delta_{b}\right)^{+} \\
w_{n+1} & =\left(\left(w_{n}+P / \mu-\delta_{b}\right)^{+}+b_{n} / \mu-\left(\delta-\delta_{b}\right)\right)^{+} \\
w_{n+1} & =w_{n}+\left(P+b_{n}\right) / \mu-\delta \\
b_{n} & =\mu\left(w_{n+1}-w_{n}+\delta\right)-P
\end{aligned}
$$

Now we can find packet sizes from peaks in PDF of $w_{n+1}-w_{n}+\delta$

Example Distribution Plot

Squeezed Pair Histogram: ccicom.ron.Ics.mit.edu --> nyu.ron.Ics.mit.edu

New Problem: Available Bandwidth Estimation

Can we use the same packet train to estimate A?

New Problem: Available Bandwidth Estimation

Can we use the same packet train to estimate A?
No, but we can determine whether $P / \delta>A$ or $P / \delta<A$

- Later we'll build on this test to estimate A

New Problem: Available Bandwidth Estimation

Can we use the same packet train to estimate A?
No, but we can determine whether $P / \delta>A$ or $P / \delta<A$

- Later we'll build on this test to estimate A

Basic idea: instead of just comparing w_{n+1} to w_{n}, compare w_{n} to $w_{n+1}, w_{n+2}, w_{n+3}, \ldots$

Method: Plot evolution of w_{n} versus n

Pathload Delay Model

The packet train consists of K packets of size L sent at a constant rate R.

Path consists of H links, each with capacity C_{i}, available bandwidth A_{i}, and queue length q_{i}^{k} when the k th probe packet arrives

Pathload Delay Model

The packet train consists of K packets of size L sent at a constant rate R.

Path consists of H links, each with capacity C_{i}, available bandwidth A_{i}, and queue length q_{i}^{k} when the k th probe packet arrives

The One-Way-Delay for probe k is:

$$
D^{k}=\sum_{i=1}^{H}\left(\frac{L}{C_{i}}+\frac{q_{i}^{k}}{C_{i}}\right)
$$

Pathload Delay Model

The packet train consists of K packets of size L sent at a constant rate R.

Path consists of H links, each with capacity C_{i}, available bandwidth A_{i}, and queue length q_{i}^{k} when the k th probe packet arrives

The One-Way-Delay for probe k is:

$$
\begin{gathered}
D^{k}=\sum_{i=1}^{H}\left(\frac{L}{C_{i}}+\frac{q_{i}^{k}}{C_{i}}\right) \\
\Delta D^{k} \equiv D^{k+1}-D^{k}=\sum_{i=1}^{H} \frac{\Delta q_{i}^{k}}{C_{i}}
\end{gathered}
$$

Increasing Trends

If $R>A$, then $\Delta D^{k}>0$ for $k \geq 1$
If $R \leq A$, then $\Delta D^{k}=0$ for $k \geq 1$

Increasing Trends

If $R>A$, then $\Delta D^{k}>0$ for $k \geq 1$
If $R \leq A$, then $\Delta D^{k}=0$ for $k \geq 1$
Intuition for a single link i with $A_{i}<R$:

- Queue grows longer with each probe packet that arrives
- $\Delta q_{i}^{k}=\left(L+u_{i} C_{i} T\right)-C_{1} T=\left(R-A_{i}\right) T>0$

For a single link with $A_{i} \geq R$:

- $\Delta q_{i}^{k}=0$

By induction, show that $\Delta D^{k}>0$ when $R>A$

Increasing Trends

If $R>A$, then $\Delta D^{k}>0$ for $k \geq 1$
If $R \leq A$, then $\Delta D^{k}=0$ for $k \geq 1$
Intuition for a single link i with $A_{i}<R$:

- Queue grows longer with each probe packet that arrives
- $\Delta q_{i}^{k}=\left(L+u_{i} C_{i} T\right)-C_{1} T=\left(R-A_{i}\right) T>0$

For a single link with $A_{i} \geq R$:

- $\Delta q_{i}^{k}=0$

By induction, show that $\Delta D^{k}>0$ when $R>A$
Plot $D^{k}-$ if $\Delta D^{k}>0$ then $R>A$

Complications

A_{i} not a constant

- varies on both short and long time scales

Need to choose K and L carefully

- Too short - can't tell if $\Delta D^{k}>0$
- Too long - flood link
- Compromise - use multiple trains

How did we choose R initially?

Iterative Search for A

maintain two state variables: $R^{\max }$ and $R^{\min }$.
always have $R^{\text {min }} \leq A \leq R^{\max }$.
Pick a new R halfway between $R^{\max }$ and $R^{\min }$
Test whether $R<>A$, update either $R^{\max }$ or $R^{\text {min }}$
Stop when $R^{\max }$ and $R^{\text {min }}$ are close enough.
In practice the search is more complicated because the outcome of testing $R<>A$ is sometimes unsure

Pathload Block Diagram

Available Bandwidth isn't the full story

Conclusion

There's a lot you can learn with simple probes

- packet pair
- packet trains - regular interval, constant packet size

Just by looking at packet delay variations you can determine

- Path Capacity
- Common Packet Sizes
- Available Bandwidth

