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Abstract—
Network coding substantially increases network throughput.

But since it involves mixing of information inside the network,
a single corrupted packet generated by a malicious node can
end up contaminating all the information reaching a destination,
preventing decoding.

This paper introduces the first distributed polynomial-time rate-
optimal network codes that work in the presence of Byzantine
nodes. We present algorithms that target adversaries with different
attacking capabilities. When the adversary can eavesdrop on all
links and jam zO links , our first algorithm achieves a rate of
C − 2zO , where C is the network capacity. In contrast, when the
adversary has limited snooping capabilities, we provide algorithms
that achieve the higher rate of C − zO .

Our algorithms attain the optimal rate given the strength of
the adversary. They are information-theoretically secure. They
operate in a distributed manner, assume no knowledge of the
topology, and can be designed and implemented in polynomial-
time. Furthermore, only the source and destination need to be
modified; non-malicious nodes inside the network are oblivious to
the presence of adversaries and implement a classical distributed
network code. Finally, our algorithms work over wired and wireless
networks.

I. INTRODUCTION

Network coding allows the routers to mix the information
content in packets before forwarding them. This mixing has
been theoretically proven to maximize network throughput [1],
[19], [13]. It can be done in a distributed manner with low com-
plexity, and is robust to packet losses and network failures [8],
[23]. Furthermore, recent implementations of network coding
for wired and wireless environments demonstrate its practical
benefits [16], [6].

But what if the network contains malicious nodes? A ma-
licious node may pretend to forward packets from source to
destination, while in reality it injects corrupted packets into
the information flow. Since network coding makes the routers
mix packets’ content, a single corrupted packet can end up
corrupting all the information reaching a destination. Unless this
problem is solved, network coding may perform much worse
than pure forwarding in the presence of adversaries.

The interplay of network coding and Byzantine adversaries
has been examined by a few recent papers. Some detect the
presence of an adversary [10], others correct the errors he injects
into the codes under specific conditions [7], [12], [20], and a
few bound the maximum achievable rate in such adverse envi-
ronments [3], [29]. But attaining optimal rates using distributed
and low-complexity codes is still an open problem.

This paper designs distributed polynomial-time rate-optimal
network codes that combat Byzantine adversaries. We present
three algorithms that target adversaries with different strengths.
The adversary can inject zO packets per unit time, but his

listening power varies. When the adversary is omniscient, i.e., he
observes transmissions on the entire network, our codes achieve
the rate of C−2zO, with high probability. When the adversary’s
knowledge is limited, either because he eavesdrops only on a
subset of the links or the source and destination have a low-rate
secret-channel, our algorithms deliver the higher rate of C−zO.

The intuition underlying all of our algorithms is that the
aggregate packets from the adversarial nodes can be thought
of as a second source. The information received at the desti-
nation is a linear transform of the source’s and the adversary’s
information. Given enough linear combinations (enough coded
packets), the destination can decode both sources. The question
however is how does the destination distill out the source’s
information from the received mixture. To do so, the source’s
information has to satisfy certain constraints that the attacker’s
data cannot satisfy. This can be done by judiciously adding
redundancy at the source. For example, the source may add
redundancy to ensure that certain functions evaluate to zero
on the original source’s data, and thus can be used to distill
the source’s data from the adversary’s. The challenge addressed
herein is to design the redundancy that achieves the optimal
rates.

This paper makes several contributions. The algorithms
presented herein are the first distributed algorithms with
polynomial-time complexity in design and implementation, yet
are rate-optimal. In fact, since pure forwarding is a special
case of network coding, being rate-optimal, our algorithms also
achieve a higher rate than any approach that does not use
network coding. They assume no knowledge of the topology
and work in both wired and wireless networks. Furthermore,
implementing our algorithms involves only a slight modification
of the source and destination while the internal nodes can
continue to use standard network coding.

II. ILLUSTRATING EXAMPLE

We illustrate the intuition underlying our approach using
the toy example in Fig. 1. Calvin wants to prevent the flow
of information from Alice to Bob, or at least minimize it. All
links have a capacity of one packet per unit time. Further, Calvin
connects to the three routers through an intermediate node. The
intermediate node just relays all the packets Calvin sends him
to the three routers. The network capacity, C, is by definition
the min-cut from Alice to Bob. It is equal to 3 packets per unit
time. The min-cut from Calvin to the destination is zO = 1
packet per unit time. Hence, the maximum rate from Alice to
Bob in this scenario is bounded by C−zO = 2 packets per unit
time as proven in [12].
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Fig. 1—A simple example. Alice transmits to Bob. Calvin injects
corrupted packets into their communication. The grey nodes in
the middle perform network coding.

We express each packet as a vector of n bytes, where n is
a sufficiently large number. The routers create random linear
combinations of the packets they receive. Hence, every unit of
time Bob receives the packets:

ỹi = αix̃i + βiz̃, i ∈ {1, 2, 3}, (1)

where x̃i’s are vectors representing the three packets Alice sent,
z̃ is the packet Calvin sent, αi and βi are random coefficients.

In our example, the routers operate over bytes; the ith byte
in an outgoing packet is a linear combination of ith bytes in the
incoming packets. Thus, (1) also describes the relation between
the individual bytes in ỹi’s and the corresponding bytes in x̃i’s
and z̃.

Since the routers mix the content of the packets, Alice cannot
just sign her packets and have Bob discard all packets with
incorrect signatures. To decode, Bob has to somehow distill the
x̃i’s from the ỹi’s he receives.

As a first attempt at solving the problem, let us assume that
Bob knows the topology, i.e., he knows that the packets he
receives are produced using (1). Further, let us assume that he
knows the random coefficients used by the routers to code the
packets, i.e., he knows the values of αi’s and βi’s. To decode,
Bob has to solve (1). Since each packet contains n bytes, the
system in (1) represents 3n equations, one equation per received
byte. Bob has 3n equations and 4n unknowns (n unknown bytes
per each packet z̃, x̃1, x̃2 and x̃3). Hence, Bob cannot decode.

To address the above situation, Alice needs to add redun-
dancy to her transmitted packets. After all, as noted above, for
the particular example in Fig. 1, Alice’s rate is bounded by 2
packets per unit time. Thus, Alice should send no more than 2
packets worth of information. She can use the third packet for
added redundancy. Suppose Alice sets

x̃3 = x̃1 + x̃2. (2)

This coding strategy is public to both Bob and Calvin. Since
each packet contains n bytes, combining (2) with (1), Bob
obtains a system of 4n equations with 4n unknowns, which
he can solve to decode.

But in the general case, Bob knows nothing about the
coefficients used by the routers, the topology, or the overall
network transform. Said differently, the 6 coefficients corre-
sponding to the αi’s and the βi’s are usually unknown to Bob.
Thus, given (1) and (2), Bob is faced with 4n equations and
4n+6 unknowns, and thus cannot decode. The matter is further
complicated by the non-linearity of (1), which involves the
product of unknown terms αix̃i and βiz̃.

The first idea we exploit in our solution is that while z̃ is
a whole unknown packet of n bytes, each of the coefficients

βi is a single byte. Thus, instead of devoting a whole vector
of n bytes for added redundancy (as in (2)), Alice just needs
to introduce 6 extra bytes of redundancy to compensate for the
αi’s and βi’s being unknown.

Alice imposes constraints on her data to help Bob to decode.
For instance, a simple constraint could be that the first byte in
each packet equals zero. This constraint provides Bob with 2
additional equations (recall that the first byte in x̃3 is forced to
0 due to (2), and hence the new constraint produces 2 additional
equations rather than 3). Rewriting (1) for the first byte of each
packet, we obtain:

yi,1 = α1xi,1 + βiz1 = βiz1, , i ∈ {1, 2, 3} (3)

where yi,j denotes the jth byte in the ith received packet. The
above equations provide Bob with a scaled version of the βi’s,
i.e., they are all multiplied by z1.

Our second observation is that the scaled version of the βi’s
suffices for Bob to decode x̃. This can be seen by a simple
algebraic manipulation of (1). Bob can rewrite the equations
in (1) by multiplying and dividing the second term with z1 and
appending (2) to obtain

ỹi = αix̃i + (βiz1)(z̃/z1), i ∈ {1, 2, 3} . (4)

Notice that Bob already knows all three βiz1 terms from (3).
The term (z̃/z1) can be considered a single unknown because
Bob does not care about estimating the exact value of z̃.

To allow Bob to discover the αi’s, Alice similarly adds 4
more bytes of redundancy by imposing constraints on the second
and third bytes in her packets. For example, she chooses x1,2 =
x2,2 = 1 and x1,3 = −x2,3 = 1 (combined with (2), these
constraints force x3,2 = 2 and x3,3 = 0). Substituting the values
of (β1z1), (β2z1) and (β3z1) from (3) gives Bob the following
equations.

y1,2 = α1 + y1,1(z2/z1), y1,3 = α1 + y1,1(z3/z1)
y2,2 = α2 + y2,1(z2/z1), y2,3 = −α2 + y2,1(z3/z1)
y3,2 = 2α3 + y3,1(z2/z1), y3,3 = y3,1(z3/z1)

. (5)

Now Bob has 6 linear equations with the 5 unknowns α1,
α2, α3, z2/z1 and z3/z1, and they can be solved to obtain the
αi’s. Hence we are essentially back to the situation where Bob
knows the αi’s and βi’s, and can solve for x̃i’s.

One complication still remains. If Calvin knows the con-
straints on Alice’s data, he will try to assign values to his bytes
to prevent Bob from decoding. For example, if Calvin knows
that the first byte of each of Alice’s packets is zero, he too
would set the first byte in his packet z1 to zero, in which case
Bob does not obtain any information about the βi’s from (4).

There are two ways out of this situation. Suppose Alice
could communicate to Bob a small message that is secret from
Calvin. In this case, she could compute a small number of
hashes of her data, and transmit them to Bob. These hashes
correspond to constraints on her data, which enables Bob to
decode. If Alice cannot communicate secretly with Bob, she
leverages the fact that Calvin can inject only one fake packet.
Since Calvin’s packet is n bytes long, he can cancel out at most
n hashes. If Alice injects n + 1 hashes, there must be at least
one hash Calvin cannot cancel. This hash enables Bob to find
the βi’s and decode. Notice, however, that the n + 1 additional
constraints imposed on the bytes in �x1 and �x2 mean that Alice



can only transmit at most n − 1 bytes of data to Bob. For a
large number of bytes n in a packet, this rate is asymptotically
optimal against an all-knowing adversary [3].

After giving some intuition on how our scheme works, the
rest of this paper considers the general problem of network
coding over completely unknown topology, in the presence of
an adversary who has partial or full knowledge of the network
and transmissions in it.

III. RELATED WORK

We start with a brief summary of network coding, followed
by a survey of prior work on Byzantine adversaries in networks.

A. Network Coding Background

Work on network coding started with a pioneering paper
by Ahlswede et al. [1], which establishes the value of coding
in the routers and provides theoretical bounds on the capacity
of such networks. The combination of [21], [19], [13] shows
that, for multicast traffic, linear codes achieve the maximum
capacity bounds, and coding and decoding can be done in
polynomial time. Additionally, Ho et al. show that the above
is true even when the routers pick random coefficients [8].
Researchers have extended the above results to a variety of
areas including wireless networks [23], [15], [16], energy [28],
secrecy [2], content distribution [6], and distributed storage [14].

B. Byzantine Adversaries in Networks

A Byzantine attacker is a malicious adversary hidden in
a network, capable of eavesdropping and jamming commu-
nications. Prior research has examined these attacks in the
presence of network coding and without it. In the absence
of network coding, Dolev et al. [5] consider the problem
of communicating over a known graph containing Byzantine
adversaries. They show that for k adversarial nodes, reliable
communication is possible only if the graph has more than
2k + 1 vertex connectivity. Subramaniam extends this result
to unknown graphs [26]. Pelc et al. address the same problem
in wireless networks by modeling malicious nodes as locally
bounded Byzantine faults, i.e., nodes can overhear and jam
packets only in their neighborhood [24].

The interplay of network coding and Byzantine adversaries
was first examined in [10], which detects the existence of an
adversary but does not provide an error-correction scheme.
This has been followed by the work of Cai and Yeung [29],
[3], who generalize standard bounds on error-correcting codes
to networks, without providing any explicit algorithms for
achieving these bounds. Our work presents a constructive design
to achieve those bounds.

The problem of correcting errors in the presence of both
network coding and Byzantine adversaries has been considered
by a few prior proposals. Earlier work [20], [7] assumes a
centralized trusted authority that provides hashes of the original
packets to each node in the network. More recent work by
Charles et al. [4] obviates the need for a trusted entity under the
assumption that the majority of packets received by each node
is uncorrupted. In contrast to the above two schemes which are
cryptographically secure, in a previous work [12], we consider
an information-theoretically rate-optimal solution to Byzantine
attacks for wired networks, which however requires a centralized
design. This paper builds on the above prior schemes to combine

Scheme Charles et.al. [4] Jaggi et.al. [12] Ours
Info. Theoretic Security No Yes Yes
Distributed Yes No Yes
Internal Node Complexity High Low Low
Decoding Complexity High Exponential Low
General Graphs No Yes Yes
Universal No No Yes

TABLE I—Comparison between the results in this paper and some
prior papers.

their desirable traits; it provides a distributed solution that is
information-theoretically rate optimal and can be designed and
implemented in polynomial time. Furthermore, our algorithms
have new features; they assume no knowledge of the topology,
do not require any new functionality at internal nodes, and
work for both wired and wireless networks. Recent work [17]
has considered the same problem from a different perspective,
their results and bounds are similar to ours. Table I highlights
similarities and differences from prior work.

IV. MODEL & DEFINITIONS

We use a general model that encompasses both wired and
wireless networks. To simplify notation, we consider only the
problem of communicating from a single source to a single
destination. But similar to most network coding algorithms, our
techniques generalize to multicast traffic.

A. Threat Model

There is a source, Alice, and a destination, Bob, who
communicate over a wired or wireless network. There is also an
attacker Calvin, hidden somewhere in the network. Calvin aims
to prevent the transfer of information from Alice to Bob, or at
least to minimize it. He can observe some of the transmissions,
and can inject his own. When he injects his own packets, he
pretends they are part of the information flow from Alice to
Bob.

Calvin is quite strong. He is computationally unbounded. He
knows the encoding and decoding schemes of Alice and Bob,
and the network code implemented by the interior nodes. He
also knows the exact network realization.

B. Network and Code Model

This section describes the network model, the packet format,
and how the network transforms the packets.

Network Model: The network is modeled as a hypergraph [22].
Each packet transmission corresponds to a hyperedge directed
from the transmitting node to the set of observer nodes. The
hypergraph model captures both wired and wireless networks.
For wired networks, the hyperedge is a simple point-to-point
link. For wireless, each such hyperedge is determined by
instantaneous channel realizations (packets may be lost due to
fading or collisions) and connects the transmitter to all nodes
that hear the transmission. The hypergraph is unknown to Alice
and Bob prior to transmission.

Source: Alice generates incompressible data that she wishes
to deliver to Bob over the network. To do so, Alice encodes
her data as dictated by the encoding algorithm (described in
subsequent sections). She divides the encoded data into batches
of b packets. For clarity, we focus on the encoding and decoding
of one batch.



A packet contains a sequence of n symbols from the finite
field Fq . All arithmetic operations henceforth are done over
symbols from Fq. (See the treatment in [18]). Out of the n
symbols in Alice’s packet, δn symbols are redundancy added
by the source.

Alice organizes the data in each batch into a matrix X as
shown in Fig. 2. We denote the (i, j)th element in the matrix by
x(i, j). The ith row in the matrix X is just the ith packet in the
batch. Fig. 2 shows that similarly to standard network codes [8],
some of the redundancy in the batch is devoted to sending the
identity matrix, I . Also, as in [8], Alice takes random linear
combinations of the rows of X to generate her transmitted
packets. As the packets traverse the network, the internal nodes
apply a linear transform to the batch. The identity matrix
receives the same linear transform. The destination discovers
the linear relation between the packets it receives and those
transmitted by inspecting how I was transformed.

Adversary: Let the matrix Z be the information Calvin injects
into each batch. The size of this matrix is zO × n, where zO is
the size of the min-cut from Calvin to the destination.

Destination: Analogously to how Alice generates X , the des-
tination Bob organizes the received packets into a matrix Y .
The ith received packet corresponds to the ith row of Y . Note
that the number of received packets, and therefore the number
of rows of Y , is a variable dependent on the network topology.
The column rank of Y , however, is b + zO. Bob attempts to
reconstruct Alice’s information, X , using the matrix of received
packets Y .

C. Definitions

We define the following concepts.

• The network capacity, denoted by C, is the time-average
of the maximum number of packets that can be delivered
from Alice to Bob, assuming no adversarial interference,
i.e., the max flow. It can be also expressed as the min-cut
from source to destination. (For the corresponding multicast
case, C is defined as the minimum of the min-cuts over all
destinations.)

• The error probability is the probability that Bob’s recon-
struction of Alice’s information is inaccurate.

• The rate, R, is the number of information bits in a batch
amortized by the length of a packet in bits.

• The rate R is said to be achievable if for any ε > 0, any
δ > 0, and sufficiently large n, there exists a block-length-n
network code with a redundancy δ and a probability of error
less than ε.

• A code is said to be universal if the code design is indepen-
dent of zO.

V. NETWORK TRANSFORM

This section explains how Alice’s packets get transformed
as they travel through the network. It examines the effect the
adversary has on the received packets, and Bob’s decoding
problem.

The network performs a classical distributed network
code [8]. Specifically, each packet transmitted by an internal
node is a random linear combination of its incoming packets.
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Fig. 2—Alice, Bob and Calvin’s information matrices.

Variable Definition
b Number of packets in a batch.
zO Number of packets Calvin can inject.
zI Number of packets Calvin can hear.
n Length of each packet.
δ Fractional redundancy introduced by Alice.
T̂ Proxy of the transfer matrix T representing the

network transform.

TABLE II—Terms used in the paper.

Thus, the effect of the network at the destination can be
summarized as follows.

Y = TX + TZ→Y Z, (6)

where X is the batch of packets sent by Alice, Z refers to the
packets Calvin injects into Alice’s batch, and Y is the received
batch. The variable T refers to the linear transform from Alice
to Bob, while TZ→Y refers to the linear transform from Calvin
to Bob.

As explained in §IV, a classical random network code’s X
includes the identity matrix as part of each batch. The identity
matrix sent by Alice incurs the same transform as the rest of
the batch. Thus,

T̂ = TI + TZ→Y L, (7)

where T̂ and L are the columns corresponding to I’s location
in Y and Z respectively, as shown in Fig. 2.

In standard network coding, there is no adversary, i.e., Z =
0 and L = 0, and thus T̂ = T . The destination receives a
description of the network transform in T̂ and can decode X as
T̂−1Y . In the presence of the adversary, however, the destination
needs to solve (6) and (7) to extract the value of X .

By substituting T from (7), (6) can be simplified to get

Y = T̂X + TZ→Y (Z − LX) (8)

= T̂X + E, (9)

where E is a C × n matrix that characterizes Calvin’s interfer-
ence. Note that the matrix T̂ , which Bob knows, acts as a proxy
transfer matrix for T , which he doesn’t know.

Note that in (6), all terms other than Y are unknown. Further,
it is non-linear due to the cross-product terms, TX and TZ→Y Z.
In contrast, (9) is linear in the unknowns X and E. The rest
of this work focuses on solving (9) under different assumptions
on Calvin’s strength.

VI. SUMMARY OF RESULTS

We have three main results. Each result corresponds to a
distributed, rate-optimal, polynomial-time algorithm that defeats
an adversary of a particular type. The optimality of these rates



has been proven by prior work [3], [29], [12]. Our work,
however, provides a construction of distributed codes/algorithms
that achieve optimal rates. In what follows, let |T | denote the
number of receivers, and |E| denote the number of transmissions
in the network.

(1) Shared Secret Model: This model assumes that Alice and
Bob have a very low rate secret channel, the transmissions on
which are unknown to Calvin. It considers the transmission of
information via network coding in a network where Calvin can
observe all transmissions, and can inject some corrupt packets.

Theorem 1: The Shared Secret algorithm achieves a rate of
C − zO with code-complexity O(nC2). This is the maximum
achievable rate.
In §VII, we prove the above theorem by constructing an algo-
rithm that achieves the bounds. Note that [7] proves a similar
result for a more constrained model where Alice shares a very
low rate secret channel with all nodes in the network, and the
operations performed by internal nodes are computationally ex-
pensive. Further, their result guarantees cryptographic security,
while we provide information-theoretic security.

(2) Omniscient Adversary Model: This model assumes an
omniscient adversary, i.e., one from whom nothing is hidden. In
particular, Alice and Bob have no shared secrets hidden from
Calvin. It also assumes that the min-cut from the adversary
to the destination, zO, is less than C/2. Prior work proves
that without this condition, it is impossible for the source
and the destination to reliably communicate without a secret
channel [12]. In §VIII, we prove the following.

Theorem 2: The Omniscient Adversary algorithm achieves
a rate of C − 2zO with code-complexity O((nC)3). This is the
maximum achievable rate.

(3) Limited Adversary Model: In this model, Calvin is limited
in his eavesdropping power; he can observe at most zI transmit-
ted packets. Exploiting this weakness of the adversary results
in an algorithm that, like the Omniscient Adversary algorithm
operates without a shared secret, but still achieves the higher rate
possible via the Shared Secret algorithm. In particular, in §IX
we prove the following.

Theorem 3: If zI < C − 2zO, the Limited Adversary
algorithm achieves a rate of C − zO with code-complexity
O(nC2). This is the maximum achievable rate.

VII. SHARED SECRET MODEL

In the Shared Secret model, Alice and Bob have use of a
strong resource, namely a secret channel over which Alice can
transmit a small amount of information to Bob that is secret
from Calvin. Note that since the internal nodes mix corrupted
and uncorrupted packets, Alice cannot just sign her packets
and have Bob check the signature and throw away corrupted
packets, in extreme cases this might lead to Bob not receiving
any uncorrupted packets. Alice uses the secret channel to send a
hash of her information X to Bob, which Bob can use to distill
the corrupted packets he receives, as explained below.

Shared Secret: Alice generates her secret message in two
steps. She first chooses C parity symbols uniformly at random
from the field Fq. The parity symbols are labeled rd, for d ∈
{1, . . . , C}. Corresponding to the parity symbols, Alice’s parity-
check matrix P is defined as the n × C matrix whose (i, j)th

entry equals (rj)i, i.e., rj to the ith power. The second part of
Alice’s secret message is the b×C hash matrix H , computed as
the matrix product XP . We assume Alice communicates both
the set of parity symbols and the hash matrix H to Bob over
the secret channel. The combination of these two creates the
shared secret, denoted S, between Alice and Bob. The size of
S is C(b+1) symbols, which is small in comparison to Alice’s
information X . (The size of X is b×n; it can be made arbitrarily
large compared to the size of S by increasing the packet size
n.)

Alice’s Encoder: Alice implements the classical random net-
work encoder described in §IV-B.

Bob’s Decoder: Not only is P used by Alice to generate H ,
but is also used by Bob in his decoding process. To be more
precise, Bob computes Y P − T̂H using the messages he gets
from the network and the secret channel. We call the outcome
the syndrome matrix S.

By substituting the value of H and using (9), we obtain

S = Y P − T̂H = (Y − T̂X)P = EP. (10)

Thus, if no adversary was present, the packets would not be
corrupted (i.e., E = 0) and S would be an all-zero matrix. As
shown in §IV, X then equals T̂−1Y . If Calvin injects corrupt
packets, S will be a non-zero matrix.

Claim 1: The rank of E is at most zO.
Claim 2: The columns of S span the same vector-space as

the columns of E with probability at least 1 − CnCq−1.
Claim 1 follows from the definition of E = TZ→Y (Z − LX).
Claim 2 is proved in the Appendix. Together, they imply that
Calvin’s interference, E, can be written as linear combinations
of the columns of a C × zO submatrix S′ of S, i.e., E = S′A,
where A is a zO ×n matrix. This enables Bob to rewrite (9) as
the matrix product

Y = [T̂ S′]
[

X
A

]
, (11)

Bob does not care about A, but to obtain X , he must solve
(11). Let |T | and |E| be the number of terminals and links in
the underlying network.

Claim 3: The matrix [T TZ→Y ], and thus the matrix [T̂ S′],
has full column-rank with probability at least 1 − |T ||E|q−1.
Claim 3, proved in the Appendix, means that Bob can decode
by simply inverting the C × C matrix [T̂ S′] and multiplying
the result by Y . Thus, the shared secret algorithm achieves the
rate of C−zO − b2/n. Here, the asymptotically negligible term
b2/n corresponds to the overhead due to the identity matrix
Alice appends to X . This rate is shown to be optimal by prior
work [12]. The probability of error is at most the sums of the
probabilities of error in Claims 2 and 3, i.e., (nCC+|T ||E|)q−1.
Of code design, encoding and decoding, both encoding and
decoding require O(nC2) steps. The costliest step for Alice
is the computation of the hash matrix H , and for Bob is the
computation of the syndrome matrix S.

The scheme presented above is universal, i.e., the parameters
of the code do not depend on any knowledge about zO, which in
some sense functions as the “noise parameter” of the network.
Alice therefore has flexibility in tailoring her batch size to the
size of the data which she wishes to transmit and the packet
size allowed by the network. �



VIII. OMNISCIENT ADVERSARY MODEL

What if we face an omniscient adversary, i.e., Calvin can
observe everything, and there are no shared secrets between
Alice and Bob? We design a network error-correcting code to
defeat such a powerful adversary. Our algorithm achieves a rate
of R = C−2zO, which is lower than in the Shared Secret model.
This is a direct consequence of Calvin’s increased strength.
Recent bounds [3] on network error-correcting codes show that
in fact C − 2zO is the maximum achievable rate for networks
with an omniscient adversary.

Alice’s Encoder: Alice encodes in two steps. To counter
the adversary’s interference, she first generates X by adding
redundancy to her information. She then encodes X using the
encoder defined in §IV-B.

Alice adds redundancy as follows. Her original information
is a length-(bn−δn−b2) column vector Ũ. (Here the fractional
redundancy δ, is dependent on zO, the number of packets Calvin
may inject into the network.) Alice converts Ũ into X̃, a length-

bn vector
(
Ũ R̃ Ĩ

)T

, where Ĩ is just the column version of
the b × b identity matrix. It is generated by stacking columns
of the identity matrix one after the other. The second term, R̃
represents the redundancy Alice adds. The redundancy vector
R̃ is a length-δn column vector generated by solving the matrix
equation for R̃.

D
(
Ũ R̃ Ĩ

)T

= 0.

where D is a δn× bn matrix defined as the redundancy matrix.
D is obtained by choosing each element as an independent
and uniformly random symbol from the finite field Fq. Due
to the dependence of D on δ and thus on zO, the Omniscient
Adversary algorithm is not universal. The redundancy matrix D
is known to all parties – Alice, Bob, and Calvin – and hence
does not constitute a shared secret.

Alice then proceeds to the standard network encoding. She
rearranges X̃, a length-bn vector, into the b× n matrix X . The
jth column of X consists of symbols from the ((j − 1)b+1)th

through (jb)th symbols of X̃. From this point on, Alice’s
encoder implements the classical random network encoder de-
scribed in §IV-B, to generate her transmitted packets.

Bob’s Decoder: As shown in (9), Bob’s received data is related
to Alice and Calvin’s transmitted data as Y = T̂X + E. Bob’s
objective, as in §VII, is to distill out the effect of the error matrix
E and recover the vector X . He can then retrieve Alice’s data
by extracting the first (bn − b2 − δn) symbols to obtain Ũ.

To decode, Bob performs the following steps, each of which
corresponds to an elementary matrix operation.

• Determining Calvin’s strength: Bob first determines the
strength of the adversary zO, which is the column rank of
TZ→Y . Bob does not know TZ→Y , but since T and TZ→Y

span disjoint vector spaces (Claim 3), the column rank of Y
is equal to the sum of the column ranks of T and TZ→Y .
Since the column rank of T is simply the batch size b, Bob
determines zO by subtracting b from the column rank of the
matrix Y .

• Discarding irrelevant information: Since the classical ran-
dom network code is run without any central coordinating
authority, the packets of information that Bob receives

may be highly redundant. Of the packets Bob receives, he
selectively discards some so that the resulting matrix Y has
b + zO rows, and has full row rank. For him to consider
more packets is useless, since at most b + zO packets of
information have been injected into the network, b from
Alice and zO from Calvin. This operation has the additional
benefit of reducing the complexity of linear operations
that Bob needs to perform henceforth. This reduces the
dimensions of the matrix T̂ , since Bob can discard the rows
corresponding to the discarded packets.

• Estimating a “basis” for E: If Bob could directly estimate
a basis for the column space of E, then he could simply
decode as in the Shared Secret algorithm. However, there is
no shared secret that enables him to discover a basis for the
column space of E. So, he instead chooses a proxy error
matrix T ′′ whose columns (which are, in general, linear
combinations of columns of both X and E) act as a proxy
error basis for columns of E. This is analogous to step (9),
where the matrix T̂ acts as a proxy transfer matrix for the
unknown matrix T .
The matrix T ′′ is obtained as follows. Bob selects zO

columns from Y such that these columns, together with the
b columns of T̂ , form a basis for the columns of Y . Without
loss of generality, these columns correspond to the first zO

columns of Y (if not, Bob simply permutes the columns of
Y to make it so). The (b + zO) × zO matrix corresponding
to these first zO columns is denoted T ′′.

• Changing to proxy basis: Bob rewrites Y in the basis
corresponding to the columns of the (b + zO) × (b + zO)
matrix [T ′′ T̂ ]. Therefore Y can now be written as

Y = [T ′′ T̂ ]
[

IzO
FZ 0

0 FX Ib

]
. (12)

Here

[
FZ

FX

]
is defined as the (b + zO) × (n − (b + zO))

matrix representation of the columns of Y (other than those
in [T ′′ T̂ ]) in the new basis, with FZ and FX defined as
the sub-matrices of appropriate dimensions.

Bob splits X as X = [X1 X2 X3], where X1 corresponds to
the first zO columns of X , X3 to the last b columns of X ,
and X2 to the remaining columns of X . We perform linear
algebraic manipulations on (12), to reduce it to a form in which
the variables in X are related by a linear transform solely to
quantities that are computable by Bob. Claim 4 summarizes
the effect of these linear algebraic manipulations (proof in
Appendix).

Claim 4: The matrix equation (12) is exactly equivalent to
the matrix equation T̂X2 = T̂

(
FX + X1F

Z
)
.

To complete the proof of correctness of our algorithm, we need
only the following claim, proved in the Appendix.

Claim 5: For δn > n(zO +ε), with probability greater than
1 − q−nε, the system of linear equations

T̂X2 = T̂
(
FX + X1F

Z
)

(13)

DX̃ = 0 (14)

is solvable for X .
The final claim enables Bob to recover X , which contains
Alice’s information at asymptotic rate R = C − 2zO. (There is
an asymptotically negligible rate overhead equalling b2/n + ε.



The b2/n term corresponds, as before, to the identity matrix
appended to X . The term ε takes any positive value, and the
probability of error also depends on it.) The probability of error
equals the sums of the probabilities of error in Claims 3 and 5,
i.e., |T ||E|q−1 + q−nε. Of code design, encoding and decoding,
the most computationally expensive is decoding. The costliest
step involves inverting the linear transform corresponding to
(13)-(14), which is of dimension O(nC). �

IX. LIMITED ADVERSARY MODEL

We combine the strengths of the Shared Secret algorithm
and the Omniscient Adversary algorithm, to achieve the higher
rate of C = C − zO, without needing a secret channel. The
caveat is that Calvin’s strength is more limited; the number of
packets he can transmit, zO, and the number he can eavesdrop
on, zI , satisfy the technical constraint

2zO + zI < C. (15)

We call such an adversary a Limited Adversary.
The main idea underlying our Limited Adversary algorithm

is simple. Alice uses the Omniscient Adversary algorithm to
transmit a “short” message to Bob at rate C − 2zO. By (15),
zI < C−2zO, the rate zI at which Calvin eavesdrops is strictly
less than Alice’s rate of transmission C − 2zO. Hence Calvin
cannot decode Alice’s message, but Bob can. This means Alice’s
message to Bob is secret from Calvin. Alice then builds upon
this secret, using the Shared Secret algorithm to transmit the
bulk of her message to Bob at the higher rate C − zO.

Though the following algorithm requires Alice to know zO

and zI , we describe in §IX-A how to change the algorithm to
make it independent of these parameters. The price we pay is
a slight decrease in rate.

Alice’s Encoder: Alice’s encoder follows essentially the schema
described above, except for a technicality – the information she
transmits to Bob via the Omniscient Adversary algorithm is
padded with some random symbols. This is for two reasons.
Firstly, since the Omniscient Adversary algorithm has a prob-
ability of error that decays exponentially with the size of the
input, it isn’t guaranteed to perform well to transmit just a small
message. Secondly, the randomness in the padded symbols also
ensures strong information-theoretic secrecy of the small secret
message, i.e., we can then show (in Claim 6) that Calvin’s best
estimate of any function of the secret information is no better
than if he made random guesses.

Alice’s information X decomposes into two parts [X1 X2].
She uses the information she wishes to transmit to Bob, at rate
R = C − zO −∆, as input to the encoder of the Shared Secret
algorithm, thereby generating the b× n(1−∆) sub-matrix X1.
Here ∆ is a parameter that enables Alice to trade off between
the the probability of error and rate-loss.

The second sub-matrix, X2, which we call the secrecy matrix
is analogous to the secret S used in the Secret Sharing algorithm
described in §VII. The size of X2 is b × ∆n. In fact, X2 is an
encoding of the secret S Alice generates in the Shared Secret
algorithm. The b(C + 1) symbols corresponding to the parity
symbols {rd} and the hash matrix H are written in the form
of a length-b(C + 1) column vector. This vector is appended
with symbols chosen uniformly at random from Fq to result in
the length-(C − zO − δ)∆n vector Ũ′. This vector Ũ′ could

function as the input Ũ to the Omniscient Adversary algorithm
operated over a packet-size ∆n, with a probability of decoding
error that is exponentially small in ∆n; however, we actually
use a hash of Ũ′ to generate the input Ũ to the Omniscient
Adversary algorithm. To be more precise, Ũ = V Ũ′, where
V is any square MDS code generator matrix 1 of dimension
(C − zO − δ)∆n, known to all parties Alice, Bob, and Calvin.
As we see later, hashing Ũ′ with V strengthen the secrecy of S

(and enables the proof of Claim 6 below). Alice then uses the
encoder for the Omniscient Adversary algorithm to generate X2

from Ũ.
The two components of X , i.e., X1 and X2, respectively

correspond to the information Alice wishes to transmit to Bob,
and an implementation of the low rate secret channel. The
fraction of the packet-size corresponding to X2 is “small”,
i.e., ∆. Finally, Alice implements the classical random encoder
described in §IV-B.

Bob’s Encoder: Bob arranges his received packets into the ma-
trix Y = [Y1 Y2]. The sub-matrices Y1 and Y2 are respectively
the network transforms of X1 and X2.

Bob decodes in two steps. Bob first decodes Y2 to obtain S.
He begins by using the Omniscient Adversary decoder to obtain
the vector Ũ. He obtains Ũ′ from Ũ, by multiplying by V −1.
He then extracts from Ũ′ the b(C + 1) symbols corresponding
to S. The following claim, proved in the Appendix, ensures that
S is indeed secret from Calvin.

Claim 6: The probability that Calvin guesses S correctly is
at most q−b(C+1), i.e., S is information-theoretically secret from
Calvin.
Thus Alice has now shared S with Bob. Bob uses S as the
side information used by the decoder of the Shared Secret
algorithm to decode Y1. This enables him to recover X1, which
contains Alice’s information at rate R = C − zO. (There is
an asymptotically negligible rate overhead equalling b2/n + ∆.
The b2/n term corresponds, as before, to the identity matrix
appended to X . The term ∆ takes any positive value, and the
probability of error also depends on it.) The probability of error
equals the sums of the probabilities of error in Theorems 1
and 2. The errors in Theorem 1 are analyzed in Claims 3 and 2.
Theorem 2 is used to generate codes of blocklength ∆n. This
probability of error is analyzed in Claim 5. Together, an upper
bound on the probability of error is (|T ||E|+nCC)q−1+q−∆nε.
Since the Limited Adversary algorithm is essentially a con-
catenation of the Shared Secret algorithm with the Omniscient
Adversary algorithm, the computational cost is the sum of the
computational costs of the two (with ∆n replacing n as the
block-length for the Shared Secret algorithm). This quantity
therefore equals O(nC2 +(∆nC)3). Choosing ∆ appropriately
(say ∆ = (C− 1

3 n− 2
3 ) makes the second term vanish. �

A. Limited Adversary: Universal Codes

We now discuss how to convert the above algorithm to
be independent of the network parameters zO and zI . Alice’s
challenge is to design for all possible zO and zI pairs that satisfy
the constraint (15). For any specific zI , Alice needs to worry
only about the largest zO that satisfies (15) because what works

1 Secret Sharing protocols [25] demonstrate that using MDS code generator
matrices guarantees that to infer even a single symbol of Ũ′ from Ũ requires
the entire vector Ũ.



Adversarial
Strength

Rate Complexity

Shared
Secret

zO < C,
zI = network

C − zO O(nC2)

Omniscient zO < C/2,
zI = network

C − 2zO O((nC)3)

Limited zI+2zO < C C − zO O(nC2)

TABLE III—Comparison of our three algorithms

against an attacker with a particular traffic injection strength
works against all weaker attackers. Note that C, zO, and zI are
all integers, and thus there are only C − 1 such attackers. For
each of these attackers, Alice designs a different secrecy matrix
X2 as described above. She appends these C−1 matrices to her
information X1 and sends the result as described in the above
section.

To decode Bob needs to estimate which secrecy matrix to
use, i.e., which one of them is secret from the attacker. For
this he needs a good upper bound on zO. But, just as in the
omniscient adversary algorithm, he can obtain this by computing
the column rank of Y , and subtracting b from it. He then decodes
using the secrecy matrix corresponding to (zO, C − 1 − 2zO).
This secrecy matrix suffices since zI can at most be C−1−2zO,
which corresponds to Calvin’s highest eavesdropping strength
for this zO. �

X. CONCLUSION

Random network codes are vulnerable to Byzantine adver-
saries. This work makes them secure. We provide algorithms2

which are information-theoretically secure and rate-optimal for
different adversarial strengths as shown in Table I. When the
adversary is omniscient, we show how to achieve a rate of
C − 2zO, where zO is the number of packets the adversary
injects and C is the network capacity. If the adversary cannot
observe everything, our algorithms achieve a higher rate, C−zO.
Both rates are optimal. Further our algorithms are practical; they
are distributed, have polynomial-time complexity and require no
changes at the internal nodes.
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APPENDIX
A. Proof of Claim 2
The idea behind the claim is as follows. The parity-check matrix P
is, by construction, a Vandermonde matrix [27], and therefore has
full column rank. Further, since P is hidden from Calvin, with high
probability he cannot choose interference such that the matrix product
EP has a lower column rank than does E.

To prove this we use a generalization of an argument used in [12].
Let Si,j denote the (i, j) element of S = EP . We note that for each
(i, j), Si,j can be thought of as a polynomial in rj with coefficients
from the ith row of E. Since Si,j has degree at most n in rj , at most



n values of rj satisfy the equation Si,j = c, for any scalar c ∈ Fq .
Since Calvin does not know the values of the rjs, the probability he
can choose entries in E to satisfy any such equation is at most nq−1.

In particular, the probability that the first row of S consists of
the length-C zero vector is at most (nq−1)C . For a particular choice
of the first row of S, the probability that the second row is linearly
dependent on the first row (i.e., is any scalar multiple of the first row)
is at most nC/qC−1. Similarly, the probability that the third row is
any of the q2 possible linear combinations of the first two rows is at
most nC/qC−2. Continuing thus, the probability that the ith row of
S is linearly dependent on the previous i − 1 is at most nC/qC−i+1.
Taking the union bound over all C events, the probability that S is
singular is at most nC ∑C

i=1 1/qC−i+1. Since the largest summand
equals nC/q, therefore the probability of the undesirable event is at
most CnCq−1. Hence, with probability at least 1 − CnCq−1, E and
S are related via an invertible transformation. Note that q is a design
parameter and can be chosen to be much larger than CnC to make the
probability of error arbitrarily small. �

B. Proof of Claim 3
The proof of Claim 3 follows directly from [9]. Essentially, it is a
consequence of the following facts. First, due to [9], with probability
at least (1−|T |q−1)|E| over network code design, [T TZ→Y ] has full
column rank. Here |T | is the number of terminals in the multicast
connection, and |E| is the number of (hyper) links in the underlying
network. Secondly, the matrix [T̂ S′] can be obtained via an invertible
transformation from the matrix [T TZ→Y ]. Lastly, for large enough q,
the quantity (1 − |T |q−1)|E| is strictly greater than 1 − |T ||E|q−1. �

C. Proof of Claim 4
Rewriting the right-hand side of (12) and substituting for Y from (8)
results in

T̂X + TZ→Y (Z − LX) = T̂ [0 F X Ib] + T ′′[IzO F Z 0]. (16)

Since the columns of T ′′ are spanned by the columns of [T̂ TZ→Y ],
therefore we may write T ′′ as T̂M1 + TZ→Y M2, where the matrices
M1 and M2 represent the appropriate basis transformation. Thus (16)
becomes

T̂X + TZ→Y (Z − LX) =

T̂
(
[0 F X Ib]

)
+

(
T̂M1 + TZ→Y M2

)
[IzO F Z 0]. (17)

Since the vector spaces spanned by the columns of T̂ and TZ→Y are
disjoint (except in the zero vector), therefore we may compare the term
multiplying the matrix T̂ on both sides of 17 (we may also compare
the term corresponding to TZ→Y , but this gives us nothing useful).
This comparison gives us the equation

T̂X = T̂ [0 F X Ib] + T̂M1[IzO F Z 0]. (18)

We split the matrix equation (16) into three parts, corresponding to the
sub-matrices X1, X2 and X3 of X . Thus (18) now splits into the three
equations

T̂X1 = T̂M1IzO , (19)

T̂X2 = T̂F X + T̂M1F
Z , and (20)

T̂X3 = T̂ . (21)

Equation (21) is trivial, since it only reiterates that X3 equals columns
of an identity matrix. Equation (19) allows us to estimate that M1

equals X1. We are finally left with (20), which by substituting for M1

from (19) reduces to

T̂X2 = T̂
(
F X + X1F

Z
)

. (22)

�

D. Proof of Claim 5
For i = 1, 2, we denote by X̃i the vector obtained by stacking the
columns of Xi one after the other. Let D = [D1 D2], where D2

corresponds to the last b2 columns of D and D1 corresponds to the

remaining columns of D. Define α = n − (b + zO). Denote by �F X

the vector formed by stacking columns of the matrix F X one after the
other, and by fi,j the (i, j)th entry of the matrix F Z . The system of
linear equations (13)-(14) can be written in matrix form as

A

(
X̃1

X̃2

)
=

(
T̂ �F X

−D2Ĩ

)

where A is given by



−f1,1T̂ −f2,1T̂ . . . −fzO,1T̂ T̂ 0 . . . . . . 0

−f1,2T̂ −f2,2T̂ . . . −fzO,2T̂ 0 T̂ 0 . . . 0

−f1,3T̂ −f2,3T̂ . . . −fzO,3T̂
... 0 T̂ 0 0

...
...

...
...

...
... 0

. . . 0

−f1,αT̂ −f2,αT̂ . . . −fzO,αT̂ 0 0 0 0 T̂

D1




This matrix A is described by smaller dimensional matrices as
entries. The matrix T̂ has dimensions (b + zO) × b. The jth row
of matrices in the top portion of matrix A describes an equation
corresponding to the jth column of the matrix equation in Equation 13.
The bottom portion of A corresponds to Equation 14. Bob can recover
the variables X(i, j) if and only if the above matrix A has full column
rank. We now analyze A to show that this is indeed the case (with high
probability) for sufficiently large δn. Using Claim 3, we can assume
that T̂ has full column-rank, and therefore the last αb columns of the
matrix (represented by the right side of A) have full column rank.

We now address the left columns of A. Consider performing
column operations from right to left, to zero out the T̂ s in the left
side of the top rows of A (that is, to zero out the upper left sub-matrix
of A). A has full column rank iff after this process the lower left sub-
matrix of A has full column rank. We show that this is the case with
high probability over the random elements of D (when δn is chosen to
be sufficiently large). Let fij’s be the values appearing in the upper left
sub-matrix of A. We show that for any (adversarial) choice of fij’s,
with high probability, the act of zeroing out the T̂ ’s yields a lower left
sub-matrix of A with full column rank. Then using the union bound
on all possible values of fij we obtain our assertion.

For any fixed values of fij , let C(j), for j = 1 to bzO , denote
the columns of the lower left sub-matrix of A after zeroing out the
T̂ ’s. For each j, the vector C(j) is a linear combination of the (lower
part of the) jth column of A with columns from the lower right sub-
matrix of A. As the entries of D1 are independent random variables
uniformly distributed in Fq , the columns C(j) for j = 1, . . . , bzO

consist of independent entries that are also uniformly distributed in Fq .
Standard analysis shows that the probability that the columns C(j) are
not independent is qbzO−δn. For the union bound we would like this
probability to be at most q−αzO−nε = q−(n−(b+zO))zO−nε. Thus, it
suffices to take δn = n(zO + ε) for an error probability of at most
q−nε. Recall that b = C − zO .
E. Proof of Claim 6

The vector Ũ was generated from Ũ′ via an MDS code generator
matrix (see Footnote 1), and a folklore result about network codes
is that with high probability over random network code design the
linear transform between Alice and Calvin also has the MDS property.
Thus, for Calvin to infer even a single symbol of the length-(C −
zO − δ)n∆ vector Ũ′, he needs to have received at least (C − zO −
δ)n∆ linear combinations of the variables in the secrecy matrix X2.
Since Calvin can overhear zI packets, he has access to zIn∆ equations
that are linear in the unknown variables. The difference between the
number of variables unknown to Calvin, and the number of equations
Calvin has, is linear in n∆ – for large enough n∆, this difference is
larger than b(C + 1), the length of the vector S. By a direct extension
of [25], Calvin’s probability of guessing any function of S correctly is
q−b(C+1). �


